Cytokine and Stromal Influences on Early B-Cell Development

  • Lisa J. Jarvis
  • Tucker W. LeBien
Part of the Contemporary Immunology book series (CONTIM)


Mammalian bone marrow (BM) is a complex milieu of rare pluripotent stem cells, developmentally restricted stem cells, a range of immature to mature cells in distinct lymphohematopoietic lineages, and nonlymphohematopoietic cells (1). The latter category consists of several cell types, including adventitial reticular cells, barrier cells, endothelial cells, adipocytes, osteoblasts, and osteoclasts. The adventitial reticular cells line the abluminal surface of the marrow vascular sinus, and the cytoplasmic processes that extend from these cells are in direct contact with lymphohematopoietic cells (2). Whether adventitial reticular cells constitute a single cell type with origin in a common mesenchymal precursor is not known, but they manifest many attributes of fibroblast-like cells (3). The term BM stromal cells is also used to describe the adherent cell population established from the in vitro culture of BM, and the predominant cell present in such an adherent cell population is generally the adventitial reticular/fibroblast-like cell. In this chapter, the authors will employ the term BM stromal cell to describe the adventitial reticular/fibroblast-like cell that predominates cultures established from mouse or human BM plated in tissue culture medium supplemented with fetal bovine serum.


Stromal Cell Focal Adhesion Kinase Bone Marrow Stromal Cell Severe Combine Immune Deficiency Human Bone Marrow Stromal Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Dorshkind, K. (1990) Regulation of hemopoiesis by bone marrow stromal cells and their products. Ann. Rev. Immunol. 8, 111–137.Google Scholar
  2. 2.
    Abboud, C. N. and Lichtman, M. A. (1995) Structure of the marrow, in Williams Hematology ( Beutler, E., Lichtman, M. A., Coller, B. S., and Kipps, T. J., eds.), McGraw-Hill, Inc., New York, NY, pp. 25–38.Google Scholar
  3. 3.
    Liesveld, J. L., Abboud, C. N., Duerst, R. E., Ryan, D. H., Brennan, J. K., and Lichtman, M. A. (1989) Characterization of human marrow stromal cells: role in progenitor cell binding and granulopoiesis. Blood 73, 1794–1800.PubMedGoogle Scholar
  4. 4.
    Dittel, B. N., McCarthy, J. B., Wayner, E. A., and LeBien, T. W. (1993) Regulation of human B-cell precursor adhesion to bone marrow stromal cells by cytokines that exert opposing effects on the expression of vascular cell adhesion molecule-1 (VCAM-1). Blood 81, 2272–2282.PubMedGoogle Scholar
  5. 5.
    Dittel, B. N. and LeBien, T. W. (1995) Reduced expression of vascular cell adhesion molecule-1 on bone marrow stromal cells isolated from marrow transplant recipients correlates with a reduced capacity to support human B lymphopoiesis in vitro. Blood 86, 2833–2841.PubMedGoogle Scholar
  6. 6.
    Dittel, B. N. and LeBien, T. W. (1995) The growth response to Il-7 during human B cell ontogeny is restricted to B-lineage cells expressing CD34. J. Immunol. 155, 2359–2368.Google Scholar
  7. 7.
    Jarvis, L. J. and LeBien, T. W. (1995) Stimulation of human bone marrow stromal cell tyrosine kinases and IL-6 production by contact with B lymphocytes. J. Immunol. 155, 2359–2368.PubMedGoogle Scholar
  8. 8.
    Pribyl, J. A. R., and LeBien, T. W. (1996) Interleukin 7 independent development of human B cells. Proc. Natl. Acad. Sci. USA 93, 10348–10353.Google Scholar
  9. 9.
    Villablanca, J. G., Anderson, J. M., Moseley, M., Law, C.-L., Elstrom, R. L., and LeBien, T. W. (1990) Differentiation of normal human pre-B cells in vitro. J. Exp. Med. 172, 325–334.Google Scholar
  10. 10.
    Wolf, M. L., Buckley, J., Goldfarb, A., Law, C.-L., and LeBien, T. W. (1991) Development of a bone marrow culture for maintenance and growth of normal human B cell precursors. J. Immunol. 147, 3324–3330.PubMedGoogle Scholar
  11. 11.
    Manabe, A., Muni, K. G., Coustan-Smith, E., Kumagai, M., Behm, F. G., Raimondi, S. C., and Campana, D. (1994) Adhesion-dependent survival of normal and leukemic human B lymphoblasts on bone marrow stromal cells. Blood 83, 758–766.PubMedGoogle Scholar
  12. 12.
    McGinnes, K., Quesniaux, V., Hitzler, J., and Paige, C. (1991) Human B lymphopoiesis is supported by bone marrow-derived stromal cells. Exp. Hematol. 19, 294–303.PubMedGoogle Scholar
  13. 13.
    Moreau, I., Duvert, V., Caux, C., Galmiche, M.-C., Charbord, P., Banchereau, J., and Saeland, S. (1993) Myofibroblastic stromal cells isolated from human bone marrow induce the proliferation of both early myeloid and B-lymphoid cells. Blood 82, 2396–2405.PubMedGoogle Scholar
  14. 14.
    Moreau, I. Duvert, V., Banchereau, J., and Saeland, S. (1993) Culture of human fetal B-cell precursors on bone marrow stroma maintains highly proliferative CD20dim cells. Blood 81 1170–1178.Google Scholar
  15. 15.
    Ryan, D. H., Nuccie, B. L., Abboud, C. N., and Liesveld, J. L. (1990) Maturation-dependent adhesion of human B cell precursors to the bone marrow microenvironment. J. Immunol. 145, 477–484.PubMedGoogle Scholar
  16. 16.
    Ryan, D. H., Nuccie, B. L., Abboud, C. N., and Winslow, J. M. (1991) Vascular cell adhesion molecule-1 and the integrin VLA-4 mediate adhesion of human B cell precursors to cultured bone marrow adherent cells. J. Clin. Invest. 88, 995–1004.PubMedGoogle Scholar
  17. 17.
    Ryan, D. H., Nuccie, B. L., and Abboud, C. N. (1992) Inhibition of human bone marrow lymphoid progenitors by antibodies to VLA integrins. J. Immunol. 149, 3759–3764.PubMedGoogle Scholar
  18. 18.
    Ryan, D. H., Nuccie, B. L., Ritterman, I., Liesveld, J. L., and Abboud, C. N. (1994) Cytokine regulation of early human lymphopoiesis. J. Immunol. 152, 5250–5258.PubMedGoogle Scholar
  19. 19.
    Pribyl, J. A. R., Shah, N., Dittel, B. N., and LeBien, T. W. (1997) Methods for purification and growth of human B cell precursors in bone marrow stromal cell-dependent cultures, in Immunology Methods Manual (Lefkovits, I., ed. ), Academic Press Ltd, pp. 902–923.Google Scholar
  20. 19a.
    Rawlings, D. J., Quan, S. G., Kato, R. M., and Witte, O. N. (1995) Long-term culture system for selective growth of human B-cell progenitors. Proc. Natl. Acad. Sci. USA 92, 1570–1574.PubMedGoogle Scholar
  21. 20.
    Cluitmans, F. H. M., Esendam, B. H. J., Landegent, J. E., Willemze, R., and Falkenburg, J. H. F. (1995) Constitutive in vivo cytokine and hematopoietic growth factor gene expression in the bone marrow and peripheral blood of healthy individuals. Blood 85, 2038–2044.PubMedGoogle Scholar
  22. 21.
    Miyake, K., Medina, K., Ishihara, K., Kimoto, M., Aeurbach, R., and Kincade, P. W. (1991) A VCAM-like adhesion molecule on murine bone marrow stromal cells mediates binding of lymphocyte precursors in culture. J. Cell Biol. 114, 557–565.PubMedGoogle Scholar
  23. 22.
    Rajewsky, K. (1996) Clonal selection and learning in the antibody system. Nature 381, 751–758.PubMedGoogle Scholar
  24. 23.
    Verfaillie, C., Hurley, R., Bhatia, R., and McCarthy, J. B. (1994) Role of bone marrow matrix in normal and abnormal hematopoiesis. Crit. Rev. Onc. Hem. 16, 201–224.Google Scholar
  25. 24.
    Heinrich, M. C., Dooley, D. C., Freed, A. C., Band, L., Hoatlin, M. E., Keeble, W. W., Peters, S. T., Silvey, K. S., Ey, F. S., Kabat, D., Maziarz, R. T., andBagby, G. C., Jr. (1993) Constitutive expression of Steel factor gene by human stromal cells. Blood 82, 771–783.PubMedGoogle Scholar
  26. 25.
    Lisovsky, M., Braun, S. E., Ge, Y., Takahira, H., Lu, L., Savchenko, V. G., Lyman, S. D., and Broxmeyer, H. E. (1996) Flt3-ligand production by human bone marrow stromal cells. Leukemia 10, 1012–1018.Google Scholar
  27. 26.
    Rosnet, O., Buhring, H. J., DeLapeyriere, O., Beslu, N., Lavagna, C., Marchetto, S., Rappold, I., Drexler, H. G., Birg, F., Rottapel, R, Hannum, C., Dubreuil, P., and Birnbaum, D. (1996) Expression and signal transduction of the FLT3 tyrosine kinase receptor. Acta Haematol. 95, 218–223.PubMedGoogle Scholar
  28. 27.
    Toksoz, D., Zsebo, K. M., Smith, K. A., Hu, S., Brankow, D., Suggs, S. V., Martin, F. H., and Williams, D. A. (1992) Support of human hematopoiesis in long-term bone marrow cultures by murine stromal cells selectively expressing the membrane-bound and secreted forms of the human homolog of the steel gene product, stem cell factor. Proc. Natl. Acad. Sci. USA 89, 7350–7354.PubMedGoogle Scholar
  29. 28.
    Black, R. A., Rauch, C. T., Kozlosky, C. J., Peschon, J. J., Slack, J. L., Wolfson, M. F., Castner, B. J., Stocking, K. L., Reddy, P., Srinivasan, S., Nelson, N., Boiani, N., Schooley, K. A., Gerhart, M., Davis, R., Fitzner, J. N., Johnson, R. S., Paxton, R. J., March, C. J. and Cerretti, D. P. (1997) A metalloproteinase disintegrin that releases tumor necrosis factor-a from cells. Nature 385, 729–733.Google Scholar
  30. 29.
    Moss, M. L., Jin, S. L. C., Milla, M. E., Burkhart, W., Carter, H. L., Chen, W. J., Clay, W. C., Didsbury, J. R., Hassler, D., Hoffman, C. R., Kost, T. A., Lambert, M. H., Leesnitzer, M. A., McCauley, P., McGeehan, G., Mitchell, J., Moyer, M., Pahel, G., Rocque, W., Overton, L. K., Schoenen, F., Seaton, T., Su, J. L., Warner, J., Willard, D. and Becherer, J. D. (1997) Cloning of a disintegrin metalloproteinase that processes precursor tumor necrosis factor-a. Nature 385, 733–736.Google Scholar
  31. 30.
    Hirayama, F., Lyman, S. D., Clark, S. C., and Ogawa, M. (1995) The flt3 ligand supports proliferation of lymphohematopoietic progenitors and early B-lymphoid progenitors. Blood 85, 1762–1768.PubMedGoogle Scholar
  32. 31.
    Ray, R. J., Paige, C. J., Furlonger, C., Lyman, S. D., and Rottapel, R. (1996) Flt3 ligand supports the differentiation of early B cell progenitors in the presence of interleukin-11 and interleukin-7. Eur. J. Immunol. 26, 1504–1510.Google Scholar
  33. 32.
    Veiby, O. P., Jacobsen, F. W., Cui, L., Lyman, S. D., and Jacobsen, S. E. W. (1996a) The flt3 ligand promotes the survival of primative hemopoietic progenitor cells with myeloid as well as B lymphoid potential. J. Immunol. 157, 2953–2960.Google Scholar
  34. 33.
    Veiby, O. P., Lyman, S. D., and Jacobsen, S. E. W. (1996b) Combined signaling through interleukin-7 receptors and flt3 but not c-kit potently and selectively promotes B-cell commitment and differentiation from uncommitted murine bone marrow progenitor cells. Blood 88, 1256–1265.PubMedGoogle Scholar
  35. 34.
    Namikawa R., Muench, M. O., deVries, J. E., and Roncarolo, M. G. (1996) The Flk2/F1í3 ligand synergizes with interleukin-7 in promoting stromal-cell-independent expansion and differentiation of human fetal pro-B cells in vitro. Blood 87, 1881–1890.PubMedGoogle Scholar
  36. 35.
    Mackarehtschian, K., Hardin, J. D., Moore, K. A., Boast, S., Goff, S. P., and Lemischka, I. R. (1995) Targeted disruption of the flk2/flt3 gene leads to deficiencies in primitive hematopoietic progenitors. Immunity 3, 147–161.PubMedGoogle Scholar
  37. 36.
    Namen, A. E., Lupton, S., Hjerrild, K., Wignall, K., Mochizuki, D. Y., Schmierer, A., Mosley, B., March, C. J., Urdal, D., Gillis, S., Cosman, D., and Goodwin, R. G. (1988) Stimulation of B cell progenitors by cloned murine interleukin-7. Nature 333, 571–573.Google Scholar
  38. 37.
    Lee, G., Namen, A. E., Gillis, S., Ellingsworth, L. R., and Kincade, P. W. (1989) Normal B cell precursors responsive to recombinant murine IL-7 and inhibition of IL-7 activity by transforming growth factor-ß. J. Immunol. 142, 3875–3883.PubMedGoogle Scholar
  39. 38.
    Yasunaga, M., Wang, F. H., Kunisada, T., Nishikawa, S., and Nishikawa, S.-I. (1995) Cell cycle control of c-kit+IL-7R+ B precursor cells by two distinct signals derived from IL-7 receptor and c-kit in a fully defined medium. J. Exp. Med. 182, 315–323.PubMedGoogle Scholar
  40. 39.
    Peschon, J. J., Morrissey, P. J., Grabstein, K. H., Ramsdell, F. J., Maraskovsky, E., Gliniak, B. C., Park, L. S., Ziegler, S. F., Williams, D. E., Ware, C. B., Meyer, J. D., and Davison, B. L. (1994) Early lymphocyte expansion is severely impaired in interleukin-7 receptor-deficient mice. J. Exp. Med. 180, 1955–1960.PubMedGoogle Scholar
  41. 40.
    von Freeden-Jeffrey, U., Vieira, P., Lucian, L. A., McNeil, T., Burdach, S. E., and Murray, R. (1995) Lymphopenia in interleukin (IL-7)-7 gene-deleted mice identifies IL-7 as a non-redundant cytokine. J. Exp. Med. 181, 1519–1526.Google Scholar
  42. 41.
    Grabstein, K. H., Waldschmidt, T. J., Finkelman, F. D., Hess, B. W., Alpert, A. R., Boiani, N. E., Namen, A. E., and Morrissey, P. J. (1993) Inhibition of murine B and T lymphopoiesis in vivo by an anti-interleukin 7 monoclonal antibody. J. Exp. Med. 178, 257–264.Google Scholar
  43. 42.
    Sudo, T., Nishikawa, S., Olmo, N., Akiyama, N., Tamakoshi, M., Yoshida, H., and Nishikawa, S.-I. (1993) Expression and function of the interleukin 7 receptor in murine lymphocytes. Proc. Natl. Acad. Sci. USA 90, 9125–9129.PubMedGoogle Scholar
  44. 43.
    Sugamura, K., Asao, H., Kondo, M., Tanaka, N., Ishii, N., Ohbo, K., Nakamura, M., and Takeshita, T. (1996) The interleukin-2 receptor y chain: its role in the multiple cytokine receptor complexes and T cell development in XSCID. Ann. Rev. Immunol. 14, 179–205.Google Scholar
  45. 44.
    Cao, X., Shores, E. W., Hu-Li, J., Anver, M. R., Kelsall, B. L., Russell, S. M., Drago, J., Noguchi, M., Grinberg, A., Bloom, E. T., Paul, W. E., Katz, S. I., Love, P. E., and Leonard, W. J. (1995) Defective lymphoid development in mice lacking expression of the common cytokine receptor y chain. Immunity 2, 223–238.PubMedGoogle Scholar
  46. 45.
    DiSanto, J. P., Muller, W., Guy-Grand, D., Fischer, A., and Rajewsky, K. (1995) Lymphoid development in mice with a targeted deletion of the interleukin-2 receptor y chain. Proc. Natl. Acad. Sci. USA 92, 377–381.Google Scholar
  47. 46.
    Nosaka, T., van Deursen, J. M. A., Tripp, R. A., Thierfelder, W. E., Witthuhn, B. A., McMickle, A. P., Doherty, P. C., Grosveld, G. C., and Ihle, J. N. (1995) Defective lymphoid development in mice lacking Jak3. Science 270, 800–802.PubMedGoogle Scholar
  48. 47.
    Thomis, D. C., Gurniak, C. B., Tivol, E., Sharpe, A. H., and Berg, L. J. Defects in B lymphocyte maturation and T lymphocyte activation in mice lacking Jak3. Science 270, 794–797.Google Scholar
  49. 48.
    Miyazaki, T., Kawahara, A., Fujii, H., Nakagawa, Y., Minami, Y., Z.-Liu, J., Oishi, I., Silvennoinen, O., Goldman, A. S., Schmalstieg, F. C., Ihle, J. N., O’Shea, J. J., and Leonard, W. J. (1994) Functional activation ofJakl and Jak3 by selective association with IL-2 receptor subunits. Science 266, 1045–1047.Google Scholar
  50. 49.
    Russell, S. M., Johnston, J. A., Noguchi, M., Kawamura, M., Bacon, C. M., Friedmann, M., Berg, M., McVicar, D. W., Witthuhn, B. A., Silvennoinen, O., Goldman, A. S., Schmalstieg, F. C., Ihle, J. N., O’Shea, J. J., and Leonard, W. J. (1994) Interaction of IL-2R0 and yc chains with Jak1 and Jak3: Implications for XSCID and XCID. Science 266, 1042–1045.PubMedGoogle Scholar
  51. 50.
    Saeland, S., Duvert, V., Pandrau, D., Caux, C., Durand, I., Wrighton, N., Wideman, J., Lee, F., and Banchereau, J. (1991) Interleukin-7 induces the proliferation of normal human B-cell precursors. Blood 78, 2229–2238.PubMedGoogle Scholar
  52. 51.
    Billips, L. G., Nunez, C. A., Bertrand, F. E., Stankovic, A. K., Gartland, G. L., Burrows, P. D., and Copper, M. D. (1995) Immunoglobulin recombinase gene activity is modulated reciprocally by interleukin 7 and CD19 in B cell progenitors. J. Exp. Med. 182, 973–982.PubMedGoogle Scholar
  53. 52.
    Funk, P. E., Stephan, R. P., and Witte, P. L. (1995) Vascular cell adhesion molecule 1-positive reticular cells express interleukin-7 and stem cell factor in the bone marrow. Blood 86, 2661–2671.PubMedGoogle Scholar
  54. 53.
    Wolf, M. L., Weng, W.-K., Stieglbauer, K. T., Shah, N., and LeBien, T. W. (1993) Functional effect of IL-7-enhanced CD19 expression on human B cell precursors. J. Immunol. 151, 138–148.PubMedGoogle Scholar
  55. 54.
    Noguchi, M., Yi, H., Rosenblatt, H. M., Filipovich, A. H., Adelstein, S., Modi, W. S., McBride, O. W., and Leonard, W. J. (1993a) Interleukin-2 receptor ß chain mutation results in X-linked severe combined immunodeficiency in humans. Cell 73, 147–157.PubMedGoogle Scholar
  56. 55.
    Schmalstieg, F. C., Leonard, W. J., Noguchi, M., Berg, M., Rudloff, H. E., Denny, R. M., Dave, S. K., Brooks, E. G., and Goldman, A. S. (1995) Missense mutation in exon 7 of the common y chain gene causes a moderate form of x-linked combined immunodeficiency. J. Clin. Invest. 95, 1169–1173.PubMedGoogle Scholar
  57. 56.
    Lai, S. Y., Molden, J., and Goldsmith, M. A. (1997) Shared yc subunit within the human interleukin-7 receptor complex. A molecular basis for the pathogenesis of X-linked severe combined immunodeficiency. J. Clin. Invest. 99, 169–177.PubMedGoogle Scholar
  58. 57.
    Lai, S. Y., Molden, J., Liu, K. D., Puck, J. M., White, M. D., and Goldsmith, M. A. (1996) Interleukin 4-specific signal transduction events are driven by homotypic interactions on the interleukin-receptor (subunit. EMBO J. 15, 4506–4514.PubMedGoogle Scholar
  59. 58.
    Taylor, N., Candotti, F., Smith, S., Oakes, S. A., Jahn, T., Isakov, J., Puck, J. M., O’Shea, J. J., Weinberg, K., and Johnston, J. A. (1997) Interleukin-4 signaling in B lymphocytes from patients with X-linked severe combined immunodeficiency. J. Biol. Chem. 272, 7314–7319.PubMedGoogle Scholar
  60. 59.
    Kondo, M., Takeshita, T., Higuchi, M., Nakamura, M., Sudo, T., Nishikawa, S., and Sugamura, K. (1994) Functional participation of the IL-2 receptor ß chain in IL-7 receptor complexes. Science 262, 1453–1455.Google Scholar
  61. 60.
    Noguchi, M., Nakamura, Y., Russell, S. M., Ziegler, S. F., Tsang, M., Cao, X., and Leonard, W. J. (1993b) Interleukin-2 receptor ß chain: a functional component of the interleukin-7 receptor. Science 262, 1877–1880.PubMedGoogle Scholar
  62. 61.
    Macchi, P., Villa, A., Giliani, S., Sacco, M. G., Frattini, A., Porta, F., Ugazio, A. G., Johnston, J. A., Candotti, F., O’Shea, J. J., Vezzoni, P., and Notarangelo, L. D. (1995) Mutations ofJak-3 gene in patients with autosomal severe combined immune deficiency (SCID). Nature 377, 65–68.PubMedGoogle Scholar
  63. 62.
    Russell, S. M., Tayebi, N., Nakajima, H., Riedy, M. C., Roberts, J. L., Aman, M. J., Migone, T.-S., Noguchi, M., Markert, M. L., Buckley, R. H., O’Shea, J. J., and Leonard, W. J. (1995) Mutation of Jak3 in a patient with SCID: essential role of Jak3 in lymphoid development. Science 270, 797–800.PubMedGoogle Scholar
  64. 63.
    Arroyo, A. G., Yang, J. T., Rayburn, H., and Hynes, R. O. (1996) Differential requirements for a4 integrins during fetal and adult hematopoiesis. Cell 85, 997–1008.PubMedGoogle Scholar
  65. 64.
    Papayannopoulou, T., Craddock, C., Nakamoto, B., Priestley, G. V., and Wolf, N. S. (1995) The VLA4NCAM-1 adhesion pathway defines contrasting mechanisms of lodgement of transplanted murine hemopoietic progenitors between bone marrow and spleen. Proc. Natl. Acad. Sci. USA 92, 9647–9651.PubMedGoogle Scholar
  66. 65.
    Hirsch, E., Iglesias, A., Potocnik, A. J., Hartman, U., and Fassler, R. (1996) Impaired migration but not differentiation of haematopoietic stem cells in the absence of ß 1 integrins. Nature 380, 171–175.PubMedGoogle Scholar
  67. 66.
    Whitlock, C. A. and Witte, O. N. (1982) Long-term culture of B lymphocytes and their precursors from murine bone marrow. Proc. Natl. Acad. Sci. USA 79, 3608–3612.Google Scholar
  68. 67.
    Miyake, K., Weissman, I. L., Greenberger, J. S., and Kincade, P. W. (1991) Evidence for a role of the integrin VLA-4 in lympho-hemopoiesis. J. Exp. Med. 173, 599–607.PubMedGoogle Scholar
  69. 68.
    Galy, A., Travis, M., Cen, Z., and Chen, B. (1995) Human T, B, natural killer, and dendritic cells arise from a common bone marrow progenitor cell subset. Immunity 3, 459–473.PubMedGoogle Scholar
  70. 69.
    Patrick, C. W., Juneja, H. S., Lee, S., Schmalstieg, F. C., and McIntire, L. V. (1995) Heterotypic adherence between human B-lymphoblastic and pre-B lymphoblastic cells and marrow stromal cells is a biphasic event: integrin very late antigen-4a mediates only the early phase of the heterotypic adhesion. Blood 85, 168–178.PubMedGoogle Scholar
  71. 70.
    Clark, E. A. and Brugge, J. S. (1995) Integrins and signal transduction pathways: the road taken. Science 268, 233–239.PubMedGoogle Scholar
  72. 71.
    Richardson, A. and Parsons, J. T. (1995) Signal transduction through integrins: a central role for focal adhesion kinase? Bioessays 17, 229–236.PubMedGoogle Scholar
  73. 72.
    Freedman, A. S., Rhynhart, K., Nojima, Y., Svahn, J., Eliseo, L., Benjamin, C. D., Morimoto, C., and Vivier, E. (1993) Stimulation of protein tyrosine phosphorylation in human B cells after ligation of the f31 integrin VLA-4. J. Immunol. 150, 1645–1652.PubMedGoogle Scholar
  74. 72a.
    Manie, S. N., Astier, A., Wang, D., Phifer, J. S., Chen, J., Lazarovits, A. I., Morimoto, C., and Freedman, A. S. (1996) Stimulation of tyrosine phosphorylation after ligation of 137 and 131 integrins on human B cells. Blood 87, 1855–1861.PubMedGoogle Scholar
  75. 73.
    Astier, A., Avraham, H., Manie, S. N., Groopman, J., Canty, T., Avraham, S., and Freedman, A. S. (1997) The related adhesion focal tyrosine kinase is tyrosine-phosphorylated after f31-integrin stimulation in B cells and binds to p130cas. J. Biol. Chem. 272, 228–232.PubMedGoogle Scholar
  76. 74.
    Manie, S. N., Beck, A. R. P., Astier, A., Law, S. F., Canty, T., Hirai, H., Drucker, B. J., Avraham, H., Haghayeghi, N., Sattler, M., Salgia, R., Griffin, J. D., Golemis, E. A., and Freedman, A. S. (1997) Involvement of p130Cas and p105HEF1, a novel cas-like docking protein, in a cytoskeleton-dependent signaling pathway initiated by ligation of integrin or antigen receptor on human B cells. J. Biol. Chem. 272, 4230–4236.Google Scholar
  77. 75.
    Murti, K. G., Brown, P. S., Kumagai, M. A., and Campana, D. (1996) Molecular interactions between human B cell progenitors and the bone marrow microenvironment. Exp. Cell Res. 226, 47–58.PubMedGoogle Scholar
  78. 76.
    Wary, K. K., Mainiero, F., Isakoff, S. J., Marcantonio, E. E., and Giancotti, F. G. (1996) The adaptor protein Shc couples a class of integrins to the control of cell cycle progression. Cell 87, 733–743.PubMedGoogle Scholar
  79. 77.
    Schlaepfer, D. D., Hanks, S. K., Hunter, T., and van der Geer, P. (1994) Integrin-mediated signal transduction linked to Ras pathway by GRB2 binding to focal adhesion kinase. Nature 372, 786–791.PubMedGoogle Scholar
  80. 78.
    Bohmer, R. M., Scharf, E., and Assoian, R. K. (1996) Cytoskeletal integrity is required throughout the mitogen stimulation phase of the cell cycle and mediates the anchorage-dependent expression of cyclin D 1. Mol. Biol. Cell 7, 101–111.PubMedGoogle Scholar
  81. 79.
    Fang, F., Orend, G., Watanabe, N., Hunter, T., and Ruoslahti, E. (1996) Dependence of cyclin E-CDK2 kinase activity on cell anchorage. Science 271, 449–502.Google Scholar
  82. 80.
    Guadano, T. M., Ohtsubo, M., Roberts, J. M., and Assoian, R. K. (1993) A link between cyclin A expression and adhesion-dependent cell cycle progression. Science 262, 1572–1575.Google Scholar
  83. 81.
    Shulze, A., Zerfass-Thome, K., Berges, J., Middendorp, S., Jansen-Dun, P., and Henglein, B. (1996) Anchorage-dependent transcription of the cyclin A gene. Mol. Cell. Biol. 16, 4632–4638.Google Scholar
  84. 82.
    Zhu, X., Ohtsubo, M., Bohmer, R. M., Roberts, J. M., and Assoian, R. K. (1996) Adhesion-dependent cell cycle progression linked to the expression of cyclin D1, activation of cyclin E-cdk2, and phosphorylation of the retinoblastoma protein. J. Cell Biol. 133, 391–403.PubMedGoogle Scholar
  85. 83.
    Burrows, P. D. and M.D Cooper. (1997) B cell development and differentiation. Current Opin. Immunol. 9, 239–244.Google Scholar
  86. 84.
    Kitamura, D., Kudo, A., Schaal, S., Muller, W., Melchers, F., and Rajewsky, K. (1992) A critical role of lambda 5 protein in B cell development. Cell 69, 823–831.PubMedGoogle Scholar
  87. 85.
    Engel, P., Zhou, L.-J., Ord, D. C., Sato, S., Koller, B., and Tedder, T. F. (1995) Abnormal B cell development, activation, and differentiation in mice that lack or overexpress the CD 19 signal transduction molecule. Immunity 3, 39–50.PubMedGoogle Scholar
  88. 86.
    Rickert, R. C., Rajewsky, K., and Roes, J. (1995) Impairment of T-cell-dependent B-cell responses and B-1 cell development in CD19-deficient mice. Nature 376, 352–355.PubMedGoogle Scholar
  89. 87.
    Krop, I., Schaffer, A. L., Fearon, D. T., and Schissel, M. S. (1996) The signaling activity of murine CD19 is regulated during B cell development. J. Immunol. 157, 48–56.PubMedGoogle Scholar
  90. 88.
    Wasserman, R., Li, Y. S., and Hardy, R. R. (1995) Differential expression of the Blk and Ret tyrosine kinases during B lineage development is dependent on Ig rearrangement. J. Immunol. 155, 644–651.PubMedGoogle Scholar
  91. 89.
    Weng, W. K., Jarvis, L., and LeBien, T. W. (1994) Signaling through CD19 activates vav/mitogen-activated protein kinase pathway and induces formation of a CD 19/vav/phosphatidylinositol 3-kinase complex in human B cell precursors. J. Biol. Chem. 269, 32,514–32, 521.Google Scholar
  92. 90.
    Xiao, J., Messinger, Y., Jin, J., Myers, D. E., Bolen, J. B., and Uckun, F. M. (1996) Signal transduction through the f31 integrin family surface adhesion molecules VLA-4 and VLA-5 of human B-cell precursors activates CD19 receptor-associated protein tyrosine kinases. J. Biol. Chem. 271, 7659–7664.PubMedGoogle Scholar
  93. 91.
    Matsumoto, A. K., Martin, D. R., Carter, R. H., Klickstein, L. B., Ahern, J. M., and Fearon, D. T. (1993) Functional dissection of the CD21/CD19/TAPA-1/Leu-13 complex of B lymphocytes. J. Exp. Med. 178, 1407–1417.PubMedGoogle Scholar
  94. 92.
    Mannion, B. A., Berditchevski, F., Kraeft, S. K., Chen, L. B., and Hemler, M. E. (1996) Transmembrane-4 superfamily proteins CD8I (TAPA-1), CD82, CD63, and CD53 specifically associate with integrin a401 (CD49d/CD29). J. Immunol. 157, 2039–2047.Google Scholar
  95. 93.
    Rubinstein, E., LeNaour, F., Lagaudriere-Gesbert, C., Billard, M., Conjeaud, H., and Boucheix, C. (1996) CD9, CD63, CD81, and CD82 are components of a surface tetraspan network connected to HLA-DR and VLA integrins. Eur. J. Immunol. 26, 2657–2665.PubMedGoogle Scholar
  96. 94.
    Friedrich, C., Cybulski, M. I., and Gutierrez-Ramos, J. C. (1996) Vascular cell adhesion molecule-1 expression by hematopoiesis-supporting stromal cells is not essential for lymphoid or myeloid development. Eur. J. Immunol. 26, 2773–2780.PubMedGoogle Scholar
  97. 95.
    Jarvis, L. J., Maguire, J. E., and LeBien, T. W. (1997) Contact between human bone marrow stromal cells and B lymphocytes enhances VLA-4/VCAM-1-independent tyrosine phosphorylation of focal adhesion kinase, paxillin and ERK2 in stromal cells. Blood 90, 1626–1635.PubMedGoogle Scholar
  98. 96.
    Jacobsen, K., Miyake, K., Kincade, P. W., and Osmond, D. G. (1992) Highly restricted expression of a stromal cell determinant in mouse bone marrow in vivo. J. Exp. Med. 176, 927–935.Google Scholar
  99. 97.
    Wu, X., Miyake, K., Medina, K. L., Kincade, P. W., and Gimble, J. M. (1994) Recognition of murine integrin 131 by a rat anti-stromal cell monoclonal antibody. Hybridoma 13, 409–416.PubMedGoogle Scholar
  100. 98.
    Sudo, T., Ito, M., Ogawa, Y., Iizuka, M., Kodama, H., Kunisada, T., Hayashi, S. I., Ogawa, M., Sakai, K., Nishikawa, S., and Nishikawa, S. I. (1989) Interleukin 7 production and function in stromal cell-dependent B cell development. J. Exp. Med. 170, 333–338.PubMedGoogle Scholar
  101. 99.
    Caligaris-Cappio, F., Bergui, L., Gregoretti, M. G., Gaidoano, G., Gaboli, M., Schena, M., Zallone, A. Z., and Marchisio, P. C. (1991) Role of bone marrow stromal cells in the growth of human multiple myeloma. Blood 77, 2688–2693.PubMedGoogle Scholar
  102. 100.
    Lokhorst, H. M., Lamme, T., deSmet, M., Klein, S., deWeger, R. A., van Oers, R., and Bloem, A. C. (1994) Primary tumor cells of myeloma patients induce interleukin-6 secretion in longterm bone marrow cultures. Blood 84, 2269–2277.Google Scholar
  103. 101.
    Uchiyama, H., Barut, B. A., Mohrbacher, A. F., Chauhan, D., and Anderson, K. C. (1993) Adhesion of human myeloma-derived cell lines to bone marrow stromal cells stimulates interleukin-6 secretion. Blood 82, 3712–3720.PubMedGoogle Scholar
  104. 102.
    Barille, S., Collette, M., Bataille, R., and Amiot, M. (1995) Myeloma cells upregulate interleukin-6 secretion in osteoblastic cells through cell-to-cell contact but downregulate osteocalcin. Blood 86, 3151–3159.PubMedGoogle Scholar
  105. 103.
    Taichman, R. S., Reilly, M. J., Verma, R. S., and Emerson, S. G. (1997) Augmented production of interleukin-6 by normal human osteoblasts in response to CD34+ hematopoietic bone marrow cells in vitro. Blood 89, 1165–1172.PubMedGoogle Scholar
  106. 104.
    Chauhan, D., Uchiyama, H., Akbarali, Y., Urashima, M., Yamamoto, K. I., Liebermann, T. A., and Anderson, K. C. (1996) Multiple myelome cell adhesion-induced interleukin-6 expression in bone marrow stromal cells involves activation of NF-KB. Blood 87, 1104–1112.PubMedGoogle Scholar
  107. 105.
    Tagoh, H., Kishi, H., and Muraguchi, A. (1996) Molecular cloning and characterization of a novel stromal cell-derived cDNA encoding a protein that facilitates gene activation of recombinase activating gene (RAG)-1 in human lymphoid progenitors. Biochem. Biophys. Res. Comm. 221, 744–749.PubMedGoogle Scholar
  108. 106.
    Tagoh, H., Kishi, H., Okumura, A., Kitagawa, T., Nagata, T., Mori, K., and Muraguchi, A. (1996) Induction of recombinase activating gene expression in a human lymphoid progenitor cell line: requirement of two separate signals from stromal cells and cytokines. Blood 88, 4463–4473.PubMedGoogle Scholar
  109. 107.
    Kumagai, M., Coustan-Smith, E., Murray, D. J., Silvennoinen, O., Murti, K. G., Evans, W. E., Malavasi, F., and Campana, D. (1995) Ligation of CD38 suppresses human B lymphopoiesis. J. Exp. Med. 181, 1101–1110.PubMedGoogle Scholar
  110. 108.
    Silvennoinen, O., Nishigaki, H., Kitanaka, A., Kumagai, M., Ito, C., Malavasi, F., Lin, Q., Conley, M. E., and Campana, D. (1996) CD38 signal transduction in human B cell precursors: Rapid induction of tyrosine phosphorylation, activation of syk tyrosine kinase and phosphorylation of phospholipase C-y and phosphatidylinositol 3-kinase. J. Immunol. 156, 100–107.PubMedGoogle Scholar
  111. 109.
    Kitanaka, A., Ito, C., Nishigaki, H., and Campana, D. (1996) CD38-mediated growth suppression of B-cell progenitors requires activation of phosphatidylinositol 3-kinase and involves its association with the protein product of the c-cbl proto-oncogene. Blood 88, 590–598.PubMedGoogle Scholar
  112. 110.
    Nishina, H., Inageda, K., Takahashi, K., Hoshino, S., Ikeda, K., and Katada, T. (1994) Cell surface antigen CD38 identified as ecto-enzyme of NAD glycohydrolase has hyaluronatebinding activity. Biochem. Biophys. Res. Comm. 203, 1318–1323.PubMedGoogle Scholar
  113. 111.
    Dianzani, U., Funaro, A., DiFranco, D., Garbarino, G., Bragardo, M., Redoglia, V., Buonfiglio, D., DeMonte, L. B., Pileri, A., and Malavasi, F. (1994) Interaction between endothelium and CD4+CD45RA+ lymphocytes. J. Immunol. 153, 952–959.PubMedGoogle Scholar
  114. 112.
    Kaisho, T., Ishikawa, J., Oritani, K., Inazawa, J., Tomizawa, H., Muraoka, O., Ochi, T., and Hirano, T. (1994) BST-1, a surface molecule of bone marrow stromal cell lines that facilitates pre-B cell growth. Proc. Natl. Acad. Sci. USA 91, 5325–5329.PubMedGoogle Scholar
  115. 113.
    Ishikawa, J., Kaisho, T., Tomizawa, H., Lee, B. O., Kobune, Y., Inazawa, J., Oritani, K., Itoh, M., Ochi, T., Ishihara, K., and Hirano, T. (1995) Molecular cloning and chromosomal mappiong of a bone marrow stromal cell surface gene, BST-2, that may be involved in pre-B-cell growth. Genomics 26, 527–534.Google Scholar
  116. 114.
    Oberlin, E., Amara, A., Bachelerie, F., Bessia, C., Virelizier, J. L., Arenzana-Seisdedos, F., Schwartz, O., Heard, J. M., Clark-Lewis, I., Legler, D. F., Loetscher, M., Baggiolini, M., and Moser, B. (1996) The CXC chemokine SDF-1 is the ligand for LESTR/fusin and prevents infection by T-cell-line-adapted HIV-1. Nature 382, 833–835.PubMedGoogle Scholar
  117. 115.
    Nagasawa, T., Kikutani, H., and Kishimoto, T. (1994) Molecular cloning and structure of a preB-cell growth-stimulating factor. Proc. Natl. Acad. Sci. USA 91, 2305–2309.PubMedGoogle Scholar
  118. 116.
    Aiuti, A., Webb, I. J., Bleul, C., Springer, T., and Gutierrez-Ramos, J. C. (1997) The chemokine SDF-1 is a chemoattractant for human CD34+ hematopoietic progenitor cells and provides a new mechanism to explain mobilization of CD34+ progenitors to peripheral blood. J. Exp. Med. 185, 111–120.PubMedGoogle Scholar
  119. 117.
    Bleul, C. C., Fuhlbrigge, R. C., Casasnovas, J. M., Aiuti, A., and Springer, T. A. (1996) A highly efficacious lymphocyte chemoattractant, stromal cell-derived factor 1 (SDF-1). J. Exp. Med. 184, 1101–1109.PubMedGoogle Scholar
  120. 118.
    Nagasawa, T., Hirota, S., Tachibana, K., Takakura, N., Nishikawa, S.-I., Kitamura, Y., Yoshida, N., Kikutani, H., and Kishimoto, T. (1996) Defects in B-cell lymphopoiesis and bone marrow myelopoiesis in mice lacking the CXC chemokine PBSF/SDF-1. Nature 382, 635–638.PubMedGoogle Scholar
  121. 119.
    Tashiro, K., Tada, H., Heilker, R., Shirozu, M., Nakano, T., and Honjo, T. (1993) Signal sequence trap: a cloning strategy for secreted proteins and type I membrane proteins. Science 261, 600–603.Google Scholar
  122. 120.
    Shirozu, M., Tada, H., Tashiro, K., Nakamura, T., Lopez, N. D., Nazarea, M., Hamada, T., Sato, T., Nakano, T., and Honjo, T. (1996) Characterization of novel secreted and membrane proteins isolated by the signal sequence trap method. Genomics 37, 273–280.Google Scholar
  123. 121.
    Zannettino, A. C. W., Rayner, J. R., Ashman, L. K., Gonda, T. J., and Simmons, P. J. (1996) A powerful new technique for isolating genes encoding cell surface antigens using retroviral expression cloning. J. Immunol. 156, 611–620.PubMedGoogle Scholar
  124. 122.
    Oritani, K. and Kincade, P. W. (1996) Identification of stromal cell products that interact with pre-B cells. J. Cell Biol. 134, 771–782.PubMedGoogle Scholar
  125. 123.
    Oritani, K., Kanakura, Y., Aoyama, K., Yokota, T., Copeland, N. G., Gilbert, D. J., Jenkins, N. A., Tomiyama, Y., Matsuzawa, Y., and Kincade, P. W. (1997) Matrix glycoprotein SCI /ECM2 augments B lymphopoiesis. Blood 90, 3404–3413.PubMedGoogle Scholar
  126. 124.
    Girard, J. P. and Springer, T. A. (1995) Cloning from purified high endothelial venule cells of hevin, a close relative of the antiadhesive extracellular matrix protein SPARC. Immunity 2, 113–123.PubMedGoogle Scholar
  127. 125.
    Girard, J. P. and Springer, T. A. (1996) Modulation of endothelial cell adhesion by hevin, an acidic protein associated with high endothelial venules. J. Biol. Chem. 278, 4511–4517.Google Scholar
  128. 126.
    Shores, E. W., VanEwijk, W., and Singer, A. (1991) Disorganization and restoration of thymic medullary epithelial cells in T cell receptor-negative scid mice: evidence that receptor-bearing lymphocytes influence maturation of the thymic microenvironment. Eur. J. Immunol. 21, 1657–1661.PubMedGoogle Scholar
  129. 127.
    Ritter, M. A. and Boyd, R. L. (1993) Development in the thymus: it takes two to tango. Immunol. Today 14, 462–469.PubMedGoogle Scholar
  130. 128.
    Hollander, G. A., Wang, B., Nichogiannopoulou, A., Platenburg, P. 0., van Ewijk, W., Burakoff, S. J., Gutierrez-Ramos, J. C., and Terhorst, C. (1995) Developmental control point in induction of thymic cortex regulated by a subpopulation of prothymocytes. Nature 373, 350–353.Google Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • Lisa J. Jarvis
  • Tucker W. LeBien

There are no affiliations available

Personalised recommendations