Skip to main content

Self-Renewal of Stem Cells

The Intrinsic Timetable Model

  • Chapter
Molecular Biology of B-Cell and T-Cell Development

Part of the book series: Contemporary Immunology ((CONTIM))

Abstract

Most blood cells have a limited life-span, and it is estimated that an adult human needs to produce between 1011 and 1012 mature blood cells per day to compensate for the daily loss of differentiated end cells. Ultimately, this enormous production of cells is derived from a population of hematopoietic stem cells that may need some form of self-renewal to sustain steady-state hematopoiesis and to reconstitute blood cell production following marrow injury.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. McCulloch, E. A. and Till, J. E. (1960) The radiation sensitivity of normal mouse bone marrow cells, determined by quantitative marrow transplantation into irradiated mice. Radiat. Res 13, 115–125.

    Article  PubMed  CAS  Google Scholar 

  2. Till, J. E., McCulloch, E. A., and Siminovitch, L. (1964) A stochastic model of stem cell proliferation, based on the growth of spleen colony-forming cells. Proc. Natl. Acad. Sci. USA 51, 29–36.

    Article  PubMed  CAS  Google Scholar 

  3. Magli, M. C., Iscove, N. N., and Odartchenko, N. (1982) Transient nature of early haematopoietic spleen colonies. Nature 295, 527–529.

    Article  PubMed  CAS  Google Scholar 

  4. Ploemacher, R. E. and Brons, R. H. C. (1989) Separation of CFU-S from primitive cells responsible for reconstitution of the bone marrow hemopoietic stem cell compartment following irradiation: Evidence for a pre-CFU-S cell. Exp. Hematol 17, 263–266.

    PubMed  CAS  Google Scholar 

  5. Jones, R. J., Wagner, J. E., Celano, P., Zicha, M. S., and Sharkis, S. J. (1990) Separation of pluripotent haematopoietic stem cells from spleen colony-forming cells. Nature 347, 188–189.

    Article  PubMed  CAS  Google Scholar 

  6. Szilvassy, S. J. and Cory, S. (1993) Phenotypic and functional characterization of competitive long-term repopulating hematopoietic stem cells enriched from 5-fluorouracil-treated murine marrow. Blood 81, 2310–2320.

    PubMed  CAS  Google Scholar 

  7. Szilvassy, S. J., Humphries, R. K., Lansdorp, P. M., Eaves, A. C., and Eaves, C. J. (1990) Quantitative assay for totipotent reconstituting hematopoietic stem cells by a competitive repopulation strategy. Proc. Natl. Acad. Sci. USA 87, 8736–8740.

    Google Scholar 

  8. Lansdorp, P. M., Dragowska, W., and Mayani, H. (1993) Ontogeny-related changes in proliferative potential of human hematopoietic cells. J. Exp. Med 178, 787–791.

    Article  PubMed  CAS  Google Scholar 

  9. Rebel, V. I., Miller, C. L., Thornbury, G. R, Dragowska, W. H., Eaves, C. J., and Lansdorp, P. M. (1996) A comparison of long-term repopulating hematopoietic stem cells in fetal liver and adult bone marrow from the mouse. Exp. Hematol 24, 638–648.

    Google Scholar 

  10. Rebel, V. I., Miller, C. L., Eaves, C. J., and Lansdorp, P. M. (1996) The repopulation potential of fetal liver hematopoietic stem cells in mice exceeds that of their adult bone marrow counterparts. Blood 87, 3500–3507.

    PubMed  CAS  Google Scholar 

  11. Rebel, V.I., Miller, C. L., Spinelli, J. J., Thomas, T. E., Eaves, C. J., and Lansdorp, P. M. (1995) Nonlinear effects of radiation dose on donor-cell reconstitution by limited numbers of purified stem cells. Biol. Blood Marrow Transplant 1, 32–39.

    PubMed  CAS  Google Scholar 

  12. Ogawa, M. (1993) Differentiation and proliferation of hematopoietic stem cells. Blood 81, 2844–2853.

    PubMed  CAS  Google Scholar 

  13. Dexter, T. M., Heyworth, C. M., Spooncer, E., and Ponting, I. L. O. (1990) The role of growth factors in self-renewal and differentiation of haemopoietic stem cells. Philos. Trans. R. Soc. Lond. Biol 327, 85–98.

    Google Scholar 

  14. Metcalf, D. (1991) Lineage commitment of hemopoietic progenitor cells in developing blast cell colonies: Influence of colony-stimulating factors. Proc. Natl. Acad. Sci. USA 88,11, 310–11, 314.

    Google Scholar 

  15. Fairbairn, L. J., Cowling, G. J., Reipert, B. M., and Dexter, T. M. (1993) Suppression of apoptosis allows differentiation and development of a multipotent hemopoietic cell line in the absence of added growth factors. Cell 74, 823–832.

    Article  PubMed  CAS  Google Scholar 

  16. Mayani, H., Dragowska, W., and Lansdorp, P. M. (1993) Lineage commitment in human hemopoiesis involves asymmetric cell division of multipotent progenitors and does not appear to be influenced by cytokines. J. Cell Physiol 157, 579–586.

    Google Scholar 

  17. Sauvageau, G., Lansdorp, P. M., Eaves, C. J., Hogge, D. E., Dragowska, W. H, Reid, D. S., Largman, C., Lawrence, H. J., and Humphries, R. K. (1994) Differential expression ofhomeobox genes in functionally distinct CD34+ subpopulations of human bone marrow cells. Proc. Natl. Acad. Sci. USA 91, 12,223–12,227.

    Google Scholar 

  18. Sauvageau, G., Thorsteinsdottir, U., Eaves, C. J., Lawrence, H. J., Largman, C., Lansdorp, P M., and Humphries, R. K. (1995) Overexpression of HOXB4 in hematopoietic cells causes the selective expansion of more primitive populations in vitro and in vivo. Genes Dev 9, 1753–1765.

    Google Scholar 

  19. Lemischka, I. R., Raulet, D. H., and Mulligan, R. C. (1986) Developmental potential and dynamic behavior of hematopoietic stem cells. Cell 45, 917–927.

    Article  PubMed  CAS  Google Scholar 

  20. Fraser, C. C., Szilvassy, S. J., Eaves, C. J., and Humphries, R. K. (1992) Proliferation of totipotent hematopoietic stem cells in vitro with retention of long-term competitive in vivo reconstituting ability. Proc. Natl. Acad. Sci. USA 89, 1968–1972.

    Article  PubMed  CAS  Google Scholar 

  21. Keller, G. and Snodgrass, R. (1990) Life span of multipotential hematopoietic stem cells in vivo. J. Exp. Med 171, 1407–1418.

    Article  PubMed  CAS  Google Scholar 

  22. Lansdorp, P. M. (1995) Developmental changes in the function of hematopoietic stem cells. Exp. Hematol 23, 187–191.

    PubMed  CAS  Google Scholar 

  23. Pawliuk, R., Eaves, C., and Humphries, R. K. (1996) Evidence of both ontogeny and transplant dose-regulated expansion of hematopoietic stem cells in vivo. Blood 88, 2852–2858.

    PubMed  CAS  Google Scholar 

  24. Harley, C. B. (1995) Telomeres and Aging. in Telomeres. Blackburn, E. H. and Greider, C. W. (Eds.) Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, pp. 247–265.

    Google Scholar 

  25. Harley, C. B., Kim, N. W., Prowse, K. R., Weinrich, S. L., Hirsch, K. S., West, M. D., Bacchetti, S., Hirte, H. W., Counter, C. M., Greider, C. W., Wright, W. E., and Shay, J. W. (1994) Telomerase, cell immortality, and cancer. Cold Spring Harbor Symp. Quant. Biol. 59, Cold Spring Harbor, NY, pp. 307–315.

    Google Scholar 

  26. Blackburn, E. H. (1994) Telomeres: no end in sight. Cell 77, 621–623.

    Article  PubMed  CAS  Google Scholar 

  27. Zakian, V. A. (1995) Telomeres: Beginning to understand the end. Science 270, 1601–1607.

    Article  PubMed  CAS  Google Scholar 

  28. Vaziri, H., Dragowska, W., Allsopp, R. C., Thomas, T. E., Harley, C. B., and Lansdorp, P. M. (1994) Evidence for a mitotic clock in human hematopoietic stem cells: loss of telomeric DNA with age. Proc. Natl. Acad. Sci. USA 91, 9857–9860.

    Article  PubMed  CAS  Google Scholar 

  29. Lansdorp, P. M. (1995) Telomere length and proliferation potential of hematopoietic stem cells. J. Cell Sci 108, 1–6.

    PubMed  CAS  Google Scholar 

  30. Morrison, S. J., Prowse, K. R., Ho, P., and Weissman, I. L. (1996) Telomerase activity in hematopoietic cells is associated with self-renewal potential. Immunity 5, 207–216.

    Google Scholar 

  31. Holt, S. E., Shay, J. W., and Wright, W. E. (1996) Refining the telomere-telomerase hypothesis of aging and cancer. Nature Biotechnol. 14, 834–837.

    Article  Google Scholar 

  32. Autexier, C. and Greider, C. W. (1996) Telomerase and cancer: revisiting the telomere hypothesis. Trends Biochem. Sci 21, 387–391.

    PubMed  CAS  Google Scholar 

  33. Hiyama, K., Hirai, Y., Kyoizumi, S., Akiyama, M., Hiyama, E., Piatyszek, M. A., Shay, J. W., Ishioka, S., and Yamakido, M. (1995) Activation of telomerase in human lymphocytes and hematopoietic progenitor cells. J. Immunol 155, 3711–3715.

    PubMed  CAS  Google Scholar 

  34. Chiu, C-P., Dragowska, W., Kim, N. W., Vaziri, H., Yui, J., Thomas, T. E., Harley, C. B., and Lansdorp, P. M. (1996) Differential expression of telomerase activity in hematopoietic progenitors from adult human bone marrow. Stem Cells 14, 239–248.

    Article  PubMed  CAS  Google Scholar 

  35. Yui, J., Chiu, C-P., and Lansdorp, P. M. (1998) Telomerase activity in candidate stem cells from fetal liver and adult bone marrow. Blood,in press.

    Google Scholar 

  36. Weng, N-P., Levine, B. L., June, C. H., and Hodes, R. J. (1996) Regulated expression of telomerase activity in human T lymphocyte development and activation. J. Exp. Med 183, 2471–2479.

    Article  PubMed  CAS  Google Scholar 

  37. Harley, C. B., Futcher, A. B., and Greider, C. W. (1990) Telomeres shorten during ageing of human fibroblasts. Nature 345, 458–460.

    Google Scholar 

  38. Hastie, N. D., Dempster, M., Dunlop, M. G., Thompson, A. M., Green, D. K., and Allshire, R. C. (1990) Telomere reduction in human colorectal carcinoma and with ageing. Nature 346, 866–868.

    Article  PubMed  CAS  Google Scholar 

  39. Lansdorp, P. M., Verwoerd, N. P., van de Rijke, F. M., Dragowska, V., Little, M-T., Dirks, R. W., Raap, A. K., and Tanke, H. J. (1996) Heterogeneity in telomere length of human chromosomes. Hum. Mol. Genet 5, 685–691.

    Article  PubMed  CAS  Google Scholar 

  40. Lansdorp, P. M., Poon, S., Chavez, E., Dragowska, V., Zijlmans, M., Bryan, T., Reddel, R., Egholm, M., Bacchetti, S., and Martens, U. (1997) Telomeres in the hematopoietic system. CIBA Foundation Symposium No. 211. Telomeres and Telomerase (in press).

    Google Scholar 

  41. Counter, C. M., Botelho, F. M., Wang, P., Harley, C. B., and Bacchetti, S. (1994) Stabilization of short telomeres and telomerase activity accompany immortalization of Epstein-Barr virus-transformed human B lymphocytes. J. Virol 68, 3410–3414.

    PubMed  CAS  Google Scholar 

  42. Monteiro, J., Batliwalla, F., Ostrer, H., and Gregersen, P. K. (1996) Shortened telomeres in clonally expanded CD28–CD8+ T cells imply a replicative history that is distinct from their CD28+CD8+ counterparts. J. Immunol 156, 3587–3590.

    PubMed  CAS  Google Scholar 

  43. Wolthers, K. C., Wisman, B. G., Otto, S. A., de Roda Husman, A. M., Schaft, N., de Wolf, F., Goudsmit, J., Coutinho, R. A., van der Zee, A. G., Meyaard, L., and Miedema, F. (1996) T cell telomere length in HIV-1 infection: no evidence for increased CD4+ T cell turnover. Science 274, 1543–1547.

    Article  PubMed  CAS  Google Scholar 

  44. Zakian, V. A. (1996) Structure, function, and replication of Saccharomyces cerevisiae telomeres. Annu. Rev. Genet 30, 141–172.

    Article  PubMed  CAS  Google Scholar 

  45. Greider, C. W. (1996) Telomere length regulation. Annu. Rev. Biochem 65, 337–365.

    Article  PubMed  CAS  Google Scholar 

  46. Chong, L., van Steensel, B., Broccoli, D., Erdjument-Bromage, H., Hanish, J., Tempst, P., and de Lange, T. (1995) A human telomeric protein. Science 270, 1663–1667.

    Article  PubMed  CAS  Google Scholar 

  47. van Steensel, B. and de Lange, T. (1997) Control of telomere length by the human telomeric protein TRF 1. Nature 385, 740–743.

    Article  PubMed  Google Scholar 

  48. Mirabella, A. and Gartenberg, M. R. (1997) Yeast telomeric sequences function as chromosomal anchorage points in vivo. EMBO J. 16, 523–533.

    CAS  Google Scholar 

  49. Wotton, D. and Shore, D. (1997) A novel Rap 1 p-interacting factor, Rif2p, cooperates with Rifip to regulate telomere length in Saccharomyces cerevisiae. Genes Dev. 11, 748–760.

    Article  CAS  Google Scholar 

  50. Moretti, P, Freeman, K., Coodly, L., and Shore, D. (1994) Evidence that a complex of SIR proteins interacts with the silencer and telomere-binding protein RAP1. Genes Dev 8, 2257–2269.

    Google Scholar 

  51. Marcand, S., Buck, S. W., Moretti, P., Gilson, E., and Shore, D. (1996) Silencing of genes at nontelomeric sites in yeast is controlled by sequestration of silencing factors at telomeres by Rapl protein. Genes Dev. 10, 1297–1309.

    Article  PubMed  CAS  Google Scholar 

  52. Makarov, V. L., Hirose, Y., and Langmore, J. P. (1997) Long G tails at both ends of human chromosomes suggest a C strand degradation mechanism for telomere shortening. Cell 88, 657–666.

    Google Scholar 

  53. Nugent, C. I., Hughes, T. R., Lue, N. F., and Lundblad, V. (1996) Cdc 13p: a single-strand telomeric DNA-binding protein with a dual role in yeast telomere maintenance. Science 274, 249–252.

    Article  PubMed  CAS  Google Scholar 

  54. Fang, G. and Cech, T. R. (1993) Characterization of a G-quartet formation reaction promoted by the 0-subunit of the Oxytricha telomere-binding protein. Biochemistry 32, 11, 646–11, 657.

    Google Scholar 

  55. Wellinger, R. J., Ethier, K., Labrecque, P., and Zakian, V. A. (1996) Evidence for a new step in telomere maintenance. Cell 85, 423–433.

    Article  PubMed  CAS  Google Scholar 

  56. Feng, J., Funk, W. D., Wang, S-S., Weinrich, S. L., Avilion, A. A., Chiu, C-P., Adams, R. R., Chang, E., Allsopp, R. C., Yu, J., Le, S., West, M. D., Harley, C. B., Andrews, W. H., Greider, C. W., and Villeponteau, B. (1995) The RNA component of human telomerase. Science 269, 1236–1241.

    Article  PubMed  CAS  Google Scholar 

  57. Lingner, J., Hughes, T. R., Shevchenko, A., Mann, M., Lundblad, V., and Cech, T. R. (1997) Reverse transcriptase motifs in the catalytic subunit of telomerase. Science 276, 561–567.

    Article  PubMed  CAS  Google Scholar 

  58. Collins, K., Kobayashi, R., and Greider, C. W. (1995) Purification of tetrahymena telomerase and cloning of genes encoding the two protein components of the enzyme. Cell 81, 677–686.

    Article  PubMed  CAS  Google Scholar 

  59. Lingner, J. and Cech, T. R. (1996) Purification of telomerase from Euplotes aediculatus: requirement of a primer 3’ overhang. Proc. Natl. Acad. Sci. USA 93, 10,712–10, 717.

    Google Scholar 

  60. Nakayama, J., Saito, M., Nakamura, H., Matsuura, A., and Ishikawa, F. (1997) TLP1, A gene encoding a protein component of mammalian telomerase is a novel member of WD repeats family. Cell 88, 1–20.

    Article  Google Scholar 

  61. Rosendaal, M., Hodgson, G. S., and Bradley, T. R. (1979) Organization of haemopoietic stem cells: The generation-age hypothesis. Cell Tissue Kinet. 12, 17–29.

    PubMed  CAS  Google Scholar 

  62. Horvitz, H. R. and Herskowitz, I. (1992) Mechanisms of asymmetric cell division: two Bs or not two Bs, that is the question. Cell 68, 237–255.

    Article  PubMed  CAS  Google Scholar 

  63. Amon, A. (1996) Mother and daughter are doing fine: asymmetric cell division in yeast. Cell 84, 651–654.

    Article  PubMed  CAS  Google Scholar 

  64. Hirata, J., Nakagoshi, H., Nabeshima, Y., and Matsuzaki, F. (1995) Asymmetric segregation of the homeodomain protein Prospero during Drosophila development. Nature 377, 627–630.

    Google Scholar 

  65. Potten, C. S. and Loeffler, M. (1990) Stem cells: attributes, cycles, spirals, pitfalls and uncertainties. Lessons for and from the crypt. Development 10, 1001–1020.

    Google Scholar 

  66. Rebel, V. I. and Lansdorp, P. M. (1996) Culture of purified stem cells from fetal liver results in loss of in vivo repopulating potential. J. Hematother 5, 25–37.

    Article  PubMed  CAS  Google Scholar 

  67. Slagboom, P. E., Droog, S., and Boomsma, D. I. (1994) Genetic determination of telomere size in humans: A twin study of three age groups. Am. J. Hum. Genet 55, 876–882.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Lansdorp, P.M. (1998). Self-Renewal of Stem Cells. In: Monroe, J.G., Rothenberg, E.V. (eds) Molecular Biology of B-Cell and T-Cell Development. Contemporary Immunology. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-4757-2778-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-2778-4_2

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-065-6

  • Online ISBN: 978-1-4757-2778-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics