• Redwan Moqbel
  • Paige Lacy


When Paul Ehrlich first described the eosinophil in 1879, having detected blood white cells that bound eosin-like dyes with great affinity, he was unaware of the magnitude of subsequent interest in this cell, from both a clinical and biological point of view. Since his description, and particularly over the last two decades, a remarkable expansion in eosinophil literature has occurred. A significant association was established between the eosinophil and a number of disease conditions, including helminthiasis, allergy, asthma, drug hypersensitivity, certain neoplasia, and graft rejection (1,2) It now seems that the eosinophil may have a wide spectrum of biological activities, especially in inflammation. These range from ameliorating local inflammatory reactions by either antagonizing allergic mediators or releasing repair-associated cytokines to exerting deleterious cytotoxic effects on metazoan parasitic targets and airway mucosal tissue cells. The effector function is thought to be related to the release of highly cytotoxic, granule-associated cationic proteins following stimulation of eosinophils. In spite of strong arguments in favor of either end of this spectrum, the evidence remains circumstantial; the precise role of this cell in health and disease is still in need of further elucidation. The current perspective on the role of the eosinophil in disease supports the view that it may be a key proinflammatory cell with the capacity to cause tissue damage in asthma and other related allergic diseases (1,2) The recent description of the capacity of this cell to synthesize and release a battery of inflammatory cytokines, chemokines, and growth factors (3) has introduced a new and important regulatory dimension to the eosinophil in asthma, allergy, and inflammatory disorders. Interest in the eosinophil remains focused on providing a better understanding of its role and determining the mechanisms that regulate its differentiation, recruitment, and activation, with a view to devising novel and effective therapeutic strategies in diseases with which this cell is associated.


Platelet Activate Factor Allergy Clin Immunol Eosinophil Cationic Protein Hypereosinophilic Syndrome Human Eosinophil 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Gleich GJ, Adolphson CR (1986) The eosinophilic leukocyte: structure and function. Adv Immunol 39: 177–253.PubMedCrossRefGoogle Scholar
  2. 2.
    Wardlaw AJ, Moqbel R, Kay AB (1995) Eosinophils: biology and role in disease. Adv Immunol 60: 151–266.PubMedCrossRefGoogle Scholar
  3. 3.
    Moqbel R, Levi-Schaffer F, Kay AB (1994) Cytokine generation by eosinophils. J Allergy Clin Immunol 94 (Suppl): 1183.PubMedCrossRefGoogle Scholar
  4. 4.
    Dvorak AM, Ackerman SJ, Weller PF (1991) Subcellular morphology and biochemistry of eosinophils. In: Harris JR, ed. Blood Cell Biochemistry, Vol. 2, Megakaryocytes, Platelets, Macrophages and Eosinophils. Plenum, London, pp. 237–344.Google Scholar
  5. 5.
    Dvorak AM, Letourneau L, Login GR, Weller PF, Ackerman SJ (1988) Ultrastructural localization of the Charcot-Leyden crystal protein (lysophospholipase) to a distinct crystalloid-free granule population in mature human eosinophils. Blood 72: 150–158.PubMedGoogle Scholar
  6. 6.
    Sokol RJ, Hudson G, Wales J, James NT (1991) Ultrastructural morphometry of human leucocytes in health and disease. Electron Microsc Rev 4: 179–195.PubMedCrossRefGoogle Scholar
  7. 7.
    Weller PF, Monahan-Earley RA, Dvorak HF, Dvorak AM (1991) Cytoplasmic lipid bodies of human eosinophils. Subcellular isolation and analysis of arachidonate incorporation. Am J Pathol 138: 141–148.PubMedGoogle Scholar
  8. 8.
    Dvorak AM, Monahan RA, Osage JE, Dickersin GR (1980) Crohn’s disease: transmission electron microscopic studies. II. Immunologic inflammatory response. Alterations of mast cells, basophils, eosinophils and the microvasculature. Hum Pathol 11: 606–619.PubMedCrossRefGoogle Scholar
  9. 9.
    Henderson WR, Harley JB, Fauci AS, Chi EY (1988) Hypereosinophilic syndrome human eosinophil degranulation induced by soluble and particulate stimuli. Br J Haematol 69: 13–21.PubMedCrossRefGoogle Scholar
  10. 10.
    Peters MS, Gleich GJ, Dunnette SL, Fukuda T (1988) Ultrastructural study of eosinophils from patients with the hypereosinophilic syndrome: a morphological basis of hypodense eosinophils. Blood 71: 780–785.PubMedGoogle Scholar
  11. 11.
    Caulfield JP, Hein A, Rothenberg ME, Owen WF, Soberman RJ, Stevens RL, Austen KF (1990) A morphometric study of normodense and hypodense human eosinophils that are derived in vivo and in vitro. Am J Pathol 137: 27–41.PubMedGoogle Scholar
  12. 12.
    Dvorak AM, Saito H, Estrella P, Kissell S, Arai N, Ishizaka T (1989) Ultrastructure of eosinophils and basophils stimulated to develop in human cord blood mononuclear cell cultures containing recombinant human interleukin-5 or interleukin-3. Lab Invest 61: 116–132.PubMedGoogle Scholar
  13. 13.
    Dvorak AM, Mihm MC Jr, Osage JE, Kwan TH, Austen KF, Wintroub BU (1982) Bullous pemphigoid, an ultrastructural study of the inflammatory response: eosinophil, basophil and mast cell granule changes in multiple biopsies from one patient. J Invest Dermatol 78: 91–101.PubMedCrossRefGoogle Scholar
  14. 14.
    Tai P-C, Spry CJF (1981) The mechanisms which produce vacuolated and degranulated eosinophils. Br J Haematol 49: 219–226.PubMedCrossRefGoogle Scholar
  15. 15.
    Dvorak AM (1991) Degranulation of basophils and mast cells. In: Dvorak AM, ed. Blood Cell Biochemistry, Vol. 4, Basophil and Mast Cell Degranulation and Recovery. Plenum, London, pp. 101–275.Google Scholar
  16. 16.
    Dvorak AM, Onderdonk AB, McCleod RS, Monahan-Earley RA, Antonioli DA, Cullen J, Blair JE, Cisneros R, Letoumeau L, Morgan E, et al. (1993) Ultrastructural identification of exocytosis of granules from human gut eosinophils in vivo. Int Arch Allergy Immunol 102: 33–45.PubMedCrossRefGoogle Scholar
  17. 17.
    Henderson WR, Chi EY (1985) Ultrastructural characterization and morphometric analysis of human eosinophil degranulation. J Cell Sci 73: 33–48.PubMedGoogle Scholar
  18. 18.
    Lewis DM, Lewis JC, Loegering DA, Gleich GJ (1978) Localization of the guinea pig eosinophil major basic protein to the core of the granule. J Cell Biol 77: 702–713.PubMedCrossRefGoogle Scholar
  19. 19.
    Egesten A, Alumets J, von Mecklenburg C, Palmegren M, Olssen I (1986) Localization of eosinophil cationic protein, major basic protein, and eosinophil peroxidase in human eosinophils by immunoelectron microscopic technique. J Histochem Cytochem 34: 1399–1403.PubMedCrossRefGoogle Scholar
  20. 20.
    Peters MS, Rodriguez M, Gleich GJ (1986) Localization of human eosinophil granule major basic protein, eosinophil cationic protein, and eosinophil-derived neurotoxin by immunoelectron microscopy. Lab Invest 54: 656–662.PubMedGoogle Scholar
  21. 21.
    Ackerman SJ, Corrette SE, Rosenberg HF, Bennett JC, Mastrianni DM, Nicholson-Weller A, Weller PF, Chin DT, Tenen DG (1993) Molecular cloning and characterization of human eosinophil Charcot-Leyden crystal protein (lysophospholipase). Similarities to IgE binding proteins and the S-type animal lectin superfamily. J Immunol 150: 456–468.PubMedGoogle Scholar
  22. 22.
    Gleich GJ, Kay AB, eds. (1994) Eosinophils in Allergy and Inflammation. Marcel Dekker, New York.Google Scholar
  23. 23.
    Moqbel R, Barkans J, Bradley BL, Durham SR, Kay AB (1992) Application of monoclonal antibodies against major basic protein (BMK-13) and eosinophil cationic protein (EG1 and EG2) for quantifying eosinophils in bronchial biopsies from atopic asthma Clin Exp Allergy 22: 265–273.Google Scholar
  24. 24.
    O’Donnell MC, Ackerman SJ, Gleich GJ, Thomas LL (1983) Activation of basophil and mast cell histamine release by eosinophil granule major basic protein. J Exp Med 157: 1981–1991.PubMedCrossRefGoogle Scholar
  25. 25.
    Zheutlin LM, Ackerman SJ, Gleich GJ, Thomas LL (1984) Stimulation of basophil and rat mast cell histamine release by eosinophil granule-derived cationic proteins. J Immunol 133: 2180–2185.PubMedGoogle Scholar
  26. 26.
    Moy JN, Gleich GJ, Thomas LL (1990) Noncytotoxic activation of neutrophils by eosinophil granule major basic protein. Effect on superoxide anion generation and lysosomal enzyme release. J Immunol 145: 2626–2632.PubMedGoogle Scholar
  27. 27.
    Rohrbach MS, Wheatley CL, Slifman NR, Gleich GJ (1990) Activation of platelets by eosinophil granule proteins. J Exp Med 172: 1271–1274.PubMedCrossRefGoogle Scholar
  28. 28.
    Kita H, Abu-Ghazaleh RI, Sur S, Gleich GJ (1995) Eosinophil major basic protein induces degranulation and I1–8 production by human eosinophils. J Immunol 154: 4749–4758.PubMedGoogle Scholar
  29. 29.
    Gleich GJ, Loegering DA, Bell MP, Checkel JL, Ackerman SJ, McKean DJ (1986) Biochemical and functional similarities between human eosinophil-derived neurotoxin and eosinophil cationic protein: homology with ribonuclease. Proc Natl Acad Sci USA 83: 3146–3150.PubMedCrossRefGoogle Scholar
  30. 30.
    Slifman NR, Loegering DA, McKean DJ, Gleich GJ (1986) Ribonuclease activity associated with human eosinophil-derived neurotoxin and eosinophil cationic protein. J Immunol 137: 2913–2917.PubMedGoogle Scholar
  31. 31.
    Tai P-C, Spry CJ, Peterson C, Venge P, Olsson I (1984) Monoclonal antibodies distinguish between storage and secreted forms of eosinophil cationic protein. Nature 309: 182–184.PubMedCrossRefGoogle Scholar
  32. 32.
    McLaren DJ, McKean JR, Olsson I, Venge P, Kay AB (1981) Morphological studies on the killing of schistosomula of Schistosoma mansoniby human eosinophil and neutrophil cationic proteins in vitro. Parasite Immunol 3: 359–373.PubMedCrossRefGoogle Scholar
  33. 33.
    Young JDE, Peterson CGB, Venge P, Cohn ZA (1986) Mechanism of membrane damage mediated by human eosinophil cationic protein. Nature 321: 613–616.PubMedCrossRefGoogle Scholar
  34. 34.
    Motojima S, Frigas E, Loegering DA, Gleich GJ (1989) Toxicity of eosinophil cationic proteins for guinea pig tracheal epithelium in vitro. Am Rev Respir Dis 139: 801–805.PubMedGoogle Scholar
  35. 35.
    Fredens K, Dahl R, Venge P (1982) The Gordon phenomenon induced by the eosinophil cationic protein and eosinophil protein X. J Allergy Clin Immunol 70: 361–366.PubMedCrossRefGoogle Scholar
  36. 36.
    Slifman NR, Venge P, Peterson CGB, McKean DJ, Gleich GJ (1989) Human eosinophil-derived neuro-toxin and eosinophil protein X are likely the same protein. J Immunol 143: 2317–2322.PubMedGoogle Scholar
  37. 37.
    Rosenberg HF, Tenen DG, Ackerman SJ (1989) Molecular cloning of the human eosinophil-derived neurotoxin: a member of the ribonuclease gene family. Proc Natl Acad Sci USA 86: 4460–4464.PubMedCrossRefGoogle Scholar
  38. 38.
    Beintema JJ, Hofsteenge J, Iwama M, Morita T, Ohgi K, Irie M, Sugiyama RH, Schieven GL, Dekker CA, Glitz DG (1988) Amino acid sequence of the non-secretory ribonuclease of human urine. Biochemistry 27: 4530–4538.PubMedCrossRefGoogle Scholar
  39. 39.
    Sorrentino S, Glitz DG, Hamann KJ, Loegering DA, Checkel JL, Gleich GJ (1992) Eosinophil-derived neurotoxin and human liver ribonuclease: identity of structure and linkage of neurotoxicity to nuclease activity. J Biol Chem 267:14, 859–14, 865.Google Scholar
  40. 40.
    Carlson MG, Peterson CGB, Venge P (1985) Human eosinophil peroxidase: purification and characterization. J Immunol 134: 1875–1879.PubMedGoogle Scholar
  41. 41.
    Weiss SJ, Test ST, Eckman CM, Roos D, Regiani S (1986) Brominating oxidants generated by human eosinophils. Science 234: 200–203.PubMedCrossRefGoogle Scholar
  42. 42.
    Mayeno AN, Curran AJ, Roberts RL, Foote CS (1989) Eosinophils preferentially use bromide to generate halogenating agents. J Biol Chem 264: 5660–5668.PubMedGoogle Scholar
  43. 43.
    Slungaard A, Mahoney JR Jr (1991) Thiocyanate is the major substrate for eosinophil peroxidase in physiological fluids. Implications for cytotoxicity. J Biol Chem 266: 4903–4910.PubMedGoogle Scholar
  44. 44.
    Weller PF, Dvorak AM (1985) Arachidonic acid incorporation by cytoplasmic lipid bodies of human eosinophils. Blood 65: 1269–1274.PubMedGoogle Scholar
  45. 45.
    Hubscher T (1975) Role of the eosinophil in allergic reactions. II. Release of prostaglandins from human eosinophilic leukocytes. J Immunol 114: 1389–1393.PubMedGoogle Scholar
  46. 46.
    Parsons WG, Roberts LJ (1988) Transformation of prostaglandin D2 to isomeric prostaglandin F2 compounds by human eosinophils. A potential mast cell-eosinophil interaction. J Immunol 141: 2413–2419.PubMedGoogle Scholar
  47. 47.
    Foegh ML, Maddox YT, Ramwell PW (1986) Human peritoneal eosinophils and formation of arachidonate cyclo oxygenase products. Scand J Immunol 23: 599–603.PubMedCrossRefGoogle Scholar
  48. Samuelsson B (1983) Leukotrienes: mediators of hypersensitivity reactions and inflammation. Science 220:568–575.Google Scholar
  49. 49.
    Jorg A, Henderson WR, Murphy RC, Klebanoff SJ (1982) Leukotriene generation by eosinophils. J Exp Med 155: 390–402.PubMedCrossRefGoogle Scholar
  50. 50.
    Weller PF (1993) Eicosanoids, cytokines and other mediators elaborated by eosinophils. In: Makino S, Fukuda T, eds. Eosinophils, Biological and Clinical Aspects. CRC, Boca Raton, FL, pp. 125–154.Google Scholar
  51. 51.
    Shaw RJ, Walsh GM, Cromwell O, Moqbel R, Spry CJF, Kay AB (1985) Activated human eosinophils generate SRS-A leukotrienes following IgG-dependent stimulation. Nature 316: 150–152.PubMedCrossRefGoogle Scholar
  52. 52.
    Bruijnzeel PL, Kok PT, Hamelink ML, Kijne AM, Verhagen J (1985) Exclusive leukotriene C4 synthesis by purified human eosinophils induced by opsonized zymosan. FEBS Lett 189: 350–354.CrossRefGoogle Scholar
  53. 53.
    Cromwell O, Moqbel R, Fitzharris P, Kurlak L, Harvey C, Walsh GM, Shaw RJ, Kay AB (1988) Leukotriene C4 generation from human eosinophils stimulated with IgG-Aspergillus fumigatusantigen immune complexes. J Allergy Clin Immunol 82: 535–543.PubMedCrossRefGoogle Scholar
  54. 54.
    Sun FF, Czuk CI, Taylor BM (1989) Arachidonic acid metabolism in guinea pig eosionophils: synthesis of thromboxane B2 and leukotriene B4 in response to soluble or particulate activators. J Leuk Biol 46: 152–160.Google Scholar
  55. 55.
    Sigal E, Grunberger D, Cashman JR, Craik CS, Caughey GH, Nadel JA (1988) Arachidonate 15-lipoxygenase from human eosinophil-enriched leukocytes: partial purification and properties. Biochem Biophys Res Commun 150: 376–383.PubMedCrossRefGoogle Scholar
  56. 56.
    Weller PF (1991) Immunobiology of eosinophils. N Engl J Med 324: 1110–1118.PubMedCrossRefGoogle Scholar
  57. 57.
    Marom Z, Shelhamer JH, Sun F, Kaliner M (1983) Human airway monohydroxyeicosatetraenoic acid generation and mucus release. J Clin Invest 72: 122–127.PubMedCrossRefGoogle Scholar
  58. 58.
    Taniguchi N, Mita H, Saito H, Yui Y, Kajita T, Shida T (1985) Increased generation of leukotriene C4 from eosinophils in asthmatic patients. Allergy 40: 571–573.PubMedCrossRefGoogle Scholar
  59. 59.
    Aizawa T, Tamura G, Ohtsu H, Takishima T (1990) Eosinophil and neutrophil production of leukotriene C4 and B4: comparison of cells from asthmatic subjects and healthy donors. Ann Allergy 64: 287–292.PubMedGoogle Scholar
  60. 60.
    Kohi F, Miyagawa H, Agrawal DK, Bewtra AK, Townley RG (1990) Generation of leukotriene B4 and C4 from granulocytes of normal controls, allergic rhinitis and healthy donors. Ann Allergy 65: 228–232.PubMedGoogle Scholar
  61. 61.
    Wardlaw M, Hay H, Cromwell O, Collins JV, Kay AB (1989) Leukotrienes, LTC4 and LTB4, in bronchoalveolar lavage fluid in bronchial asthma and other respiratory diseases. J Allergy Clin Immunol 84: 19–26.PubMedCrossRefGoogle Scholar
  62. 62.
    Wenzel SE, Larsen GL, Johnston K, Voelkel NF, Westcott JY (1990) Elevated levels of leukotriene C4 in bronchoalveolar lavage fluid from atopic asthmatics after endobronchial allergen challenge. Am Rev Respir Dis 142: 112–119.PubMedGoogle Scholar
  63. 63.
    Christie PE, Tagari P, Ford-Hutchinson AW, Charlesson P, Chee P, Arm JP, Lee TH (1991) Urinary leukotriene E4 concentrations increase after aspirin challenge in aspirin-sensitive asthmatic subjects. Am Rev Respir Dis 143: 1025–1029.PubMedGoogle Scholar
  64. 64.
    Spector SL, Smith LJ, Glass M (1994) Effects of 6 weeks of therapy with oral doses of ICI 204,219, a leukotriene D4 receptor antagonist, in subjects with bronchial asthma. Am J Respir Crit Care Med 150: 618–623.PubMedGoogle Scholar
  65. 65.
    Snyder F (1985) Chemical and biochemical aspects of platelet activating factor: a novel class of acetylated ether-linked choline-phospholipids. Med Res Rev 5: 107–140.PubMedCrossRefGoogle Scholar
  66. 66.
    Wardlaw AJ, Moqbel R, Cromwell O, Kay AB (1986) Platelet activating factor: a potent chemotactic and chemokinetic factor for human eosinophils. J Clin Invest 78: 1701–1706.PubMedCrossRefGoogle Scholar
  67. 67.
    Cromwell O, Wardlaw AJ, Champion A, Moqbel R, Osei D, Kay AB (1990) IgG-dependent generation of platelet-activating factor by normal and low density human eosinophils. J Immunol 145: 3862–3868.PubMedGoogle Scholar
  68. 68.
    Burke LA, Crea AEG, Wilkinson JRW, Arm JP, Spur BW, Lee TH (1990) Comparison of the generation of platelet-activating factor and leukotriene C4 in human eosinophils stimulated by unopsonized zymosan and the calcium ionophore A23187: the effects of nedocromil sodium. J Allergy Clin Immunol 85: 26–35.PubMedCrossRefGoogle Scholar
  69. 69.
    Del Pozo V, de Andres B, Martin E, Maruri N, Zubeldia JM, Palomino P, Lahoz C (1990) Murine eosinophils and IL-1: alpha IL-1 mRNA detection by in situ hybridization. Production and release of IL-1 from peritoneal eosinophils. J Immunol 144: 3117–3122.PubMedGoogle Scholar
  70. 70.
    Weller PF, Rand TH, Barrett T, Elovic A, Wong DT, Finberg RW (1993) Accessory cell function of human eosinophils: HLA-DR-dependent, MHC-restricted antigen presentation and IL- la expression. J Immunol 150: 2554–2562.PubMedGoogle Scholar
  71. 71.
    Rand TH, Silberstein DS, Kornfield H, Weller PF (1991) Human eosinophils express functional interleukin-2 receptors. J Clin Invest 88: 825–832.PubMedCrossRefGoogle Scholar
  72. 72.
    Levi-Schaffer F, Barkans J, Newman TM, Ying S, Wakelin M, Hohenstein R, Barak V, Lacy P, Kay AB, Moqbel R (1996) Identification of interleukin-2 in human peripheral blood eosinophils. Immunology 87: 155–161.PubMedGoogle Scholar
  73. 73.
    Bossé M, Audette M, Ferland C, Pelletier G, Chu HW, Dakhama A, Lavigne S, Boulet L-P, Laviolette M (1996) Gene expression of interleukin-2 in purified human peripheral blood eosinophils. Immunology 87: 149–154.PubMedGoogle Scholar
  74. 74.
    Kita H, Ohnishi T, Okubo Y, Weiler D, Abrams JS, Gleich GJ (1991) Granulocyte/macrophage colony-stimulating factor and interleukin 3 release from human peripheral blood eosinophils and neutrophils. J Exp Med 174: 745–748.PubMedCrossRefGoogle Scholar
  75. 75.
    Hom JT, Estridge T (1993) FK506 and rapamycin modulate the functional activities of human peripheral blood eosinophils. Clin Immunol Immunopathol 68: 293–300.PubMedCrossRefGoogle Scholar
  76. 76.
    Dubois GR, Bruijnzeel-Koomen CA, Bruijnzeel PL (1994) IL-4 induces chemotaxis of blood eosinophils from atopic dermatitis patients, but not from normal individuals. J Invest Dermatol 102: 843–846.PubMedCrossRefGoogle Scholar
  77. 77.
    Moqbel R, Ying S, Barkans J, Newman TM, Kimmitt P, Wakelin M, Taborda-Barata L, Meng Q, Corrigan CJ, Durham SR, Kay AB (1995) Identification of messenger RNA for IL-4 in human eosinophils with granule localization and release of the translated product. J Immunol. 155: 4939–4947.PubMedGoogle Scholar
  78. 78.
    Nonaka M, Nonaka R, Woolley K, Adelroth E, Miura K, Ohkawara Y, Glibetic M, Nakano K, O’Byrne P, Dolovich J, Jordana M (1995) Distinct immunohistological localization of IL-4 in human inflamed airway tissue. IL-4 is localized to eosinophils in vivo and is released by peripheral blood eosinophils. J Immunol 155: 3234–3244.PubMedGoogle Scholar
  79. 79.
    Desreumaux P, Janin A, Colombel JF, Prin L, Plumas J, Emilie D, Torpier G, Capron A, Capron M (1992) Interleukin 5 messenger RNA expression by eosinophils in the intestinal mucosa of patients with coeliac disease. J Exp Med 175: 293–296.PubMedCrossRefGoogle Scholar
  80. 80.
    Dubucquoi S, Desreumaux P, Janin A, Klein O, Goldman M, Tavernier J, Capron A, Capron M (1994) Interleukin 5 synthesis by eosinophils: association with granules and immunoglobulin-dependent secretion. J Exp Med 179: 703–708.PubMedCrossRefGoogle Scholar
  81. 81.
    Broide DH, Paine MM, Firestein GS (1992) Eosinophils express interleukin 5 and granulocyte macrophage-colony-stimulating factor mRNA at sites of allergic inflammation in asthmatics. J Clin Invest 90: 1414–1424.PubMedCrossRefGoogle Scholar
  82. 82.
    Beil WJ, Weller PF, Tzizik DM, Galli SJ, Dvorak AM (1993) Ultrastructural immunogold localization of tumor necrosis factor-alpha to the matrix compartment of eosinophil secondary granules in patients with idiopathic hypereosinophilic syndrome. J Histochem Cytochem 41: 1611–1615.PubMedCrossRefGoogle Scholar
  83. 83.
    Moller GM, de Jong TA, Overbeek SE, van der Kwast TH, Postma DM, Hoogsteden HC (1996) Ultrastructural immunogold localization of interleukin 5 to the crystalloid core compartment of eosinophil secondary granules in patients with atopic asthma. J Histochem Cytochem 44: 67–69.PubMedCrossRefGoogle Scholar
  84. 84.
    Hamid Q, Barkans J, Meng Q, Ying S, Abrams JS, Kay AB, Moqbel R (1992) Human eosinophils synthesize and secrete interleukin-6, in vitro. Blood 80: 1496–1501.PubMedGoogle Scholar
  85. 85.
    Melani C, Mattia GF, Silvani A, Care A, Rivoltini L, Parmiani G, Colombo MP (1993) Interleukin-6 expression in human neutrophil and eosinophil peripheral blood granulocytes. Blood 81: 2744–2749.PubMedGoogle Scholar
  86. 86.
    Braun RK, Franchini M, Erard F, Rihs S, de Vries IJM, Blaser K, Hansel TT, Walker C (1993) Human peripheral blood eosinophils produce and release IL-8 on stimulation with calcium ionophore. Eur J Immunol 23: 956–960.PubMedCrossRefGoogle Scholar
  87. 87.
    Miyamasu M, Hirai K, Takahashi Y, Iida M, Yamaguchi M, Koshino T, Takaishi T, Morita Y, Ohta K, Kasahara T (1995) Chemotactic agonists induce cytokine generation in eosinophils. J Immunol 154: 1339–1349.PubMedGoogle Scholar
  88. 88.
    Yousefi S, Hemmann S, Weber M, Holzer C, Hartung, K, Blaser K, Simon HU (1995) IL-8 is expressed by human peripheral blood eosinophils: evidence for increased secretion in asthma. J Immunol 154: 5481–5490.PubMedGoogle Scholar
  89. 89.
    Nakajima H, Gleich GJ, Kita H (1996) Constitutive production of IL-4 and IL-10 and stimulated production of IL-8 by normal peripheral blood eosinophils. J Immunol 156: 4859–4866.PubMedGoogle Scholar
  90. 90.
    Cruikshank WW, Center DM, Nisar N, Wu M, Natke B, Theodore AC, Kornfeld H (1994) Molecular and functional analysis of a lymphocyte chemoattractant factor: association of biological function with CD4 expression. Proc Natl Acad Sci USA 91: 5109–5113.Google Scholar
  91. 91.
    Lim KG, Wan H-C, Bozza PT, Resnick MB, Wong DT, Cruikshank WW, Kornfeld H, Center DM, Weller PF (1996) Human eosinophils elaborate the lymphocyte chemoattractants. IL-16 (lymphocyte chemoattractant factor) and RANTES. J Immunol 156: 2566–2570.Google Scholar
  92. 92.
    Moqbel R, Hamid Q, Ying S, Barkans J, Hartnell A, Tsicopoulos A, Wardlaw AJ, Kay AB (1991) Expression of mRNA and immunoreactivity for the granulocyte/macrophage-colony stimulating factor in activated human eosinophils. J Exp Med 174: 749–752.PubMedCrossRefGoogle Scholar
  93. 93.
    Olmo I, Lea RG, Finotto S, Marshall J, Denburg J, Dolovich J, Gauldie J, Jordana M (1991) Granulocyte/macrophage-colony stimulating factor (GM-CSF) gene expression by eosinophils in nasal polyposis. Am J Resp Cell Mol Biol 5: 505–510.Google Scholar
  94. 94.
    Levi-Schaffer F, Lacy P, Severs NJ, Newman TM, North J, Gomperts B, Kay AB, Moqbel R (1995) Association of granulocyte-macrophage colony-stimulating factor with the crystalloid granules of human eosinophils. Blood 85: 2579–2586.PubMedGoogle Scholar
  95. 95.
    Wong DT, Weller PF, Galli SJ, Elovic A, Rand TH, Gallagher GT, Chiang T, Chou MY, Matossian K, McBride J, Todd R (1990) Human eosinophils express transforming growth factor-a. J Exp Med 172: 673–681.PubMedCrossRefGoogle Scholar
  96. 96.
    Todd R, Donoff BR, Chiang T, Chou MY, Elovic A, Gallagher GT, Wong DT (1991) The eosinophil as a cellular source of transforming growth factor-a in healing cutaneous wounds. Am J Pathol 138: 1307–1313.PubMedGoogle Scholar
  97. 97.
    Wong DT, Donoff RB, Yang J, Song BZ, Matossian K, Nagura N, Elovic A, McBride J, Gallagher G, Todd R, et al. (1993) Sequential expression of transforming growth factors-a and 131 by eosinophils during cutaneous wound healing in the hamster. Am J Pathol 143: 130–142.PubMedGoogle Scholar
  98. 98.
    Wong DT, Elovic A, Matossian K, Nagura N, McBride J, Chou M, Gordon JR, Rand TH, Galli SJ, Weller PF (1991) Eosinophils from patients with blood eosinophilia express transforming growth factor X31. Blood 78: 2702–2707.PubMedGoogle Scholar
  99. 99.
    Ohno I, Lea RG, Flanders KC, Clark DA, Banwatt D, Dolovich J, Denburg J, Harley CB, Gauldie J, Jordana M (1992) Eosinophils in chronically inflamed human upper airway tissues express transforming growth factor-131 gene. J Clin Invest 89: 1662–1668.PubMedCrossRefGoogle Scholar
  100. 100.
    Kadin M, Butmarc J, Elovic A, Wong DT (1993) Eosinophils are the major source of transforming growth factor-131 in nodular sclerosing Hodgkin’s disease. Am J Path 142: 11–16.PubMedGoogle Scholar
  101. 101.
    Costa JJ, Matossian K, Resnick MB, Beil WJ, Wong DT, Gordon JR, Dvorak AM, Weller PF, Galli SJ (1993) Human eosinophils can express the cytokines tumor necrosis factor-a and macrophage inflammatory protein-la. J Clin Invest 91: 2673–84.PubMedCrossRefGoogle Scholar
  102. 102.
    Tan X, Hsueh W, Gonzalez-Crussi F (1993) Cellular localization of tumor necrosis factor (TNF)-a transcripts in normal bowel and in necrotizing enterocolitis. TNF gene expression by Paneth cells, intestinal eosinophils, and macrophages. Am J Path 142: 1858–1865.PubMedGoogle Scholar
  103. 103.
    Schall TJ (1991) Biology of the RANTES/SIS cytokine family. Cytokine 3: 165–183.PubMedCrossRefGoogle Scholar
  104. 104.
    Ying S, Meng Q, Taborda-Barata L, Corrigan CJ, Barkans J, Assoufi B, Moqbel R, Durham SR, Kay AB (1996) Human eosinophils express mRNA encoding RANTES and store and release biologically active RANTES protein. Eur J Immunol 26: 70–76.PubMedCrossRefGoogle Scholar
  105. 105.
    Ohno I, Nitta Y, Yamauchi K, Hoshi H, Honma M, Woolley K, O’Byme P, Dolovich J, Jordana M, Tamura G, Tanno Y, Shirato K (1995) Eosinophils as a potential source of platelet-derived growth factor B-chain (PDGF-B) in nasal polyposis and bronchial asthma. Am J Respir Cell Mol Biol 13: 639–647.PubMedGoogle Scholar
  106. 106.
    Weller PF, Goetzl EJ, Austen KF (1980) Identification of human eosinophil lysophospholipase as the constituent of Charcot-Leyden crystals. Proc Natl Acad Sci USA 77: 7440–7443.PubMedCrossRefGoogle Scholar
  107. 107.
    Ackerman SJ, Weil GJ, Gleich GJ (1982) Formation of Charcot-Leyden crystals by human basophils. J Exp Med 155: 1597–1609.PubMedCrossRefGoogle Scholar
  108. 108.
    Weller PF, Bach DS, and Austen KF (1984) Biochemical characterization of human eosinophils Charcot-Leyden crystal protein (lysophospholipase). J Biol Chem 259:15, 100–15, 105.Google Scholar
  109. 109.
    Dvorak AM, Weller PF, Monahan-Earley RA, Letoumeau L, and Ackerman SJ (1990) Ultrastructural localization of Charcot-Leyden crystal protein (lysophospholipase) and peroxidase in macrophages, eosinophils and extracellular matrix of the skin in the hypereosinophilic syndrome. Lab Invest 62: 590–607.PubMedGoogle Scholar
  110. 110.
    Spry CJF (1988) Eosinophils. A Comprehensive Review and Guide to the Medical Literature. Oxford University Press, Oxford and London.Google Scholar
  111. 111.
    Shult PA, Graziano FM, Busse WW (1985) Enhanced eosinophil luminol-dependent chemoluminescence in allergic rhinitis. J Allergy Clin Immunol 77: 702–708.CrossRefGoogle Scholar
  112. 112.
    Hartnell A, Moqbel R, Walsh GM, Bradley B, Kay AB (1990) Fcy and CD11/CD18 receptor expression on normal density and low density human eosinophils. Immunology 69: 264–270.PubMedGoogle Scholar
  113. 113.
    Hansel TI’, DeVries IJ, Iff T, Rihs S, Wandzilak M, Betz S, Blaser K, Walker C (1991) An improved immunomagnetic procedure for the isolation of highly purified human blood eosinophils. J Immunol Meth 145: 105–110.Google Scholar
  114. 114.
    Walsh GM, Kay AB (1986) Binding of immunoglobulin classes and subclasses to human neutrophils and eosinophils. Clin Exp Immunol 63: 466–472.PubMedGoogle Scholar
  115. 115.
    Abu-Ghazaleh RI, Fujisawa T, Mestecky J, Kyle RA, Gleich GJ (1989) IgA-induced eosinophil degranulation. J Immunol 142: 2393–2400.PubMedGoogle Scholar
  116. 116.
    Butterworth AE, Sturrock RF, Houba V, Mahmoud AA, Sher A, Rees PH (1975) Eosinophils as mediators of antibody-dependent damage to schistosomula. Nature 256: 727–729.PubMedCrossRefGoogle Scholar
  117. 117.
    Capron M, Tomassini M, Ven der Vorst E, Kusnierz JP, Papin JP, Capron A (1988) Existence et fonctions d’un recepteur pour l’immunoglobline A sur les eosinophiles humaines. CR Acad Sci/Immunol 307: 397–402.Google Scholar
  118. Kita H Abu-Ghazaleh R, Sanderson CJ, Gleich GJ (1991) Effect of steroids on immunoglobulininduced eosinophil degranulation. J Allergy Clin Immunol 87:70–77.Google Scholar
  119. 119.
    Monteiro RC, Hostoffer RW, Cooper MD, Bonner JR, Gartland GL, Kubagawa H (1993) Definition of immunoglobulin A receptors on eosinophils and their enhanced expression in allergic individuals. J Clin Invest 92: 1681–85.PubMedCrossRefGoogle Scholar
  120. 120.
    Capron M, Jouault T, Prin L, Joseph M, Ameisen J-C, Butterworth AE, Papin J-P, Kusnierz J-P, Capron A (1986) Functional study of a monoclonal antibody to IgE Fc receptor (FceRII) of eosinophils, platelets, and macrophages. J Exp Med 164: 72–89.PubMedCrossRefGoogle Scholar
  121. 121.
    Capron A, Dessaint JP, Capron M, Joseph M, Ameisen J-C, Tonnel AB (1986) From parasites to allergy: a second receptor for IgE. Immunol Today 7: 15–18.CrossRefGoogle Scholar
  122. 122.
    Capron M, Capron A (1987) The IgE receptor of human eosinophils. In: Kay AB, ed. Allergy and Inflammation. Academic Press, London, pp. 151–159.Google Scholar
  123. 123.
    Jouault T, Capron M, Balloul J-M, Ameisen J-C, Capron A (1988) Quantitative and qualitative analysis of the Fc receptor for IgE (FceRII) on human eosinophils. Eur J Immunol 18: 237–241.PubMedCrossRefGoogle Scholar
  124. 124.
    Capron M, Truong M-J, Aldebert D, Gruart V, Suemera M, Delespesse G, Tourvieille B, Capron A (1991) Heterogeneous expression of CD23 epitopes by eosinophils from patients: relationships with IgE-mediated functions. Eur J Immunol 21: 2423–2429.PubMedCrossRefGoogle Scholar
  125. 125.
    Gounni AS, Lamkhioued B, Ochiai K, Tanaka Y, Delaporte E, Capron A, Kinet J-P, Capron M (1994) High-affinity IgE receptor on eosinophils is involved in defence against parasites. Nature 367: 183–186.PubMedCrossRefGoogle Scholar
  126. 126.
    Truong MJ, Gruart V, Kusnierz JP, Papin JP, Loiseau S, Capron A, Capron M (1993) Human neutrophils express immunoglobulin E (IgE)-binding proteins (Mac-2/epsilon BP) of the S-type lectin family: role in IgE-dependent activation. J Exp Med 177: 243–248.Google Scholar
  127. 127.
    Moqbel R, Walsh GM, Nagakura T, MacDonald AJ, Wardlaw AJ, Iikura Y, Kay AB (1990) The effect of platelet-activating factor on IgE binding to, and IgE-dependent biological properties of, human eosinophils. Immunology 70: 251–257.PubMedGoogle Scholar
  128. 128.
    Walsh GM, Hartnell A, Wardlaw AJ, Kurihara K, Sanderson CJ, Kay AB (1990) IL-5 enhances the in vitro adhesion of human eosinophils, but not neutrophils, in a leucocyte integrin (CD11/18)-dependent manner. Immunology 71: 258–265.PubMedGoogle Scholar
  129. 129.
    Capron M, Kazatchkine MD, Fischer E, Joseph M, Butterworth AE, Kusnierz J-P, Prin L, Papin J-P, Capron A (1987) Functional role of the alpha-chain of complement receptor type 3 in human eosinophildependent antibody-mediated cytotoxicity against schistosomes. J Immunol 139: 2059–2065.PubMedGoogle Scholar
  130. 130.
    Koenderman, L, Tool ATJ, Roos D, Verhoeven AJ (1990) Priming of the respiratory burst in human eosinophils is accompanied by changes in signal transduction. J Immunol 145: 3883–3888.PubMedGoogle Scholar
  131. 131.
    Zeiger RS, Colten HR (1977) Histaminase release from human eosinophils. J Immunol 118: 540–543.PubMedGoogle Scholar
  132. 132.
    Hartnell A, Kay AB, Wardlaw AJ (1992) Interleukin-3-induced up-regulation of CR3 expression on human eosinophils is inhibited by dexamethasone. Immunology 77: 488–493.PubMedGoogle Scholar
  133. 133.
    Anwar ARE, Smithers SR, Kay AB (1979) Killing of schistosomula of Schistosoma mansonicoated with antibody and/or complement by human leucocytes in vitro: requirement for complement in preferential killing by eosinophils. J Immunol 122: 628–637.PubMedGoogle Scholar
  134. 134.
    Silberstein DS, Owen WF, Gasson JC, DiPersio JF, Golde DW, Bina JC, Soberman R, Austen KF, David JR (1986) Enhancement of human eosinophil cytotoxicity and leukotriene synthesis by biosynthetic (recombinant) granulocyte-macrophage colony-stimulating factor. J Immunol 137: 3290–3294.PubMedGoogle Scholar
  135. 135.
    Owen WF, Rothenberg ME, Silberstein DS, Gasson JC, Stevens RL, Austen KF, Soberman RJ (1987) Regulation of human eosinophil viability, density and function by granulocyte/macrophage colony-stimulating factor in the presence of 313 fibroblasts. J Exp Med 166: 129–141.PubMedCrossRefGoogle Scholar
  136. 136.
    Rothenberg ME, Owen WF, Silberstein DS, Woods J, Soberman RJ, Austen KF, Stevens RL (1988) Human eosinophils have prolonged survival, enhanced functional properties, and become hypodense when exposed to human interleukin-3. J Clin Invest 81: 1986–1992.PubMedCrossRefGoogle Scholar
  137. 137.
    Rothenberg ME, Petersen J, Stevens RL, Silberstein DS, McKenzie DT, Austen KF, Owen WF (1989) IL-5-dependent conversion of normodense human eosinophils to the hypodense phenotype uses 3T3 fibroblasts for enhanced viability, accelerated hypodensity and sustained antibody-dependent cytotoxicity. J Immunol 143: 2311–2316.PubMedGoogle Scholar
  138. 138.
    Her E, Frazer J, Austen KF, Owen WF (1991) Eosinophil hematopoietins antagonize the programmed cell death of eosinophils. Cytokine and glucocorticoid effects on eosinophils maintained by endothelial cell-conditioned medium. J Clin Invest 88: 1982–1987.PubMedCrossRefGoogle Scholar
  139. 139.
    DiPersio J, Billing P, Kaufman S, Eghtesady P, Williams RE, Gasson JC (1988) Characterization of human granulocyte-macrophage colony-stimulating factor receptor. J Biol Chem 263: 1834–1841.PubMedGoogle Scholar
  140. 140.
    Lopez AF, Eglinton JM, Gillis D, Park LS, Clark S, Vadas MA (1989) Reciprocal inhibition of binding between interleukin 3 and granulocyte-macrophage colony-stimulating factor to human eosinophils. Proc Natl Acad Sci USA 86: 7022–7026.PubMedCrossRefGoogle Scholar
  141. 141.
    Chihara, J, Plumas J, Gruart V, Tavernier J, Prin L, Capron A, Capron M (1990) Characterization of a receptor for interleukin 5 on human eosinophils: variable expression and induction by granulocyte/ macrophage colony-stimulating factor. J Exp Med 172: 1347–1351.PubMedCrossRefGoogle Scholar
  142. 142.
    Migita M, Yamaguchi N, Mita S, Higuchi S, Hitoshi Y, Yoshida Y, Tomonaga M, Matsuda I, Tominaga A, Takatsu K (1991) Characterization of the human IL-5 receptors on eosinophils. Cell Immunol 133: 484–497.PubMedCrossRefGoogle Scholar
  143. 143.
    Ingley E, Young IG (1991) Characterization of a receptor for interleukin-5 on human eosinophils and the myeloid leukemia line HL-60. Blood 78: 339–344.PubMedGoogle Scholar
  144. 144.
    Lopez AF, Vadas MA, Woodcock JM, Milton SE, Lewis A, Elliott MJ, Gillis D, Ireland R, Olwell E, Park LS (1991) Interleukin-5, interleukin-3, and granulocyte-macrophage colony-stimulating factor cross-compete for binding to cell surface receptors on human eosinophils. J Biol Chem 266:24, 741–24, 747.Google Scholar
  145. 145.
    Tavernier J, Devos R, Cornelis S, Tuypens T, Van der Heyden J, Fiers W, Plaetinck G (1991) A human high affinity interleukin-5 receptor (IL-5R) is composed of an IL-5-specific alpha chain and a beta chain shared with the receptor for GM-CSF. Cell 66: 1175–1184.PubMedCrossRefGoogle Scholar
  146. 146.
    Lopez AF, Elliott MJ, Woodcock J, Vadas MA (1992) GM-CSF, IL-3 and IL-5: cross-competition on human haemopoietic cells. Immunol Today 13: 495–500.PubMedCrossRefGoogle Scholar
  147. 147.
    Miyajima A, Kitamura T, Harada N, Yokota T, Arai K (1992) Cytokine receptors and signal transduction. Annu Rev Immunol 10: 295–331.PubMedCrossRefGoogle Scholar
  148. 148.
    Kanakura, Y, Druker B, Cannistra SA, Furukawa Y, Torimoto Y, Griffin JD (1990) Signal transduction of the human granulocyte-macrophage colony-stimulating factor and interleukin-3 receptors involves tyrosine phosphorylation of a common set of cytoplasmic proteins. Blood 76: 706–715.PubMedGoogle Scholar
  149. 149.
    Linnekin D, Farrar WL (1990) Signal transduction of human interleukin 3 and granulocyte-macrophage colony-stimulating factor through serine and tyrosine phosphorylation. Biochem J 271: 317–324.PubMedGoogle Scholar
  150. 150.
    Murata, Y, Takaki S, Migita M, Kikuchi Y, Tominaga A, Takatsu K (1992) Molecular cloning and expression of the human interleukin-5 receptor. J Exp Med 175: 341–351.PubMedCrossRefGoogle Scholar
  151. 151.
    Ploysongsang Y, Humbert M, Ying S, Yasruel Z, Durham S, Kay AB, Hamid Q (1995) Increased expression of interleukin-5 receptor gene in asthma. J Allergy Clin Immunol 95: 279 (abstract 555).Google Scholar
  152. 152.
    Daugherty BL, Siciliano SJ, DeMartino JA, Malkowitz L, Sirotina A, Springer MS (1996) Cloning, expression, and characterization of the human eosinophil eotaxin receptor. J Exp Med 183: 2349–2354.PubMedCrossRefGoogle Scholar
  153. 153.
    Ponath PD, Qin S, Post TW, Wang J, Wu L, Gerard NP, Newman W, Gerard C, Mackay CR (1996) Molecular cloning and characterization of a human eotaxin receptor expressed selectively on eosinophils. J Exp Med 183: 2437–2448.PubMedCrossRefGoogle Scholar
  154. 154.
    Jose PJ, Griffiths-Johnson DA, Collins PD, Walsh DT, Moqbel R, Totty NF, Truong O, Hsuan JJ, Williams TJ (1994) Eotaxin: a potent eosinophil chemoattractant cytokine detected in a guinea pig model of allergic airways inflammation. J Exp Med 179: 881–887.PubMedCrossRefGoogle Scholar
  155. 155.
    Sehmi R, Rossi AG, Kay AB, Cromwell O (1992) Identification of receptors for leukotriene B4expressed on guinea pig peritoneal eosinophils. Immunology 77: 129–135.PubMedGoogle Scholar
  156. 156.
    Kroegel C, Yukawa T, Dent G, Venge P, Chung KF, Barnes PJ (1989) Stimulation of degranulation from human eosinophils by platelet-activating factor. J Immunol 142: 3518–3526.PubMedGoogle Scholar
  157. 157.
    Kurihara K, Wardlaw AJ, Moqbel R, Kay AB (1989) Inhibition of platelet-activating factor (PAF)indued chemotaxis and PAF binding to human eosinophils and neutrophile by the specific ginkgolidederived PAF antagonist, BN52021. J Allergy Clin Immunol 83: 83–90.PubMedCrossRefGoogle Scholar
  158. 158.
    Yazdanbakhsh M, Eckmann CM, Koenderman L, Verhoeven AJ, Roos D (1987) Eosinophils do respond to fMLP. Blood 70: 379–383.PubMedGoogle Scholar
  159. 159.
    Gerard NP, Gerard C (1991) The chemotactic receptor for human C5a anaphylatoxin. Nature 349: 614–617.PubMedCrossRefGoogle Scholar
  160. Honda Z, Nakamura M, Miki I, Minami M, Watanabe T, Seyama Y, Okado H, Toh H Ito K, Miyamoto T, Shimizu T (1991) Cloning by functional expression of platelet-activating receptor from guinea pig lung. Nature 349:342–346.Google Scholar
  161. 161.
    Minnicozzi M, Anthes JC, Siegel MI, Billah MM, Egan RW (1990) Activation of phospholipase D in normodense human eosinophils. Biochem Biophys Res Commun 170: 540–547.PubMedCrossRefGoogle Scholar
  162. 162.
    Elsner J, Oppermann M, Czech W, Dobos G, Schopf E, Norgauer J, Kapp A (1994) C3a activates reactive oxygen radical species production and intracellular calcium transients in human eosinophils. Eur J Immunol 24: 518–522.PubMedCrossRefGoogle Scholar
  163. 163.
    Riedel D, Lindemann A, Brach M, Mertelsmann R, Herrmann F (1990) Granulocyte-macrophage colony-stimulating factor and interleukin-3 induce surface expression of interleukin-2 receptor p55-chain and CD4 by eosinophils. Immunology 70: 258–261.PubMedGoogle Scholar
  164. 164.
    Lucey DR, Dorsky DI, Nicholson-Weller A, Weller PF (1989) Human eosinophils express CD4 protein and bind human immunodeficiency virus 1 gp120. J Exp Med 169: 327–332.PubMedCrossRefGoogle Scholar
  165. 165.
    Rand TH, Cruikshank WW, Center DM, Weller PF (1991) CD4-mediated stimulation of human eosinophils: lymphocyte chemoattractant factor and other CD4-binding ligands elicit eosinophil migration. J Exp Med 173: 1521–1528.Google Scholar
  166. 166.
    Freedman AR, Gibson FM, Fleming SC, Spry CJF, Griffin GE (1991) Human immunodeficiency virus infection of eosinophils in human bone marrow cultures. J Exp Med 174: 1661–1664.PubMedCrossRefGoogle Scholar
  167. 167.
    Lucey DR, Nicholson-Weller A, Weller PF (1989) Mature human eosinophils have the capacity to express HLA-DR. Proc Natl Acad Sci USA 86: 1348–1351.PubMedCrossRefGoogle Scholar
  168. 168.
    Weller PF, Rand TH, Finberg RW (1991) Human eosinophils function as HLA-DR dependent, MHCrestricted antigen-presenting cells. FASEB J 5: A640.Google Scholar
  169. 169.
    Nishikawa K, Morii T, Ako H, Hamada K, Saito S, Narita N (1992) In vivo expression of CD69 on lung eosinophils in eosinophilic pneumonia: CD69 as a possible activation marker for eosinophils. J Allergy Clin Immunol 90: 169–174.PubMedCrossRefGoogle Scholar
  170. 170.
    Hartnell A, Robinson DS, Kay AB, Wardlaw AJ (1993) CD69 is expressed by human eosinophils activated in vivo in asthma and in vitro by cytokines. Immunology 80: 281–286.PubMedGoogle Scholar
  171. 171.
    Corte G, Moretta L, Damiani G, Mingari MC, Bargellesi A (1981) Surface antigens specifically expressed by activated T cells in humans. Eur J Immunol 11: 162–164.PubMedCrossRefGoogle Scholar
  172. 172.
    Ohkawara Y, Lim KG, Xing Z, Glibetic M, Nakano K, Dolovich J, Croitoru K, Weller PF, Jordana M (1996) CD40 expression by human peripheral blood eosinophils. J Clin Invest 97: 1761–1766.PubMedCrossRefGoogle Scholar
  173. 173.
    Matsumoto K, Schleimer RP, Saito H, likura Y, Bochner BS (1995) Induction of apoptosis in human eosinophils by anti-Fas antibody treatment in vitro. Blood 86: 1437–1443.PubMedGoogle Scholar
  174. 174.
    Tanaka Y, Albelda SM, Horgan KJ, van Seventer GA, Shimizu Y, Newman W, Hallam J, Newman PJ, Buck CA, Shaw S (1992) CD31 expressed on distinctive T cell subsets is a preferential amplifier of 131 integrin-mediated adhesion. J Exp Med 176: 245–253.PubMedCrossRefGoogle Scholar
  175. 175.
    Kim JT, Gleich GJ, Kita H (1997) Roles of CD9 molecules in survival and activation of human eosinophils. J Immunol 159: 926–933.PubMedGoogle Scholar
  176. 176.
    Schleimer RP (1993) An overview of gluocorticosteroid anti-inflammatory actions. Eur J Clin Pharm 45: 3–7.CrossRefGoogle Scholar
  177. 177.
    Peterson AP, Altman LC, Hill JS, Gosney K, Kadin ME (1981) Glucocorticoid receptors on normal human eosinophils: comparisons with neutrophils. J Allergy Clin Immunol 68: 212–217.PubMedCrossRefGoogle Scholar
  178. 178.
    Prin L, Lefebvre P, Gruart V, Capron M, Storme L, Formstecher P, Loiseau S, Capron A (1989) Heterogeneity of human eosinophil glucocorticoid receptor expression in hypereosinophilic patients: absence of detectable receptor correlates with resistance to corticotherapy. Clin Exp Immunol 78: 383–389.PubMedGoogle Scholar
  179. 179.
    Spry CJF (1993) The idiopathic hypereosinophilic syndrome. In: Makino S, Fukuda T, eds. Eosinophils: Biological and Clinical Aspects. CRC, Boca Raton, pp. 403–420.Google Scholar
  180. 180.
    Kay AB, Moqbel R, Durham SR, MacDonald AJ, Walsh GM, Shaw RJ, Cromwell O, Mackay J (1985) Leucocyte activation initiated by IgE-dependent mechanisms in relation to helminthic parasitic disease and clinical models of asthma. Int Archs Allergy Appl Immunol 77: 69–72.CrossRefGoogle Scholar
  181. 181.
    Finkelman FD, Pearce EJ, Urban JF, Sher A (1991) Regulation and biological function of helminthinduced cytokine responses. In: Ash C, Gallagher RB, eds. Immunoparasitology Today. Elsevier, Cambridge, pp. A62 - A66.Google Scholar
  182. 182.
    Butterworth AE, Richardson BA (1985) Factors affecting the levels of antibody-and complement-dependent eosinophil-mediated damage to schistosomula of Schistosoma mansoniin vitro. Parasite Immunol 7: 119–131.PubMedCrossRefGoogle Scholar
  183. 183.
    Butterworth AE, Thorne KJI (1993) Eosinophils and parasitic diseases. In: Smith H, Cook RM, eds. Immunopharmacology of Eosinophils. Academic, London, pp. 119–150.Google Scholar
  184. 184.
    McLaren DJ, MacKenzie CD, Ramalho-Pinto FJ (1977) Ultrastructural observations on the in vitro interaction between rat eosinophils and some parasitic helminths (Schistosoma mansoni, Trichinella spiralisand Nippostrongylus brasiliensis). Clin Exp Immunol 30: 105–118.PubMedGoogle Scholar
  185. 185.
    Ackerman SJ, Gleich GJ, Loegering DA, Richardson BA, Butterworth AE (1985) Comparative toxicity of purified human eosinophil granule cationic proteins for schistosomula of Schistosoma mansoni. Am J Trop Med Hyg 34: 735–745.PubMedGoogle Scholar
  186. 186.
    Wardlaw AJ, Moqbel R (1992) The eosinophil in allergic and helminth-related inflammatory responses. In: Moqbel R, ed. Allergy and Immunity to Helminths. Common Mechanisms or Divergent Pathways? Taylor and Francis, London, pp. 154–186.Google Scholar
  187. 187.
    Moqbel R (1980) Histopathological changes following primary, secondary and repeated infections of rats with Strongyloides ratti, with special reference to tissue eosinophils. Parasite Immunol 2: 11–27.CrossRefGoogle Scholar
  188. 188.
    Hsu SY, Hsu HF, Mitros FA, Helms CM, Solomon RI (1980) Eosinophils as effector cells in the destruction of Schistosoma mansonieggs in granulomas. Ann Trop Med Parasitol 74: 179–183.PubMedGoogle Scholar
  189. 189.
    Moqbel R, King SJ, MacDonald AJ, Miller HRP, Cromwell O, Shaw RJ, Kay AB (1986) Enteral and systemic release of leukotrienes during anaphylaxis of Nippostongylus brasiliensis-primedrats. J Immunol 137: 296–301.PubMedGoogle Scholar
  190. 190.
    Moqbel R, Wakelin D, MacDonald AJ, King SJ, Grencis RK, Kay AB (1987) Release of leukotrienes during rapid expulsion of Trichinella spiralisfrom immune rats. Immunology 60: 425–430.PubMedGoogle Scholar
  191. 191.
    Moqbel R, MacDonald AJ, Kay AB (1989) Platelet activating factor (PAF) release during intestinal anaphylaxis in rats. FASEB J 3, A1337 (abstract 6454).Google Scholar
  192. 192.
    Wildenburg G, Krömer M, Büttner, DW (1996) Dependence of eosinophil granulocyte infiltration into nodules on the presence of microfilariae producing Onchocerca volvulus. Parasitol Res 82: 117–124.PubMedCrossRefGoogle Scholar
  193. 193.
    Hagan P, Blumenthal UJ, Dunn D, Simpson Ai, Wilkins HA (1991) Human IgE, IgG4 and resistance to reinfection with Schistosoma haematobium. Nature 349: 243–245.Google Scholar
  194. 194.
    Woolhouse MEJ, Taylor P, Matanhire D, Chandiwana SK (1991) Acquired immunity and epidemiology of Schistosoma haematobium. Nature 351: 757–759.PubMedCrossRefGoogle Scholar
  195. 195.
    Sher A, Coffman RL, Hieny S, Cheever AW (1990) Ablation of eosinophil and IgE responses with antiIL-5 or anti-IL-4 antibodies fails to affect immunity against Schistosoma mansonilarvae in the mouse. J Immunol 145: 3911–3916.PubMedGoogle Scholar
  196. 196.
    Ellis AG (1908) The pathologic anatomy of bronchial asthma. Am J Med Sci 136:407 Google Scholar
  197. 197.
    Dunnill MS (1978) The pathology of asthma. In: Middleton E Jr, Reed CE, Ellis EF, eds. Allergy: Principles and Practice. Mosby, St Louis, p. 678–686.Google Scholar
  198. 198.
    Huber HL, Koessler KK (1922) The pathology of bronchial asthma. Arch Int Med 30: 689–760.CrossRefGoogle Scholar
  199. 199.
    Filley WV, Holley KE, Kephart GM, Gleich GJ (1982) Identification by immunofluorescence of eosinophil granule major basic protein in lung tissue of patients with bronchial asthma. Lancet 2: 11–16.PubMedCrossRefGoogle Scholar
  200. 200.
    Sur S, Crotty TB, Kephart GM, Hyma BA, Colby TV, Reed CE, Hunt LW, Gleich GJ (1993) Sudden-onset fatal asthma. A distinct entity with few eosinophils and relatively more neutrophils in the airway submucosa? Am Rev Respir Dis 148: 713–719.PubMedCrossRefGoogle Scholar
  201. 201.
    Horn BR, Robin ED, Theodore J, Van Kessel A (1975) Total eosinophil counts in the management of bronchial asthma. N Engl J Med 292: 1152–1155.PubMedCrossRefGoogle Scholar
  202. 202.
    Durham SR, Kay AB (1985) Eosinophils, bronchial hyperreactivity and late-phase asthmatic reactions. Clin Allergy 15: 411–418.PubMedCrossRefGoogle Scholar
  203. 203.
    Taylor KJ, Luksza AR (1987) Peripheral blood eosinophil counts and bronchial hyperresponsiveness. Thorax 42: 452–456.PubMedCrossRefGoogle Scholar
  204. 204.
    Venge P (1993) Human eosinophil granule proteins: structure, function and release. In: Smith H, Cook RM, eds. Immunopharmacology of Eosinophils. Academic, London, pp. 43–55.Google Scholar
  205. 205.
    NHLBI Workshop Summaries (1985) Summary and recommendations of a workshop on the investigative use of fibreoptic bronchoscopy and bronchoalveolar lavage in asthmatics. Am Rev Respir Dis 132: 180–182.Google Scholar
  206. 206.
    Dolovich J, Hargreave FE, Jordana M, Denburg J. (1989) Late-phase airway reaction and inflammation. J Allergy Clin Immunol 83: 521–524.PubMedCrossRefGoogle Scholar
  207. 207.
    Durham SR (1991) The significance of late responses in asthma. Clin Exp Allergy 21: 3–7.PubMedCrossRefGoogle Scholar
  208. 208.
    Metzger WJ, Zavala D, Richerson HB, Moseley P, Iwamota P, Monick M, Sjoerdsma K, Hunninghake GW (1987) Local allergen challenge and bronchoalveolar lavage of allergic asthmatic lungs. Description of the model and local airway inflammation. Am Rev Respir Dis 135: 433–440.PubMedGoogle Scholar
  209. 209.
    Fabbri LM, Boschetto P, Zocca E, Milani G, Pivirotto F, Plebani M, Burlina A, Licata B, Mapp CE (1987) Bronchoalveolar neutrophilia during late asthmatic reactions induced by toluene diisocyanate. Am Rev Respir Dis 136: 36–42.PubMedCrossRefGoogle Scholar
  210. 210.
    Lam S, LeRiche J, Phillips D, Chan-Yeung M, et al. (1987) Cellular and protein changes in bronchial lavage fluid after late asthmatic reaction in patients with red cedar asthma. J Allergy Clin Immunol 80: 44–50.PubMedCrossRefGoogle Scholar
  211. 211.
    Djukanovic R, Roche WR, Wilson JW, Beasley CRW, Twentyman OP, Howarth PH and Holgate, ST (1990) Mucosal inflammation in asthma Am Rev Respir Dis 142: 434–457.Google Scholar
  212. 212.
    Azzawi M, Bradley B, Jeffery PK, Frew AJ, Wardlaw M, Knowles G, Assoufi B, Collins JV, Durham S, Kay AB (1990) Identification of activated T lymphocytes and eosinophils in bronchial biopsies in stable atopic asthma. Am Rev Respir Dis 142: 1407–1413.PubMedGoogle Scholar
  213. 213.
    Wardlaw AJ, Dunnette S, Gleich GJ, Collins JV, Kay AB (1988) Eosinophils and mast cells in bronchoalveolar lavage in subjects with mild asthma. Relationship to bronchial hyperreactivity. Am Rev Respir Dis 137: 62–69.PubMedCrossRefGoogle Scholar
  214. 214.
    De Monchy JGR, Kauffman HF, Venge P, Koeter GH, Jansen HM, Sluiter HJ, de Vries K (1985) Bronchoalveolar eosinophilia during allergen-induced late asthmatic reactions. Am Rev Respir Dis 131: 373–376.PubMedGoogle Scholar
  215. 215.
    Adelroth E, Rosenhall L, Johansson S, Linden M, Venge P (1990) Inflammatory cells and eosinophilic activity in asthma investigated by bronchoalveolar lavage. The effects of antiasthmatic treatment with budesonide or terbutaline. Am Rev Respir Dis 142: 91–99.PubMedGoogle Scholar
  216. 216.
    Hamid Q, Azzawi M, Ying S, Moqbel R, Wardlaw AJ, Corrigan CJ, Bradley B, Durham SR, Collins JV, Jeffery PK, Quint DJ, Kay AB (1991) Expression of mRNA for interleukin-5 in mucosal bronchial biopsies from asthma. J Clin Invest 87: 1541–1546.PubMedCrossRefGoogle Scholar
  217. 217.
    Robinson DS, Hamid Q, Ying S, Tsicopoulos A, Barkans J, Bentley AM, Corrigan CJ, Durham SR, Kay AB (1992) Predominant TH2-type bronchoalveolar lavage T-lymphocyte population in atopic asthma N Engl J Med 326: 298–304.Google Scholar
  218. 218.
    Bentley AM, Maestrelli P, Saetta M, Fabbri LM, Robinson DS, Bradley BL, Jeffery PK, Durham SR, Kay AB (1992) Activated T-lymphocytes and eosinophils in the bronchial mucosa in isocyanate-induced asthma. J Allergy Clin Immunol 89: 821–829.PubMedCrossRefGoogle Scholar
  219. 219.
    Bentley AM, Menz G, Storz C, Robinson DS, Bradley B, Jeffery PK, Durham SR, Kay AB (1992) Identification of T lymphocytes, macrophages, and activated eosinophils in the bronchial mucosa in intrinsic asthma. Relationship to symptoms and bronchial responsiveness. Am Rev Respir Dis 146: 500–506.PubMedGoogle Scholar
  220. 220.
    Corrigan CJ, Haczku A, Gemou-Engesaeth V, Doi S, Kikuchi Y, Takatsu K, Durham SR, Kay AB (1993) CD4 T-lymphocyte activation in asthma is accompanied by increased serum concentrations of interleukin-5. Effect of glucocorticoid therapy. Am Rev Respir Dis 147: 540–547.PubMedGoogle Scholar
  221. 221.
    Robinson D, Hamid Q, Ying S, Bentley A, Assoufi B, Durham SR, Kay AB (1993) Prednisolone treatment in asthma is associated with modulation of bronchoalveolar lavage cell interleukin-4, interleukin5 and interferon-gamma cytokine gene expression. Am Rev Respir Dis 148: 401–406.PubMedGoogle Scholar
  222. 222.
    Foster PS, Hogan SP, Ramsay AJ, Matthaei KI, Young IG (1996) Interleukin 5 deficiency abolishes eosinophilia, airways hyperreactivity, and lung damage in a mouse asthma model. J Exp Med 183: 195–201.PubMedCrossRefGoogle Scholar
  223. 223.
    Viegas M, Gomez E, Brooks J, Gatland D, Davies RJ (1987) Effect of the pollen season on nasal mast cells. Br Med J 294: 414CrossRefGoogle Scholar
  224. 224.
    Pipkorn U, Karlsson G, Enerback L (1988) The cellular response of the human allergic mucosa to natural allergen exposure. J Allergy Clin Immunol 82: 1046–1054.PubMedCrossRefGoogle Scholar
  225. 225.
    Slavin RG (1993) Upper respiratory tract. In: Weiss EB, Stein M, eds. Bronchial Asthma. Mechanisms and Therapeutics. Boston, Little Brown, pp. 533–544.Google Scholar
  226. 226.
    Leiferman KM, Ackerman SJ, Sampson HA, Haugen HS, Venencie PY, Gleich GJ (1985) Dermal deposition of eosinophil-granule major basic protein in atopic dermatitis. Comparison with onchocerciasis. N Engl J Med 313: 282–285.PubMedCrossRefGoogle Scholar
  227. 227.
    Bruyjnzeel-Koomen CAF, Van Wichen DF, Spry CJF, Venge P, Bruyjnzeel PLB (1988) Active participation of eosinophils in patch test reactions to inhalant allergens in patients with atopic dermatitis. Br J Dermatol 118: 229–238.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • Redwan Moqbel
  • Paige Lacy

There are no affiliations available

Personalised recommendations