Life/Death Decisions in B Lymphocyte Precursors

A Role for Cytokines, Cell Interaction Molecules, and Hormones
  • Paul W. Kincade
  • Kay Medina
  • Glennda Smithson
  • Zhong Zheng
  • Kenji Oritani
  • Lisa Borghesi
  • Yoshio Yamashita
  • Kimberly Payne
  • Takaichi Shimozato
Part of the Contemporary Immunology book series (CONTIM)


The bone marrow and thymus are remarkable factories for blood cells. Although impressively large numbers of cells of various types are produced, the output is carefully controlled. Lymphocytes that emerge from these organs are essential to life, but some are potentially capable of inducing autoimmune disease or malignancy. For that reason, intricate mechanisms have evolved for checking the maturing cells for quality and functional capability. Blood cells of most types can be made in other organs, as is particularly obvious during embryonic life, or when the marrow is ablated. However, this is not the case during normal adult circumstances, and it has long been a goal to determine what is special about central lymphoid tissues. Extraordinary progress has been made in discovering cytokines and cell interaction molecules produced in those sites, and we are beginning to understand how each delivers positive and negative signals for lymphocyte formation. However, additional interesting molecules are still being found, and new roles are being ascribed to previously known ones. The focus of this chapter will be on several classes of molecules expressed within the bone marrow environment. Their study may reveal mechanisms that control the movement of lymphocyte precursors within and from bone marrow, the rate of lymphocyte production, and how defective or potentially harmful cells are eliminated.


Bone Marrow Stromal Cell Vasoactive Intestinal Peptide Stem Cell Factor Bone Marrow Stromal Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Coffman, R. L. and Weissman, I. L. (1981) A monoclonal antibody that recognizes B cells and B cell precursors in mice. J. Exp. Med. 153, 269–279.PubMedCrossRefGoogle Scholar
  2. 2.
    Kincade, P. W., Lee, G., Watanabe, T., Sun, L., and Scheid, M. P. (1981) Antigens displayed on murine B lymphocyte precursors. J. Immunol. 127, 2262–2268.PubMedGoogle Scholar
  3. 3.
    Landreth, K. S., Kincade, P. W., Lee, G., and Medlock, E. S. (1983) Phenotypic and functional characterization of murine B lymphocyte precursors isolated from fetal and adult tissues. J. Immunol. 131, 572–580.PubMedGoogle Scholar
  4. 4.
    Osmond, D. G. (1990) B cell development in the bone marrow. Semin. Immunol. 2, 173–180.PubMedGoogle Scholar
  5. 5.
    Hardy, R. R., Carmack, C. E., Shinton, S. A., Kemp, J. D., and Hayakawa, K. (1991) Resolution and characterization of pro-B and pre-pro-B cell stages in normal mouse bone marrow. J. Exp. Med. 173, 1213–1225.PubMedCrossRefGoogle Scholar
  6. 6.
    Ehlich, A., Martin, V., Muller, W., and Rajewsky, K. (1994) Analysis of the B-cell progenitor compartment at the level of single cells. Curr. Biol. 4, 573–583.PubMedCrossRefGoogle Scholar
  7. 7.
    Rajewsky, K. (1996) Clonal selection and learning in the antibody system. Nature 381, 751–758.PubMedCrossRefGoogle Scholar
  8. 8.
    Rolink, A., Grawunder, U., Winkler, T. H., Karasuyama, H., and Melchers, F. (1994) IL–2 receptor a chain (CD25, TAC) expression defines a crucial stage in pre-B cell development. Intl. Immunol. 6, 1257–1264.CrossRefGoogle Scholar
  9. 9.
    Melchers, F., Rolink, A., Grawunder, U., Winkler, T. H., Karasuyama, H., Ghia, P., and Andersson, J. (1995) Positive and negative selection events during B lymphopoiesis. Current Opinion Immunol. 7, 214–227.CrossRefGoogle Scholar
  10. 10.
    Rolink, A. and Melchers, F. (1993) Generation and regeneration of cells of the B-lymphocyte lineage. Curr. Opin. Immunol. 5, 207–217.PubMedCrossRefGoogle Scholar
  11. 11.
    Scheid, M. P., Landreth, K. S., Tung, J. S., and Kincade, P. W. (1982) Preferential but nonexclusive expression of macromolecular antigens on B-lineage cells. Immunol. Rev. 69, 141–159.PubMedCrossRefGoogle Scholar
  12. 12.
    Krop, I., de Fougerolles,A. R., Hardy, R. R., Allison, M., Schlissel, M. S., and Fearon, D. T. (1996) Self-renewal ofB-1 lymphocytes is dependent on CD19. Eur. J. Immunol. 26, 238–242.Google Scholar
  13. 13.
    Sato, S., Ono, N., Steeber, D. A., Pisetsky, D. S., and Tedder, T. F. (1996) CD19 regulates B lymphocyte signaling thresholds critical for the development of B-1 lineage cells and autoimmunity. J. Immunol. 157, 4371–4378.PubMedGoogle Scholar
  14. 14.
    Li, Y.-S., Wasserman, R., Hayakawa, K., and Hardy, R. R. (1996) Identification of the earliest B lineage stage in mouse bone marrow. Immunity 5, 527–535.PubMedCrossRefGoogle Scholar
  15. 15.
    Rolink, A., Ten Boekel, E., Melchers, F., Fearon, D. T., Krop, I., and Andersson, J. (1996) A subpopulation of B220+ cells in murine bone marrow does not express CD 19 and contains natural killer cell progenitors. J. Exp. Med. 183, 187–194.PubMedCrossRefGoogle Scholar
  16. 16.
    Chen, J., Ma, A., Young, F., and Alt, F. (1994) IL-2 receptor a chain expression during early B lymphocyte differentiation. Int. Immunol. 6, 1265–1268.PubMedCrossRefGoogle Scholar
  17. 17.
    Era, T., Nishikawa, S., Sudo, T., Wang, F. H., Ogawa, M., Kunisada, T., and Hayashi, S. (1994) How B-precursor cells are driven to cycle. Immunol. Rev. 137, 35–51.PubMedCrossRefGoogle Scholar
  18. 18.
    Ogawa, M., Matsuzaki, Y., Nishikawa, S., Hayashi, S., Kunisada, T., Sudo, T., Kina, T., Nakauchi, H., and Nishikawa, S. (1991) Expression and function of c-kit in hemopoietic progenitor cells. J. Exp. Med. 174, 63–71.PubMedCrossRefGoogle Scholar
  19. 19.
    Okada, S., Nakauchi, H., Nagayoshi, K., Nishikawa, S., Miura, Y., and Suda, T. (1991) Enrichment and characterization of murine hematopoietic stem cells that express c-kit molecule. Blood 78, 1706–1712.PubMedGoogle Scholar
  20. 20.
    Rolink, A., Haasner, D., Nishikawa, S.-I., and Melchers, F. (1993) Changes in frequencies of clonable pre B cells during life in different lymphoid organs of mice. Blood 81, 2290–2300.PubMedGoogle Scholar
  21. 21.
    Kee, B. L. and Paige, C. J. (1996) In vitro tracking of IL-7 responsiveness and gene expression during commitment of bipotent B-cell/macrophage progenitors. Curr. Biol. 6, 1159–1169.PubMedCrossRefGoogle Scholar
  22. 22.
    Shortman, K. and Wu, L. (1996) Early T lymphocyte progenitors. Annu. Rev. Immunol. 14, 29–47.PubMedCrossRefGoogle Scholar
  23. 23.
    Hayashi, S., Kunisada, T., Ogawa, M., Sudo, T., Kodama, H., Suda, T., Nishikawa, S., and Nishikawa, S. (1990) Stepwise progression ofB lineage differentiation supported by Interleukin 7 and other stromal cell molecules. J. Exp. Med. 171, 1683–1695.PubMedCrossRefGoogle Scholar
  24. 24.
    Sudo, T., Ito, M., Ogawa, Y., lizuka, M., Kodama, H., Kunisada, T., Hayashi, S.-I., Ogawa, M., Sakai, K., Nishikawa, S., and Nishikawa, S.-I. (1989) Interleukin 7 production and function in stromal cell-dependent B cell development. J. Exp. Med. 170, 333–338.PubMedCrossRefGoogle Scholar
  25. 25.
    DiSanto, J. P., Müller, W., Guy-Grand, D., Fischer, A., and Rajewsky, K. (1995) Lymphoid development in mice with a targeted deletion of the interleukin 2 receptor gamma chain. Proc. Natl. Acad. Sci. USA 92, 377–381.CrossRefGoogle Scholar
  26. 26.
    Grabstein, K. H., Waldschmidt, T. J., Finkelman, F. D., Hess, B. W., Alpert, A. R., Boiani, N. E., Namen, A. E., and Morrissey, P. J. (1993) Inhibition of murine B and T lymphopoiesis in vivo by an anti-interleukin 7 monoclonal antibody. J. Exp. Med. 178, 257–264.PubMedCrossRefGoogle Scholar
  27. 27.
    Peschon, J. J., Morrissey, P. J., Grabstein, K. H., Ramsdell, F. J., Maraskovsky, E., Gliniak, B. C., Park, L. S., Ziegler, S. F., Williams, D. E., Ware, C. B., Meyer, J. D., and Davison, B. L. (1994) Early lymphocyte expansion is severely impaired in interleukin 7 receptor-deficient mice. J. Exp. Med. 180, 1955–1960.PubMedCrossRefGoogle Scholar
  28. 28.
    Lee, G., Namen, A. E., Gillis, S., Ellingsworth, L. R., and Kincade, P. W. (1989) Normal B cell precursors responsive to recombinant murine IL-7 and inhibition of IL-7 activity by transforming growth factor-ß. J. Immunol. 142, 3875–3883.PubMedGoogle Scholar
  29. 29.
    Smithson, G., Medina, K., Ponting, I., and Kincade, P. W. (1995) Estrogen suppresses stromal cell-dependent lymphopoiesis in culture. J. Immunol. 155, 3409–3417.PubMedGoogle Scholar
  30. 30.
    Hayashi, C., Kunisada, T., Ogawa, M., Sudo, T., Kodama, H., Suda, T., Nishikawa, S., and Nishikawa, S. I. (1990) Stepwise progression of a B lineage differentiation supported by interleukin 7 and other stromal cell molecules. J. Exp. Med. 171, 1683–1695.PubMedCrossRefGoogle Scholar
  31. 31.
    Corcoran, A. E., Smart, F. M., Cowling, R. J., Crompton, T., Owen, M. J., and Venkitaraman, A. R. (1996) The interleukin-7 receptor chain transmits distinct signals for proliferation and differentiation during B lymphopoiesis. EMBO Journal 15, 1924–1932.PubMedGoogle Scholar
  32. 32.
    Von Freeden-Jeffry, U., Vieira, P., Lucian, L. A., McNeil, T., Burdach, S. E. G., and Murray, R. (1995) Lymphopenia in interleukin (IL)-7 gene-deleted mice identifies IL-7 as a nonredundant cytokine. J. Exp. Med. 181, 1519–1526.CrossRefGoogle Scholar
  33. 33.
    Friend, S. L., Hosier, S., Nelson, A., Foxworthe, D., Williams, D. E., and Farr, A. (1994) A thymic stromal cell line supports in vitro development of surface IgM+ B cells and produces a novel growth factor affecting B and T lineage cells. Exp. Hematol. 22, 321–328.PubMedGoogle Scholar
  34. 34.
    Ray, R. J., Furlonger, C., Williams, D. E., and Paige, C. J. (1996) Characterization of thymic stromal-derived lymphopoietin (TSLP) in murine B cell development in vitro. Eur. J. Immunol. 26, 10–16.PubMedCrossRefGoogle Scholar
  35. 35.
    Pribyl, J. A. R. and Lebien, T. W. (1996) Interleukin 7 independent development of human B cells. Proc. Natl. Acad. Sci. USA 93, 10, 348–10, 353.Google Scholar
  36. 36.
    Leonard, W. J. (1994) The defective gene in X-linked severe combined immunodeficiency encodes a shared interleukin receptor subunit: implications for cytokine pleiotropy and redundancy. Curr. Opin. Immunol. 6, 631–635.PubMedCrossRefGoogle Scholar
  37. 37.
    Dittel, B. N. and Lebien, T. W. (1995) The growth response to IL-7 during normal human B cell ontogeny is restricted to B-lineage cells expressing CD34. J. Immunol. 154, 58–67.PubMedGoogle Scholar
  38. 38.
    Ryan, D. H., Nuccie, B. L., Ritterman, I., Liesveld, J. L., Abboud, C. N., and Insel, R. A. (1997) Expression of interleukin-7 receptor by lineage-negative human bone marrow progenitors with enhanced lymphoid proliferative potential and B-lineage differentiation capacity. Blood 89, 929–940.PubMedGoogle Scholar
  39. 39.
    Mackarehtschian, K., Hardin, J. D., Moore, K., Boast, S., Goff, S. P., and Lemischka, I. (1995) Targeted disruption of the flk2/flt3 gene leads to deficiencies in primitive hematopoietic progenitors. Immunity 3, 147–161.PubMedCrossRefGoogle Scholar
  40. 40.
    Takeda, S., Shimizu, T., and Rodewald, H. R. (1997) Interactions between c-kit and stem cell factor are not required for B-cell development in vivo. Blood 89, 518–525.PubMedGoogle Scholar
  41. 41.
    Hirayama, F., Lyman, S. D., Clark, S. C., and Ogawa, M. (1995) The flt3 ligand supports proliferation of lymphohematopoietic progenitors and early B-lymphoid progenitors. Blood 85, 1762–1768.PubMedGoogle Scholar
  42. 42.
    Wasserman, R., Li, Y.-S., and Hardy, R. R. (1995) Differential expression of the Blk and Ret tyrosine kinases during B lineage development is dependent on Ig rearrangement. J. Immunol. 155, 644–651.PubMedGoogle Scholar
  43. 43.
    Veiby, O. P., Lyman, S. D., and Jacobsen, S. E. W. (1996) Combined signaling through interleukin-7 receptors and flt3 but not c-kit potently and selectively promotes B-cell commitment and differentiation from uncommitted murine bone marrow progenitor cells. Blood 88, 1256–1265.PubMedGoogle Scholar
  44. 44.
    Witte, O. N. (1990) Steel locus defines new multipotent growth factor. Cell 63, 5–6.PubMedCrossRefGoogle Scholar
  45. 45.
    Samal, B., Sun, Y., Stearns, G., Xie, C., Suggs, S., and McNiece, I. (1994) Cloning and characterization of the cDNA encoding a novel human pre-B-cell colony enhancing factor. Mol. Cell Biol. 14, 1431–1437.PubMedGoogle Scholar
  46. 46.
    Tashiro, K., Tada, H., Heilker, R., Shirozu, M., Nakano, T., and Honjo, T. (1993) Signal sequence trap: A cloning strategy for secreted proteins and type I membrane proteins. Science 261, 600–603.PubMedCrossRefGoogle Scholar
  47. 47.
    Nagasawa, T., Kikutani, H., and Kishimoto, T. (1994) Molecular cloning and structure of a novel pre-B cell growth stimulating factor (PBSF). Proc. Natl. Acad. Sci. USA 91, 2305–2309.PubMedCrossRefGoogle Scholar
  48. 48.
    Nagasawa, T., Hirota, S., Tachibana, K., Takakura, N., Nishikawa, S., Kitamura, Y., Yoshida, N., Kikutani, H., and Kishimoto, T. (1996) Defects of B-cell lymphopoiesis and bone-marrow myelopoiesis in mice lacking the CXC chemokine PBSF/SDF-1. Nature 382, 635–638.PubMedCrossRefGoogle Scholar
  49. 49.
    Aiuti, A., Webb, I. J., Bleul, C., Springer, T., and Gutierrez-Ramos, J. C. (1997) The chemokine SDF-1 is a chemoattractant for human CD34+ hematopoietic progenitor cells and provides a new mechanism to explain the mobilization of CD34+ progenitors to peripheral blood. J. Exp. Med. 185, 111–120.PubMedCrossRefGoogle Scholar
  50. 50.
    Nagasawa, T., Nakajima, T., Tachibana, K., Iizasa, H., Bleul, C. C., Yoshie, O., Matsushima, K., Yoshida, N., Springer, T. A., and Kishimoto, T. (1996) Molecular cloning and characterization of a murine pre-B-cell growth-stimulating factor stromal cell-derived factor 1 receptor, a murine homolog of the human immunodeficiency virus 1 entry coreceptor fusin. Proc. Natl. Acad. Sci. USA 93, 14726–14729.PubMedCrossRefGoogle Scholar
  51. 51.
    Kaisho, T., Ishikawa, J., Oritani, K., Inazawa, J., Tomizawa, H., Muraoka, O., Ochi, T., and Hirano, T. (1994) BST-1, a surface molecule of bone marrow stromal cell lines that facilitates pre-B cell growth. Proc. Natl. Acad. Sci. USA 91, 5325–5329.PubMedCrossRefGoogle Scholar
  52. 52.
    Ishihara, K., Kobune, Y., Okuyama, Y., Itoh, M., Lee, B. O. K., Muraoka, O., and Hirano, T. (1996) Stage-specific expression of mouse BST-1/BP-3 on the early B and T cell progenitors prior to gene rearrangement of antigen receptor. Int. Immunol. 8, 1395–1404.PubMedCrossRefGoogle Scholar
  53. 53.
    Wu, Q., Lahti, J. M., Air, G. M., Burrows, P. D., and Cooper, M. D. (1990) Molecular cloning of the murine BP-1/6C3 antigen: A member of the zinc-dependent metallopeptidase family. Proc. Natl. Acad. Sci. USA 87, 993–997.PubMedCrossRefGoogle Scholar
  54. 54.
    Welch, P. A. (1995) Regulation of B cell precursor proliferation by aminopeptidase A. Int. Immunol. 7, 737–746.PubMedCrossRefGoogle Scholar
  55. 55.
    Kee, B. L., Paige, C. J., and Letarte, M. (1992) Characterization of murine CD I0, an endopeptidase expressed on bone marrow adherent cells. Int. Immunol. 4, 1041–1047.PubMedCrossRefGoogle Scholar
  56. 56.
    Shimozato, T. and Kincade, P. W. (1997) Indirect suppression of IL-7-responsive B cell precursors by vasoactive intestinal peptide. J. Immunol. 158, 5178–5184.PubMedGoogle Scholar
  57. 57.
    Bennett, B. D., Solar, G. P., Yuan, J. Q., Mathias, J., Thomas, G. R., and Matthews, W. (1996) A role for leptin and its cognate receptor in hematopoiesis. Curr. Biol. 6, 1170–1180.PubMedCrossRefGoogle Scholar
  58. 58.
    Gainsford, T., Willson, T. A., Metcalf, D., Handman, E., McFarlane, C., Ng, A., Nicola, N. A., Alexander, W. S., and Hilton, D. J. (1996) Leptin can induce proliferation, differentiation, and functional activation of hemopoietic cells. Proc. Natl. Acad. Sci. USA 93, 14564–14568.PubMedCrossRefGoogle Scholar
  59. 59.
    Hirayama, F., Shih, J. P., Awgulewitsch, A., Warr, G. W., Clark, S. C., and Ogawa, M. (1992) Clonal proliferation of murine lymphohemopoietic progenitors in culture. Proc. Natl. Acad. Sci. USA 89, 5907–5911.PubMedCrossRefGoogle Scholar
  60. 60.
    Kee, B. L., Cumano, A., Iscove, N. N., and Paige, C. J. (1994) Stromal cell independent growth of bipotent B cell/macrophage precursors from murine fetal liver. Int. Immunol. 6, 401–407.PubMedCrossRefGoogle Scholar
  61. 61.
    Elia, J. M., Hamilton, B. L., and Riley, R. L. (1995) IL-10 inhibits IL-7-mediated murine pre-B cell growth in vitro. Exp. Hematol. 23, 323–327.PubMedGoogle Scholar
  62. 62.
    Fine, J. S., Macosko, H. D., Grace, M. J., and Narula, S. K. (1994) Influence of IL-10 on murine CFU-pre-B formation. Exp. Hematol. 22, 1188–1196.PubMedGoogle Scholar
  63. 63.
    Miyake, K., Medina, K., Hayashi, S.-I., Ono, S., Hamaoka, T., and Kincade, P. W. (1990) Monoclonal antibodies to Pgp-1/CD44 block lympho-hemopoiesis in long-term bone marrow cultures. J. Exp. Med. 171, 477–488.PubMedCrossRefGoogle Scholar
  64. 64.
    Miyake, K., Underhill, C. B., Lesley, J., and Kincade, P. W. (1990) Hyaluronate can function as a cell adhesion molecule and CD44 participates in hyaluronate recognition. J. Exp. Med. 172, 69–75.PubMedCrossRefGoogle Scholar
  65. 65.
    Lesley, J., Hyman, R., and Kincade, P. W. (1993) CD44 and its interaction with the extracellular matrix. Adv. Immunol. 54, 271–335.PubMedCrossRefGoogle Scholar
  66. 66.
    Stamenkovic, I., Aruffo, A., Amiot, M., and Seed, B. (1991) The hematopoietic and epithelial forms of CD44 are distinct polypeptides with different adhesion potentials for hyaluronatebearing cells. EMBO J. 10, 343–348.PubMedGoogle Scholar
  67. 67.
    He, Q., Lesley, J., Hyman, R., Ishihara, K., and Kincade, P. W. (1992) Molecular isoforms of murine CD44 and evidence that the membrane proximal domain is not critical for hyaluronate recognition. J. Cell Biol. 119, 1711–1719.PubMedCrossRefGoogle Scholar
  68. 68.
    Lesley, J., He, Q., Miyake, K., Hamann, A., Hyman, R., and Kincade, P. W. (1992) Requirements for hyaluronic acid binding by CD44: a role for the cytoplasmic domain and activation by antibody. J. Exp. Med. 175, 257–266.PubMedCrossRefGoogle Scholar
  69. 69.
    Isacke, C. M. (1994) The role of the cytoplasmic domain in regulating CD44 function. J. Cell Sci. 107, 2353–2359.PubMedGoogle Scholar
  70. 70.
    Hathcock, K. S., Hirano, H., Murakami, S., and Hodes, R. J. (1993) CD44 expression on activated B cells: Differential capacity for CD44-dependent binding to hyaluronic acid. J. Immunol. 151, 6712–6722.PubMedGoogle Scholar
  71. 71.
    Katoh, S., Zheng, Z., Oritani, K., Shimozato, T., and Kincade, P. W. (1995) Glycosylation of CD44 negatively regulates its recognition of hyaluronan. J. Exp. Med. 182, 419–429.PubMedCrossRefGoogle Scholar
  72. 72.
    Lesley, J., English, N., Perschl, A., Gregoroff, J., and Hyman, R. (1995) Variant cell lines selected for alterations in the function of the hyaluronan receptor CD44 show differences in glycosylation. J. Exp. Med. 182, 431–437.PubMedCrossRefGoogle Scholar
  73. 73.
    Zheng, Z., Cummings, R. D., Pummill, P. E., and Kincade, P. W. (1997) Growth as a solid tumor or reduced glucose concentration in culture reversibly induce CD44 mediated hyaluronan recognition by Chinese hamster ovary cells. J. Clin. Invest. 100, 1217–1229.PubMedCrossRefGoogle Scholar
  74. 73a.
    Bartolazzi, A., Nocks, A., Aruffo, A., Spring, F., and Stamenkovic, I. (1996) Glycosylation of CD44 is implicated in CD44-mediated cell adhesion to hyaluronan. J. Cell Biol. 132, 1199–1208.PubMedCrossRefGoogle Scholar
  75. 74.
    Bennett, K. L., Modrell, B., Greenfield, B., Bartolazzi, A., Stamenkovic, I., Peach, R., Jackson, D. G., Spring, F., and Aruffo, A. (1995) Regulation of CD44 binding to hyaluronan by glycosylation of variably spliced exons. J. Cell Biol. 131, 1623–1633.PubMedCrossRefGoogle Scholar
  76. 75.
    Kohda, D., Morton, C. J., Parkar, A. A., Hatanaka, H., Inagaki, F. M., Campbell, I. D., and Day, A. J. (1996) Solution structure of the link module: A hyaluronan-binding domain involved in extracellular matrix stability and cell migration. Cell 86, 767–775.PubMedCrossRefGoogle Scholar
  77. 76.
    Zheng, Z., Katoh, S., He, Q., Oritani, K., Miyake, K., Lesley, J., Hyman, R., Hamik, A., Parkhouse, R. M. E., Fan, A. G., and Kincade, P. W. (1995) Monoclonal antibodies to CD44 and their influence on hyaluronan recognition. J. Cell Biol. 130, 485–495.PubMedCrossRefGoogle Scholar
  78. 77.
    Miyake, K., Medina, K., Ishihara, K., Kimoto, M., Auerbach, R., and Kincade, P. W. (1991) A VCAM-like adhesion molecule on murine bone marrow stromal cells mediates binding of lymphocyte precursors in culture. J. Cell Biol. 114, 557–565.PubMedCrossRefGoogle Scholar
  79. 78.
    Miyake, K., Weissman, I. L., Greenberger, J. S., and Kincade, P. W. (1991) Evidence for a role of the integrin VLA-4 in lympho-hemopoiesis. J. Exp. Med. 173, 599–607.PubMedCrossRefGoogle Scholar
  80. 79.
    Ryan, D. H., Nuccie, B. L., Abboud, C. N., and Winslow, J. M. (1991) Vascular cell adhesion molecule-1 and the integrin VLA-4 mediate adhesion of human B cell precursors to cultured bone marrow adherent cells. J. Clin. Invest. 88, 995–1004.PubMedCrossRefGoogle Scholar
  81. 80.
    Simmons, P. J., Masinovsky, B., Longenecker, B. M., Berenson, R., B. Torok-Storb, and Gallatin, W. M. (1992) Vascular cell adhesion molecule-1 expressed by bone marrow stromal cells mediates the binding of hematopoietic progenitor cells. Blood 80, 388–395.PubMedGoogle Scholar
  82. 81.
    Jacobsen, K., Kravitz, J., Kincade, P. W., and Osmond, D. G. (1996) Adhesion receptors on bone marrow stromal cells: In vivo expression of vascular cell adhesion molecule-1 by reticular cells and sinusoidal endothelium in normal and gamma-irradiated mice. Blood 87, 73–82.PubMedGoogle Scholar
  83. 82.
    Funk, P. E., Kincade, P. W., and Witte, P. L. (1994) Native associations of early hemopoietic stem cells and stromal cells isolated in bone marrow cell aggregates. Blood 83, 361–369.PubMedGoogle Scholar
  84. 83.
    Papayannopoulou, T. and Nakamoto, B. (1993) Peripheralization of hemopoietic progenitors in primates treated with anti-VLA4 integrin. Proc. Natl. Acad. Sci. USA 90, 9374–9378.PubMedCrossRefGoogle Scholar
  85. 84.
    Papayannopoulou, T., Craddock, C., Nakamoto, B., Priestley, G. V., and Wolf, N. S. (1995) The VLA4/VCAM-1 adhesion pathway defines contrasting mechanisms of lodgement of transplanted murine hemopoietic progenitors between bone marrow and spleen. Proc. Natl. Acad. Sci. USA 92, 9647–9651.PubMedCrossRefGoogle Scholar
  86. 85.
    Baron, J. L., Reich, E.-P., Visintin, I., and Janeway, C. A., Jr. (1994) The pathogenesis of adoptive murine autoimmune diabetes requires an interaction between a4-integrins and vascular cell adhesion molecule-1. J. Clin. Invest. 93, 1700–1708.PubMedCrossRefGoogle Scholar
  87. 86.
    Isobe, M., Suzuki, J., Yagita, H., Okumura, K., and Sekiguchi, M. (1994) Effect of anti-VCAM1 and anti-VLA-4 monoclonal antibodies on cardiac allograft survival and response to soluble antigens in mice. Transplant. Proc. 26, 867–868.PubMedGoogle Scholar
  88. 87.
    Orosz, C. G., Ohye, R. G., Pelletier, R. P., Van Buskirk, A. M., Huang, E., Morgan, C., Kincade, P. W., and Ferguson, R. M. (1993) Treatment with anti-vascular cell adhesion molecule 1 monoclonal antibody induces long-term murine cardiac allograft acceptance. Transplantation 56, 453–460.PubMedCrossRefGoogle Scholar
  89. 88.
    Steffen, B. J., Butcher, E. C., and Engelhardt, B. (1994) Evidence for involvement of ICAM-1 and VCAM-1 in lymphocyte interaction with endothelium in experimental autoimmune encephalomyelitis in the central nervous system in the SJL/J mouse. Am.J.Pathol. 145, 189–201.PubMedGoogle Scholar
  90. 89.
    Gurtner, G. C., Davis, V., Li, H., McCoy, M. J., Sharpe, A., and Cybulsky, M. I. (1995) Targeted disruption of the murine VCAM1 gene: essential role of VCAM-1 in chorioallantoic fusion and placentation. Genes Dev. 9, 1–14.PubMedCrossRefGoogle Scholar
  91. 90.
    Kwee, L., Baldwin, H. S., Shen, H. M., Stewart, C. L., Buck, C., Buck, C. A., and Labow, M. A. (1995) Defective development of the embryonic and extraembryonic circulatory systems in vascular cell adhesion molecule (VCAM-1) deficient mice. Development 121, 489–503.PubMedGoogle Scholar
  92. 91.
    Yang, J. T., Rayburn, H., and Hynes, R. O. (1995) Cell adhesion events mediated by a4 integrins are essential in placental and cardiac development. Development 121, 549–560.PubMedGoogle Scholar
  93. 92.
    Friedrich, C., Cybulsky, M. I., and Gutierrez-Ramos, J. C. (1996) Vascular cell adhesion molecule-1 expression by hematopoiesis-supporting stromal cells is not essential for lymphoid or myeloid differentiation in vivo or in vitro. Eur. J. Immunol. 26, 2773–2780.PubMedCrossRefGoogle Scholar
  94. 93.
    Oritani, K. and Kincade, P. W. (1996) Identification of stromal cell products which interact with Pre-B cells. J. Cell. Biol. 134, 771–782.PubMedCrossRefGoogle Scholar
  95. 94.
    Hildebrand, A., Romans, M., Rasmussen, L. M., Heinegârd, D., Twardzik, D R, Border, W. A., and Ruoslahti, E. (1994) Interaction of the small interstitial proteoglycans biglycan, decorin and fibromodulin with transforming growth factor ß. Biochem. J. 302, 527–534.PubMedGoogle Scholar
  96. 95.
    Lee, G., Ellingsworth, L. R., Gillis, S., Wall, R., and Kincade, P. W. (1987) B transforming growth factors are potential regulators ofB lymphopoiesis. J. Exp. Med. 166, 1290–1299.PubMedCrossRefGoogle Scholar
  97. 96.
    Medina, K. L., Smithson, G., and Kincade, P. W. (1993) Suppression ofB lymphopoeisis during normal pregnancy. J. Exp. Med. 178, 1507–1515.PubMedCrossRefGoogle Scholar
  98. 97.
    Medina, K. L. and Kincade, P. W. (1994) Pregnancy related steroids are potential negative regulators ofB lymphopoiesis. Proc. Natl. Acad. Sci. USA 91, 5382–5386.PubMedCrossRefGoogle Scholar
  99. 98.
    Smithson, G., Beamer, W. G., Shultz, K. L., Christianson, S. W., Shultz, L. D., and Kincade, P. W. (1994) Increased B lymphopoiesis in genetically sex steroid-deficient Hypogonadal (hpg) mice. J. Exp. Med. 180, 717–720.PubMedCrossRefGoogle Scholar
  100. 99.
    Wilson, C. A., Mrose, S. A., and Thomas, D. W. (1995) Enhanced production ofB lymphocytes after castration. Blood 85, 1535–1539.PubMedGoogle Scholar
  101. 100.
    Wakeling, A. E., Dukes, M., and Bowler, J. (1991) A potent specific pure antiestrogen with clinical potential. Cancer Res. 51, 3867–3873.PubMedGoogle Scholar
  102. 101.
    Couse, J. F., Curtis, S. W., Washburn, T. F., Lindzey, J., Golding, T. S., Lubahn, D. B., Smithies, O., and Korach, K. S. (1995) Analysis of transcription and estrogen insensitivity in the female mouse after targeted disruption of the estrogen receptor gene. Mol. Endocrinology 9, 1441–1454.CrossRefGoogle Scholar
  103. 102.
    Kuiper, G. G. J. M., Carlsson, B., Grandien, K., Enmark, E., Haggblad, J., Nilsson, S., and Gustafsson, J. (1997) Comparison of the ligand binding specificity and transcript tissue distribution of estrogen receptors a and ß. Endocrinology 138, 863–870.PubMedCrossRefGoogle Scholar
  104. 103.
    Kuiper, G. G. J. M., Enmark, E., Pelto-Huikko, M., Nilsson, S., and Gustafsson, J. (1996) Cloning of a novel estrogen receptor expressed in rat prostate and ovary. Proc. Natl. Acad. Sci. USA 93, 5925–5930.PubMedCrossRefGoogle Scholar
  105. 104.
    Mosselman, S., Polman, J., and Dijkema, R. (1996) ERß: identification and characterization of a novel human estrogen receptor. FEBS Let. 392, 49–53.CrossRefGoogle Scholar
  106. 105.
    Tremblay, G. B., Tremblay, A., Copeland, N. G., Gilbert, D. J., Jenkins, N. A., Labrie, F., and Giguere, V. (1997) Cloning, chromosonal localization, and functional analysis of the murine estrogen receptor ß. Mol. Endocrinology 11, 353–365.CrossRefGoogle Scholar
  107. 106.
    Bellido, T., Girasole, G., Passeri, G., Yu, X.-P., Mocharla, H., Jilka, R. L., Notides, A., and Manolagas, S. C. (1993) Demonstration of estrogen and vitamin D receptors in bone marrow-derived stromal cells: Up-regulation of the estrogen receptor by 1,25– dihydroxyvitamin-D3. Endocrinology 133, 553–562.PubMedCrossRefGoogle Scholar
  108. 107.
    Finkelman, R. D., Bell, N. H., Strong, D. D., Demers, L. M., and Baylink, D. J. (1992) Ovariectomy selectively reduces the concentration of transforming growth factor 13 in rat bone: Implications for estrogen deficiency-associated bone loss. Proc. Natl. Acad. Sci. USA 89, 12, 190–12, 193.Google Scholar
  109. 108.
    Gray, T. K., Mohan, S., Linkhart, T. A., and Baylink, D. J. (1989) Estradiol stimulates in vitro the secretion of insulin-like growth factors by the clonal osteoblastic cell line, UMR106. Biochem. Biophys. Res. Commun. 158, 407–412.PubMedCrossRefGoogle Scholar
  110. 109.
    Komm, B. S., Terpening, C. M., Benz, D. J., Graeme, K. A., Gallegos, A., Korc, M., Greene, G. L., O’Malley, B. W., and Haussler, M. R. (1988) Estrogen binding, receptor mRNA, and biologic response in osteoblast-like osteosarcoma cells. Science 241, 81–83.PubMedCrossRefGoogle Scholar
  111. 110.
    De, M., Sanford, T. R., and Wood, G. W. (1992) Interleukin-1, interleukin-6, and tumor necrosis factor alpha are produced in the mouse uterus during the estrous cycle and are induced by estrogen and progesterone. Dev. Biol. 151, 297–305.PubMedCrossRefGoogle Scholar
  112. 111.
    Hu, S.-K., Mitcho, Y. L., and Rath, N. C. (1988) Effect of estradiol on interleukin 1 synthesis by macrophages. Int. J. Immunopharmac. 10, 247–252.CrossRefGoogle Scholar
  113. 112.
    Shami, P. J. and Weinberg, J. B. (1996) Differential effects of nitric oxide on erythroid and myeloid colony growth from CD34+ human bone marrow cells. Blood 87, 977–982.PubMedGoogle Scholar
  114. 113.
    Westley, B. and May, F. E. B. (1991) Estrogen-regulated messenger RNA’s in human breast cancer cells, in Regulatory Mechanisms in Breast Cancer ( Lippman, M. and Dickson, R., eds.), Kluwer Academic, Boston, pp. 259–271.CrossRefGoogle Scholar
  115. 114.
    Billips, L. G., Petitte, D., and Landreth, K. S. (1990) Bone marrow stromal cell regulation of B lymphopoiesis: Interleukin-1 (IL-1) and IL-4 regulate stromal cell support of pre-B cell production in vitro. Blood 75, 611–619.PubMedGoogle Scholar
  116. 115.
    Hirayama, F., Clark, S. C., and Ogawa, M. (1994) Negative regulation of early B lymphopoiesis by interleukin 3 and interleukin la. Proc. Natl. Acad. Sci. USA 91, 469–473.PubMedCrossRefGoogle Scholar
  117. 116.
    Ryan, D. H., Nuccie, B. L., Ritterman, I., Liesveld, J. L., and Abboud, C. N. (1994) Cytokine regulation of early human lymphopoiesis. J. Immunol. 152, 5250–5258.PubMedGoogle Scholar
  118. 117.
    Wang, J., Qun, L., Langston, H., and Cooper, M. D. (1995) Resident bone marrow macrophages produce type 1 interferons that can selectively inhibit interleukin-7-driven growth of B lineage cells. Immunity. 3, 475–484.PubMedCrossRefGoogle Scholar
  119. 118.
    Rennick, D., Yang, G., Muller-Sieburg, C., Smith, C., Arai, N., Takabe, Y., and Gemmell, L. (1987) Interleukin 4 (B-cell stimulatory factor 1) can enhance or antagonize the factor-dependent growth of hemopoietic progenitor cells. Proc. Natl. Acad. Sci. USA 84, 6889–6893.PubMedCrossRefGoogle Scholar
  120. 119.
    Gibson, L. F., Piktel, D., and Landreth, K. S. (1993) Insulin-like growth factor-1 potentiates expansion of interleukin-7 dependent pro-B cells. Blood 82, 3005–3011.PubMedGoogle Scholar
  121. 120.
    Landreth, K. S., Narayanan, R., and Dorshkind, K. (1992) Insulin-like growth factor-I regulates pro-B cell differentiation. Blood 80, 1207–1212.PubMedGoogle Scholar
  122. 121.
    Wasserman, R., Li, Y.-S., and Hardy, R. R. (1997) Down-regulation of terminal deoxynucleotidyl transferase by Ig heavy chain in B lineage cells. J. Immunol. 158, 1133–1138.PubMedGoogle Scholar
  123. 122.
    Lassoued, K., Nunez, C. A., Billips, L., Kubagawa, H., Monteiro, R. C., Lebien, T. W., and Cooper, M. D. (1993) Expression of surrogate light chain receptors is restricted to a late stage in pre-B cell differentiation. Cell 73, 73–86.PubMedCrossRefGoogle Scholar
  124. 123.
    Winkler, T. H., Rolink, A., Melchers, F., and Karasuyama, H. (1995) Precursor B cells of mouse bone marrow express two different complexes with the surrogate light chain on the surface. Eur. J. Immunol. 25, 446–450.PubMedCrossRefGoogle Scholar
  125. 124.
    Jacobsen, K. A., Prasad, V. S., Sidman, C. L., and Osmond, D. G. (1994) Apoptosis and macrophage-mediated deletion of precursor B cells in the bone marrow ofEp.-myc transgenic mice. Blood 84, 2784–2794.PubMedGoogle Scholar
  126. 125.
    Dorshkind, K. (1988) IL-1 inhibits B cell differentiation in long term bone marrow cultures. J. Immunol. 141, 531–538.PubMedGoogle Scholar
  127. 126.
    Hayashi, S., Gimble, J. M., Henley, A., Ellingsworth, L. R., and Kincade, P. W. (1989) Differential effects of TGF beta on lymphohemopoiesis in long-term bone marrow cultures. Blood 74, 1711–1717.PubMedGoogle Scholar
  128. 127.
    Fauteux, L. J. and Osmond, D. G. (1996) IL-1 as a systemic modifier of B lymphopoiesisRecombinant IL-la binds to stromal cells and sinusoid endothelium in bone marrow and perturbs precursor B cell dynamics. J. Immunol. 156, 2376–2383.PubMedGoogle Scholar
  129. 128.
    Brown, D. M., Warner, G. L., Ales-Martinez, J. E., Scott, D. W., and Phipps, R. P. (1992) Prostaglandin E2 induces apoptosis in immature normal and malignant B lymphocytes. Clin. Immunol. Immunopathol. 63, 221–229.PubMedCrossRefGoogle Scholar
  130. 129.
    Matsuyama, T., Kimura, T., Kitagawa, M., Pfeffer, K., Kawakami, R., Watanabe, N., Kundig, T., Amakawa, R., Kishihara, K., Wakeham, A., Potter, J., Furlonger, C. L., Narendran, A., Suzuki, H., Ohashi, P. S., Paige, C. J., Taniguchi, T., and Mak, T. W. (1993) Targeted disruption of IRF-1 or IRF-2 results in abnormal type I IFN gene induction and aberrant lymphocyte development. Cell 75, 83–97.PubMedGoogle Scholar
  131. 130.
    Yamada, G., Ogawa, M., Akagi, K., Miyamoto, H., Nakano, N., Itoh, S., Miyazaki, J., Nishikawa, S., Yamamura, K., and Taniguchi, T. (1991) Specific depletion of the B-cell population induced by aberrant expression of human interferon regulatory factor 1 gene in transgenic mice. Proc. Natl. Acad. Sci. USA 88, 532–536.PubMedCrossRefGoogle Scholar
  132. 131.
    Felten, D. L., Felten, S. Y., Carlson, S. L., Olschowka, J. A., and Livnat, S. (1985) Noradrenergic and peptidergic innervation of lymphoid tissue. J. Immunol. 135, 755s–765s.PubMedGoogle Scholar
  133. 132.
    McGillis, J. P., Humphreys, S., Rangnekar, V., and Ciallella, J. (1993) Modulation of B lymphocyte differentiation by calcitonin gene-related peptide (CGRP). II. Inhibition ofLPS-induced kappa light chain expression by CGRP. Cell. Immunol. 150, 405–416.PubMedCrossRefGoogle Scholar
  134. 133.
    Borghesi, L. A., Smithson, G., and Kincade, P. W. (1997) Stromal cell modulation of negative regulatory signals that influence apoptosis and proliferation of B-lineage lymphocytes. J. Immunol. 159, 4171–4179.PubMedGoogle Scholar
  135. 134.
    Ball, T. C., Hirayama, F., and Ogawa, M. (1995) Lymphohematopoietic progenitors of normal mice. Blood 85, 3086–3092.PubMedGoogle Scholar
  136. 135.
    Deryugina, E. I., Ratnikov, B. I., Bourdon, M. A., and Müller-Sieburg, C. E. (1994) Clonal analysis of primary marrow stroma: functional homogeneity in support of lymphoid and myeloid cell lines and identification of positive and negative regulators. Exp. Hematol. 22, 910–918.PubMedGoogle Scholar
  137. 136.
    Funk, P. E., Stephan, R. P., and Witte, P. L. (1995) Vascular cell adhesion molecule 1-positive reticular cells express interleukin-7 and stem cell factor in the bone marrow. Blood 86, 2661–2671.PubMedGoogle Scholar
  138. 137.
    King, A. G., Wierda, D., and Landreth, K. S. (1988) Bone marrow stromal cell regulation of B-lymphopoiesis: 1. The role of macrophages, interleukin-1, and interleukin-4 in pre-B cell maturation. J. Immunol. 141, 2016–2026.PubMedGoogle Scholar
  139. 138.
    Jardieu, P., Clark, R., Mortensen, D., and Dorshkind, K. (1994) In vivo administration of insulin-like growth factor-I stimulates primary B lymphopoiesis and enhances lymphocyte recovery after bone marrow transplantation. J. Immunol. 152, 4320–4327.PubMedGoogle Scholar
  140. 139.
    Montecino-Rodriguez, E., Clark, R., Johnson, A., Collins, L., and Dorshkind, K (1996) Defective B cell development in snell dwarf (dw/dw) mice can be corrected by thyroxine treatment. J. Immunol. 157, 3334–3340.PubMedGoogle Scholar
  141. 140.
    Kincade, P. W., Medina, K. L., Smithson, G., and Scott, D. C. (1994) Pregnancy: a clue to normal regulation of B lymphopoiesis. Immunol. Today 15, 539–544.PubMedCrossRefGoogle Scholar
  142. 141.
    Han, S. H., Zheng, B., Schatz, D. G., Spanopoulou, E., and Kelsoe, G. (1996) Neoteny in lymphocytes: Ragl and Rag2 expression in germinal center B cells. Science 274, 2094–2097.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • Paul W. Kincade
  • Kay Medina
  • Glennda Smithson
  • Zhong Zheng
  • Kenji Oritani
  • Lisa Borghesi
  • Yoshio Yamashita
  • Kimberly Payne
  • Takaichi Shimozato

There are no affiliations available

Personalised recommendations