Skip to main content

Part of the book series: Contemporary Immunology ((CONTIM))

  • 266 Accesses

Abstract

The history of T-cell development is highly connected to the physiology of the thymus. Following the pioneering observations of J. F. A. P. Miller on the role of the thymus in T lymphocyte production, many laboratories have studied the events that take place in this gland. As shall be reviewed in this chapter and elsewhere in this book, the events known to take place in the thymus have remained fundamentally unchanged and include: colonization of the thymus by bone-marrow derived precursors; commitment to the T-cell lineage; rearrangement of the TCR genes; selection of T-cells according to their MHC and antigenic specificity, and finally, export from the thymus to the periphery. However, new molecular insights obtained more recently have reaffirmed these events. During the 1980s, the main interest of most T-cell development labs focused on the selection mechanisms that resulted in the T-cell repertoire. This was prompted by the molecular characterization of the T-cell receptor, as well as the availability of reagents (monoclonal antibodies, and so forth), which allowed the demonstration of positive and negative selection. Only a few labs focused instead on the earlier events of T-cell development, before positive and negative selection take place. More recently, this situation has changed with more labs studying the early events of T-cell development in the thymus. We have really only begun to understand the basic events that take place before the CD4+CD8+ (double positive [DP]) stage. This situation means that many basic and important developments await to be discovered and understood in early T-cell development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Jenkinson, E. J. and Anderson, G. (1994) Fetal thymic organ cultures. Curr. Opin. Immunol 6, 293–297.

    Article  PubMed  CAS  Google Scholar 

  2. Vicari, A. and Zlotnik, A. (1995) NK1.1+ T cells: a new family of T cells. Immunol. Today 17, 71–76.

    Article  Google Scholar 

  3. Vicari, A. P., Mocci, S., Openshaw, P., O’Garra, A., and Zlotnik, A. (1996) Mouse y8 TCR+>K1.1+ thymocytes specifically produce interleukin-4, are major histocompatibility complex class I independent, and are developmentally related to all TCR+ K1.1+ thymocytes. Eur. J. Immunol 26, 1424–1429.

    Article  PubMed  CAS  Google Scholar 

  4. Shortman, K. and Wu, L. (1996) Early T lymphocyte precursors. Ann. Rev. Immunol 14, 29–47.

    Article  CAS  Google Scholar 

  5. Moore, T. and Zlotnik, A. (1995) T cell lineage commitment and cytokine responses of thymic progenitors. Blood 86, 1850–1860.

    PubMed  CAS  Google Scholar 

  6. Ardavin, C., Wu, L., Li, C. L., and Shortman, K. (1993) Thymic dendritic cells and T cells develop simultaneously in the thymus from a common precursor population. Nature 362, 761–763.

    Article  PubMed  CAS  Google Scholar 

  7. Wu, L. and Shortman, K. (1996) Thymic dendritic cell precursors: relationship to the T lymphocyte lineage and phenotype of the dendritic cell progeny. J. Exp. Med 184, 903–911.

    Article  PubMed  CAS  Google Scholar 

  8. Caux, C., Vanbervliet, B., Massacrier, C., Dezutter-Dambuyant, C., de Saint-Vis, B., Jacquet, C., Yoneda, K., Imamura, S., Schmitt, D., and Banchereau, J. (1996) CD34+ hematopoietic progenitors from human cord blood differentiate along two independent dendritic cell pathways in response to GM-CSFINF alpha. J. Exp. Med 184, 695–706.

    Article  PubMed  CAS  Google Scholar 

  9. Cella, M., Sallusto, F., and Lanzavecchia, A. (1997) Origin, maturation and antigen presenting function of dendritic cells. Curr. Opin. Immunol 9, 10–16.

    Article  PubMed  CAS  Google Scholar 

  10. Galy, A., Travis, M., Cen, D., and Chen, B. (1995) Human T, B, natural killer and dendritic cells arise from a common bone marrow progenitor cell subset. Immunity 3, 459–473.

    Article  PubMed  CAS  Google Scholar 

  11. Suss, G. and Shortman, K. (1996) A subclass of dendritic cells kills CD4 T cells via Fas/Fasligand-induced apoptosis. J. Exp. Med 183, 1789–1796.

    Article  PubMed  CAS  Google Scholar 

  12. Lesley, J., Schulte, R., Trotter, J., and Hyman, R. (1988) Kinetics of thymic repopulation by intrathymic progenitors after intravenous injection: evidence for successive repopulation by an IL-2R+, Pgpl+ progenitor. Celllmmunol. 117, 378–385.

    CAS  Google Scholar 

  13. Godfrey, D., Kennedy, J., Suda, T., and Zlotnik, A. (1992) Evidence for a developmental pathway involving four subsets of phenotypically and functionally distinct subsets of CD4–CD8–CD3- triple negative adult mouse thymocytes defined by CD44 and CD25 expression. J. Immunol 150, 4244–4252.

    Google Scholar 

  14. Godfrey, D., Kennedy, J., Mombaerts, P., Tonegawa, S., and Zlotnik, A. (1994) Onset of T cell receptor (TCR) ß gene rearrangement and role of TCR-ß expression during CD3–CD4–CD8thymocyte differentiation. J. Immunol 152, 4783–4792.

    PubMed  CAS  Google Scholar 

  15. Godfrey, D. and Zlotnik, A. (1993) Control points in early T cell development. Immunol. Today 14, 5457–5453.

    Article  Google Scholar 

  16. Godfrey, D., Zlotnik, A., and Suda, T. (1992) Phenotypic and functional characterization of c-kit expression during intrathymic T cell development. J. Immunol 149, 2281–2285.

    Google Scholar 

  17. Rodewald, H Kretzschmar, K., Swat, W., and Takeda, S. (1995) Intrathymically expressed c-kit ligand (stem cell factor) is a major driving factor for expansion of very immature thymocytes in vivo. Immunity 3 313–319.

    Google Scholar 

  18. Moore, T. A. and Zlotnik, A. (1997) Differential effects of Flk-2/Flt-3 ligand and stem cell factor on murine thymic progenitor cells. J. Immunol 158, 4187–4192.

    PubMed  CAS  Google Scholar 

  19. Suda, T. and Zlotnik, A. (1991) IL-7 maintains the T cell precursor potential of CD3–CD4–CD8thymocytes. J. Immunol 146, 3068–3073.

    PubMed  CAS  Google Scholar 

  20. Keiner, G., Kennedy, J., Bacon, K., Kleyensteuber, S., Largaespada, D., Jenkins, N., Copeland, N., Bazan, J. F., Moore, K., Schall, T. J., and Zlotnik, A. (1994) Lymphotactin: a novel cytokine which represents a new class of chemokine. Science 266, 1395–1399.

    Article  Google Scholar 

  21. Kelner, G. and Zlotnik, A. (1995) Cytokine profile of early thymocytes and the characterization of a new class of chemokine. J. Leuk. Biol 57, 778–781.

    CAS  Google Scholar 

  22. Brandon, E. P., Idzerda, R. L., and McKnight, G. S. (1995) Targeting the mouse genome: a compendium of knockouts (partII). Current Biol. 7, 758–765.

    Article  Google Scholar 

  23. von Freeden-Jeffry, U., Vieira, P., Lucian, L. A., McNeil, T., Burdach, S. E. G., and Murray, R. (1995) Lymphopenia in interleukin (IL)-7 gene-deleted mice identifies IL-7 as a non-redundant cytokine. J Exp. Med. 181, 1519–1526.

    Article  Google Scholar 

  24. Peschon, J., Morrissey, P., Grabstein, K., Ramsdell, F., Maraskovsky, E., Gliniak, B., Park, L., Ziegler, S., Williams, D., and Ware, C. (1994) Early lymphocyte expansion is severely impaired in interleukin 7 receptor-deficient mice. J. Exp. Med 180, 1955–1960.

    Article  PubMed  CAS  Google Scholar 

  25. Cao, X., Shores, E. W., Hu-Li, J., Anver, M. R., Kelsall, B. L., Russell, S. M., Drago, J., Noguchi, M., Grinberg, A., and Bloom, E. T. (1995) Defective lymphoid development in mice lacking expression of the common cytokine receptor chain. Immunity 2, 223–238.

    Google Scholar 

  26. Ray, R., Furlonge, R. C., Williams, D., and Paige, C. (1996) Characterization of thymic stromal-derived lymphopoietin (TSLP) in murine B cell development in vitro. Eur. J. Immunol 26, 10–16.

    Google Scholar 

  27. Leclercq, G., Debacker, V., de Smedt, M., and Plum, J. (1996) Differential effects ofinterleukin15 and interleukin-2 on differentiation of bipotential T/natural killer progenitor cells. J. Exp. Med 184, 325–336.

    Article  PubMed  CAS  Google Scholar 

  28. Suda, T. and Zlotnik, A. (1993) Origin, differentiation and repertoire selection of CD3+CD4–CD8thymocytes bearing either aß or y• T cell receptors. J. Immunol 150, 447–455.

    PubMed  CAS  Google Scholar 

  29. Vicari, A., Bean, A., and Zlotnik, A. (1996) A role for BP-3/BST-1 antigen in early T cell development. Int. Immunol 8, 183–191.

    Article  PubMed  CAS  Google Scholar 

  30. Dudley, E. C., Petrie, H. T., Shah, L. M., Owen, M. J., and Hayday, A. C. (1994) T cell receptor ß chain rearrangement and selection during thymocyte development in adult mice. Immunity 1, 83–93.

    Article  PubMed  CAS  Google Scholar 

  31. Groettrup, M. and Boehmer, H. V. (1993) A role for a pre-T-cell receptor in T-cell development. Immunol. Today 14, 610–614.

    Article  PubMed  CAS  Google Scholar 

  32. Saint-Ruf, C., Ungewiss, K., Groettrup, M., Bruno, L., Fehling, H. J., and von Boehmer, H. (1994) Analysis and expression of a cloned pre-T receptor gene. Science 266, 1208–1212.

    Article  PubMed  CAS  Google Scholar 

  33. Mallick, C. A., Dudley, E. C., Viney, J. L., Owen, M. J., and Hayday, A. C. (1993) Rearrangement and diversity of T cell receptor ß chain genes in thymocytes: a critical role for the 13 chain in development. Cell 73, 513–519.

    Article  PubMed  CAS  Google Scholar 

  34. Mombaerts, P., Clarke, A. R., Rudnicki, M. A., Iacomini, J., Itohara, S., Lafaille, J. J., Wang, L., Ichikawa, Y., Jaenisch, R., Hooper, M. L., and Tonegawa, S. (1992b) Mutations in T-cell antigen receptor genes a and ß block thymocyte development at different stages. Nature 360, 225–231.

    Article  PubMed  CAS  Google Scholar 

  35. Fehling, H., Krotkova, A., Saint-Ruf, C., and von Boehmer, H. (1995) Crucial role of the preT-cell receptor alpha gene in development of aß but not yS T cells. Nature 375, 795–798.

    Article  PubMed  CAS  Google Scholar 

  36. Bix, M., Coles, M., and Raulet, D. (1993) Positive selection of V138+CD4–CD8- thymocytes by class I molecules expressed by hematopoietic cells. J. Exp. Med 178, 901–908.

    Article  PubMed  CAS  Google Scholar 

  37. Chen, Y., Chiu, N., Mandal, M., Wang, N., and Wang, C. (1997) Impaired NK1+ T cell development and early IL-4 production in CD1-deficient mice. Immunity 6, 459–67.

    Article  PubMed  CAS  Google Scholar 

  38. Fischer, M., MacNeil, I., Suda, T., Cupp, J. E., Shortman, K., and Zlotnik, A. (1991) Cytokine production by mature and immature thymocytes. J. Immunol 146, 3452–3456.

    PubMed  CAS  Google Scholar 

  39. Ramsdell, F., Jenkins, M., Dinh, Q., and Fowlkes, B. J. (1991) The majority of CD4+CD8thymocytes are functionally immature. J. Immunol 147, 1779–1785.

    PubMed  CAS  Google Scholar 

  40. Hodgkin, P. D., Bond, M. W., O’Garra, A., Frank, G, Lee, F., Coffman, R. L., Zlotnik, A., and Howard, M. (1988) Identification of IL-6 as a T-cell derived factor that enhances the proliferative response of thymocytes to IL-4 and phorbol myristate acetate. J. Immunol 141, 151–157.

    PubMed  CAS  Google Scholar 

  41. Hodgkin, P Cupp, J Zlotnik, A., and Howard, M. (1990) IL-2, IL-6, and IFNg have distinct effects on the IL-4plus PMA-induced proliferation of thymocyte subpopulations. Cell. Immunol 126 57–68.

    Google Scholar 

  42. Fitch, F., Mckisic, M. D., Lancki, D. W., and Gajewski, T. F. (1993) Differential regulation of murine T lymphocyte subsets. Ann. Rev. Immunol 11, 29–48.

    Article  CAS  Google Scholar 

  43. Chen, W.-F., Fischer, M., Frank, G., and Zlotnik, A. (1989) Distinct patterns of lymphokine requirement for the proliferation of various subpopulations of activated thymocytes in a single cell assay. J. Immunol 143, 1598–1605.

    PubMed  CAS  Google Scholar 

  44. Roberts, K. and Shevach, E. (1991) Immunoregulatory role of yS T cells. Ann. N. Y. Acad. Sci 636, 1–8.

    Article  PubMed  CAS  Google Scholar 

  45. Moore, T., Murray, R., and Zlotnik, A. (1996) Inhibition of yS T cell development and early thymocyte maturation in IL-7-’- mice. J. Immunol 157, 2366–2373.

    PubMed  CAS  Google Scholar 

  46. Zlotnik, A., Godfrey, D., Fischer, M., and Suda, T. (1992) Cytokine production by CD4–CD8thymocytes: CD4–CD8- abTCR+ thymocytes produce IL-4. J. Immunol 149, 1211–1215.

    PubMed  CAS  Google Scholar 

  47. Vicari, A., Moraes, M. C. L. D., Gombert, J. M., Dy, M., Penit, C., Papiernik, M., and Herbelin, A. (1994) Interleukin-7 induces apreferential expansion of V138.2+CD4–CD8- and V138.2+CD4+CD8thymocytes positively selected by class I molecules. J. Exp. Med 180, 653–661.

    Article  PubMed  CAS  Google Scholar 

  48. Arase, H Arase, N., Nagakawa, K., Good, R. A., and Onoe, K. (1993) NK1.1+ CD4+ CD8thymocytes with specific lymphokine secretion. Eur. J. Immunol 23 307–310.

    Google Scholar 

  49. Suda, T. and Zlotnik, A. (1992) Interleukin 7: its pleiotropic biological activities. Adv. Neuroimmunol 2, 99–108.

    Article  CAS  Google Scholar 

  50. Vicari, A., Herbelin, A., Leite-de-Moraes, M., Freeden-Jeffry, U. V., Murray, R., and Zlotnik, A. (1996) NK1.1+ T cells from IL-7-deficient mice have a normal distribution and selection but exhibit impaired cytokine production. Int. Immunol 8, 1759–1766.

    Article  PubMed  CAS  Google Scholar 

  51. Bruno, L., Fehling, H. J., and von Boehmer, H. (1996) The aß T cell receptor can replace the yS receptor in the development of y8 lineage cells. Immunity 5, 343–352.

    Google Scholar 

  52. Rossi, D., Vicari, A. P., Franz-Bacon, K., McClanahan, T., and Zlotnik, A. (1997) Identification through bioinformatics of 2 new human chemokines: MIP3alpha and MIP-3 beta. J. Immunol 158, 1033–1036.

    PubMed  CAS  Google Scholar 

  53. Nagasawa, T., Hirota, S., Tabubana, K., Takakura, K., Nishikawa, S., Kitamura, Y., Yoshida, N., Kikutani, H., and Kishimoto, T. (1996) Defects of B cell hemopoiesis and bone marrow myelopoiesis in mice lacking the CXC chemokine PBSF/SDF-1. Nature 382, 635–638.

    Article  PubMed  CAS  Google Scholar 

  54. Nagasawa, T., Kikutani, H., and Kishimoto, T. (1994) Molecular cloning and struture of a preB-cell growth-stimulating factor. Proc. Natl. Acad. Sci. USA 91, 2305–2309.

    Article  PubMed  CAS  Google Scholar 

  55. Aiuti, A., Webb, I. J., Bleul, C., Springer, T., and Gutierrez-Ramos, J. C. (1997) The chemokine SDF-1 is a chemoattractant for human CD34+ hematopoietic progenitor cells and provides a new mechanism to explain the mobilization of CD34+ progenitors to peripheral blood. J. Exp. Med 185, 111–120.

    Article  PubMed  CAS  Google Scholar 

  56. Imai, T., Yoshida, T., Baba, M., Nishimura, M., Kakizaki, M., and Yoshie, O (1996) Molecular cloning of a novel T cell-directed CC chemokine expressed in thymus by signal sequence trap using Epstein-Barr virus vector. J. Biol. Chem 271 21,514–21,521.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Zlotnik, A., Capone, M., Vicari, A.P. (1998). Cytokines and Chemokines in T-Cell Development. In: Monroe, J.G., Rothenberg, E.V. (eds) Molecular Biology of B-Cell and T-Cell Development. Contemporary Immunology. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-4757-2778-4_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-2778-4_12

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-065-6

  • Online ISBN: 978-1-4757-2778-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics