Eosinophil Signal Transduction

  • Hirohito Kita


Eosinophils are important effector cells in host defense against parasites, in allergic diseases such as bronchial asthma and atopic dermatitis, and in diseases associated with eosinophilia (1,2). The eosinophil is an important source of cytotoxic proteins, lipid mediators, and oxygen metabolites, which have the potential to induce pathology in disease. However, little is known about the mechanisms coupling receptors and effector functions of eosinophils. Studies in eosinophils have been hampered because eosinophils represent only a small fraction of peripheral white blood cells, and the isolation of large numbers of cells for biochemical studies has been difficult. However, recent advances in procedures have enabled us to isolate eosinophils from normal individuals with high purity and reasonable recovery. Furthermore, techniques have become available to analyze intracellular events at a single-cell level. This chapter will review recent advances in the studies of eosinophil signal transduction, in the hope of finding ways to modulate eosinophil activation therapeutically in patients with eosinophil-associated diseases.


Tyrosine Phosphorylation Platelet Activate Factor Phosphatidic Acid Respiratory Burst Human Eosinophil 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Gleich GJ, Adolphson CR (1986) The eosinophilic leukocyte: structure and function. Adv Immunol 39: 177.PubMedCrossRefGoogle Scholar
  2. 2.
    Butterfield JH, Leiferman KM, Gleich GJ (1995) Eosinophil-associated diseases. In: Frank MM, Austen KF, Claman HN, Unanue ER, eds. Samter’s Immunological Diseases, Fifth edition. Little, Brown, Boston, p. 501.Google Scholar
  3. 3.
    Abu-Ghazaleh RI, Fujisawa T, Mestecky J, Kyle RA, Gleich GJ (1989) IgA-induced eosinophil degranulation. J Immunol 142: 2393.PubMedGoogle Scholar
  4. 4.
    Capron MC, Tomassin M, Voist EVD, Kuznierz J-P, Papin J-P, Capron A (1988) Existence and function of receptor for immunoglobulin A on human eosinophils. C R Acad Sci Paris 307: 397.PubMedGoogle Scholar
  5. 5.
    Fujisawa T, Abu-Ghazaleh RI, Kita H, Sanderson CJ, Gleich GJ (1990) Regulatory effect of cytokines on eosinophil degranulation. J Immunol 144: 642.PubMedGoogle Scholar
  6. 6.
    Winqvist I, Olofsson T, Olsson I (1984) Mechanisms for eosinophil degranulation: release of eosinophil cationic protein. Immunology 51: 1.PubMedGoogle Scholar
  7. 7.
    Takafuji S, Tadokoro K, Ito K, Dahinden CA (1994) Degranulation of eosinophils stimulated with C3a and C5a. Int Arch Allergy Appl Immunol 104: 27.CrossRefGoogle Scholar
  8. 8.
    Kernen P, Wymann MP, Von Tscharner V, Deranleau DA, Tai PC, Spry CJ, Dahinden CA, Baggiolini M (1991) Shape changes, exocytosis, and cytosolic free calcium changes in stimulated human eosinophils. J Clin Invest 87: 2012.PubMedCrossRefGoogle Scholar
  9. 9.
    Kroegel C, Yukawa T, Dent G, Venge P, Chung KF, Barnes PJ (1989) Stimulation of degranulation from human eosinophils by platelet activating factor. J Immunol 142: 3518.PubMedGoogle Scholar
  10. 10.
    Kita H, Weiler DA, Abu-Ghazaleh R, Sanderson CJ, Gleich GJ (1992) Release of granule proteins from eosinophils cultured with IL-5. J Immunol 149: 629.PubMedGoogle Scholar
  11. 11.
    Horie S, Kita H (1994) CD1 lb/CD18 (Mac-1) is required for degranulation of human eosinophils induced by human recombinant granulocyte-macrophage colony-stimulating factor and platelet-activating factor. J Immunol 152: 5457.PubMedGoogle Scholar
  12. 12.
    Alam R, Stafford S, Forsythe P, Harrison R, Faubion D, Lett-Brown MA, Grant JA (1993) RANTES is a chemotactic and activating factor for human eosinophils. J Immunol 150: 3442.PubMedGoogle Scholar
  13. 13.
    Rot A, Krieger M, Brunner T, Bischoff SC, Schall TJ, Dahinden CA (1992) RANTES and macrophage inflammatory protein 1 alpha induce the migration and activation of normal human eosinophil granulocytes. J Exp Med 176: 1489.PubMedCrossRefGoogle Scholar
  14. 14.
    Sedgwick JB, Vrtis RF, Gourley MF, Busse WW (1988) Stimulant-dependent differences in superoxide anion generation by normal human eosinophils and neutrophils. J Allergy Clin Immunol 81: 876.PubMedCrossRefGoogle Scholar
  15. 15.
    Palmblad J, Gyllenhammar H, Lindgren JA, Malmstern CL (1984) Effects of leukotrienes and f-MetLeu-Phe on oxidative metabolism of neutrophils and eosinophils. J Immunol 132: 3041.PubMedGoogle Scholar
  16. 16.
    Elsner J, Oppermann M, Czech W, Dobos G, Schopf E, Norgauer J, Kapp A (1994) C3a activates reactive oxygen radical species production and intracellular calcium transients in human eosinophils. Eur J Immunol 24: 518.PubMedCrossRefGoogle Scholar
  17. 17.
    Koenderman L, Tool ATJ, Roos D, Verhoeven AJ (1990) Priming of the respiratory burst in human eosinophils is accompanied by changes in signal transduction. J Immunol 145: 3883.PubMedGoogle Scholar
  18. 18.
    Bach MK, Brashler JR, Petzold EN, Sanders ME (1992) Superoxide production by human eosinophils can be inhibited in an agonist-selective manner. Agents Actions 35: 1.PubMedCrossRefGoogle Scholar
  19. 19.
    Nagata M, Sedgwick JB, Bates ME, Kita H, Busse WW (1995) Eosinophil adhesion to vascular cell adhesion molecule-1 activates superoxide anion generation. J Immunol 155: 2194.PubMedGoogle Scholar
  20. 20.
    Saito H et al. (1988) Selective differentiation and proliferation of hematopoietic cells induced by recombinant human interleukins Proc Natl Acad Sci USA 85: 2288.Google Scholar
  21. 21.
    Sanderson CJ, Warren DJ, Strath M (1985) Identification of a lymphokine that stimulates eosinophil differentiation in vitro: its relationship to interleukin 3, and functional properties of eosinophils produced in cultures. J Exp Med 162: 60.PubMedCrossRefGoogle Scholar
  22. 22.
    Rothenberg ME et al. (1989) IL-5-dependent conversion of normodense human eosinophils to the hypo-dense phenotype uses 3T3 fibroblasts for enhanced viability, accelerated hypodensity, and sustained antibody-dependent cytotoxicity. J Immunol 143: 2311.PubMedGoogle Scholar
  23. 23.
    Lopez AF et al. (1988) Recombinant human interleukin 5 is a selective activator of human eosinophil function. J Exp Med 167: 219.PubMedCrossRefGoogle Scholar
  24. 24.
    Nakajima H, Gleich GJ, Kita H (1996) Constitutive production of IL-4 and IL-10 and stimulated production of IL-8 by normal peripheral blood eosinophils. J Immunol 156: 4859.PubMedGoogle Scholar
  25. 25.
    Walsh GM et al. (1990) Il-5 enhances the in vitro adhesion of human eosinophils, but not neutrophils, in a leucocyte integrin (CD11/18)-dependent manner. Immunology 71: 258.PubMedGoogle Scholar
  26. 26.
    Wang JM et al. (1989) Recombinant human interleukin 5 is a selective activator of human eosinophil function. Eur J Immunol 19: 701–705.PubMedCrossRefGoogle Scholar
  27. 27.
    Neher E, Marty A (1982) Discrete changes of cell membrane capacitance observed under condition of enhanced secretion in bovine adrenal chromaffin cells. Proc Natl Acad Sci USA 79: 6712.PubMedCrossRefGoogle Scholar
  28. 28.
    Fernandez JM, Neher E, Gomperts BD (1984) Capacitance measurements reveal stepwise fusion events in degranulating mast cells. Nature 312: 453.PubMedCrossRefGoogle Scholar
  29. 29.
    Nusse O, Lindau M, Cromwell O, Kay AB, Gomperts BD (1990) Intracellular application of guanosine5’-O-(3-thiotriphosphate) induces exocytotic granule fusion in guinea-pig eosinophils. J Exp Med 171: 775.PubMedCrossRefGoogle Scholar
  30. 30.
    Aizawa T, Kakuta Y, Yamauchi K, Ohkawara Y, Maruyama N, Nitta Y, Tamura G, Sasaki H, Takishima T (1992) Induction of granule release by intracellular application of calcium and guanosine-5’-O-(3thiotriphosphate) in human eosinophils. J Allergy Clin Immunol 90: 789.PubMedCrossRefGoogle Scholar
  31. 31.
    Fukuda T, Ackerman SJ, Reed CE, Peters MS, Dunnette SL, Gleich GJ (1985) Calcium ionophore A23187 calcium-dependent cytolytic degranulation in human eosinophils. J Immunol 135: 1349.PubMedGoogle Scholar
  32. 32.
    Owen WF Jr, Soberman RJ, Yoshimoto T, Schaller AL, Lewis RA, Austen KF (1987) Synthesis and release of leukotriene C4 by human eosinophils. J Immunol 138: 532.PubMedGoogle Scholar
  33. 33.
    Brundage RA, Fogarty KE, Tuft RA, Fay FS (1991) Calcium gradients underlying polarization and chemotaxis of eosinophils. Science 254: 703.PubMedCrossRefGoogle Scholar
  34. 34.
    Subramanian N et al. (1992) Leukotriene B4 induced steady state calcium rise and superoxide anion generation in guinea pig eosinophils are not related events. Biochem Biophys Res Commun 187: 670.PubMedCrossRefGoogle Scholar
  35. 35.
    Kroegel C, Yukawa T, Westwick J, Barnes PJ (1989) Evidence for two platelet activating receptors on eosinophils: dissociation between PAF-induced intracellular Cat+-mobilization, degranulation and superoxide anion generation in eosinophils. Biochem Biophys Res Commun 162: 571.CrossRefGoogle Scholar
  36. 36.
    Kita H, Abu-Ghazaleh RI, Gleich GJ, Abraham RT (1991) Role of pertussis toxin-sensitive G proteins in stimulus dependent human eosinophil degranulation. J Immunol 147: 3466.PubMedGoogle Scholar
  37. 37.
    Kroegel C, Pleass R, Yukawa T, Chung KF, Westwick J, Barnes PJ (1989) Characterization of platelet activating factor-induced elevation of cytosolic free calcium concentration in eosinophils. FEBS Lett 243: 41.PubMedCrossRefGoogle Scholar
  38. 38.
    Kroegel C, Giembycz MA, Barnes PJ (1990) Characterization of eosinophil activation by peptides: differential effects of substance P, melittin, and fMet-Leu-Phe. J Immunol 145: 2581.PubMedGoogle Scholar
  39. 39.
    Hwang SB (1990) Specific receptors of platelet-activating factor, receptor heterogeneity, and signal transduction mechanisms. J Lipid Med 2: 123.Google Scholar
  40. 40.
    Rot A, Krieger M, Brunner T, et al. (1992) RANTES and macrophage inflammatory protein 1 alpha induce the migration and activation of normal human eosinophil granulocytes. J Exp Med 176: 1489.PubMedCrossRefGoogle Scholar
  41. 41.
    Schweizer RC, Welmers BAC, Raaijmakers JAM, et al. (1994) RANTES and interleukin-8-induced responses in normal human eosinophils: effects of priming with interleukin-5 Blood 83: 3697.Google Scholar
  42. 42.
    Weber M, Uguccioni M, Ochensberger B, et al. (1995) Monocyte chemotactic protein MCP-2 activated human basophil and eosinophil leukocytes similar to MCP-3. J Immunol 154: 4166.PubMedGoogle Scholar
  43. 43.
    Dahinden CA, Geiser T, Brunner T, et al. (1994) Monocyte chemotactic protein 3 is a most effective basophil-and eosinophil-activating chemokine. J Exp Med 179: 751.PubMedCrossRefGoogle Scholar
  44. 44.
    Murphy PM (1994) The molecular biology of leukocyte chemoattractant receptors. Annu Rev Immunol 12: 593.PubMedCrossRefGoogle Scholar
  45. 45.
    Berridge MJ (1987) Inositol triphosphate and diacylglycerol: two interacting second messengers. Annu Rev Biochem 56: 159.PubMedCrossRefGoogle Scholar
  46. 46.
    Kroegel C, Chilvers ER, Barnes PJ (1990) Platelet activating factor (PAF) stimulates phosphoinositide ( PI) metabolism in guinea-pig eosinophils. Clin Sci 76: 54P.Google Scholar
  47. 47.
    Dent G, Barnes PJ (1991) Platelet activating factor simulates a pertussis toxin-sensitive GTPase activity in guinea-pig eosinophil membrane. Br J Pharmacol 104: 86 P.Google Scholar
  48. 48.
    Kroegel C, Chilvers ER, Giembycz MA, Challiss RAJ, Barnes PJ (1991) Platelet activating factor stimulates a rapid accumulation of inositol (1,4,5)triphosphate in guinea-pig eosinophils: relationship to calcium mobilization and degranulation. J Allergy Clin Immunol 88: 114.PubMedCrossRefGoogle Scholar
  49. 49.
    De Andres B, Del Pozo V, Cardaba B, Martin E, Tramon P, Lopez-Rivasa A, Palonino P, Lahoz C (1991) Phosphoinositide breakdown is associated with Fc-yRII mediated activation of 5’-lipoxygenase in murine eosinophils. J Immunol 146: 1566.PubMedGoogle Scholar
  50. 50.
    Cockcroft S (1992) G-protein-regulated phospholipase C, D and A2-mediated signalling in neutrophils. Biochim Biophys Acta 1113: 135.PubMedCrossRefGoogle Scholar
  51. 51.
    Abdel-Latif AA (1986) Calcium-mobilizing receptors, polyphosphoinositides, and the generation of second messengers. Pharmacol Rev 38: 227.PubMedGoogle Scholar
  52. 52.
    Berridege MJ (1993) Inositol triphosphate and calcium signaling. Nature 361: 315.CrossRefGoogle Scholar
  53. 53.
    Taylor SJ, Chae HZ, Rhee SG, Exton JH (1991) Activation of the ß1 isozyme of phospholipase C by a subunit of the Gq class of G proteins. Nature 350: 516.PubMedCrossRefGoogle Scholar
  54. 54.
    Katz A, Wu D, Simon MI (1992) Subunits beta gamma of heterotrimeric G protein activate beta 2 isoform of phospholipase C. Nature 360: 686.PubMedCrossRefGoogle Scholar
  55. 55.
    Rhee SG (1991) Inositol phospholipid-specific phospholipase C: interaction of yl isoform with tyrosine kinase. Trends Biochem Sci 16: 297.PubMedCrossRefGoogle Scholar
  56. 56.
    Kato M, Kita H, manuscript in preparation.Google Scholar
  57. 57.
    Gilman AG (1987) G proteins: transducers of receptor-generated signals. Annu Rev Biochem 56: 615.PubMedCrossRefGoogle Scholar
  58. 58.
    Neer EJ (1995) Heterotrimeric G proteins: organizers of transmembrane signals. Cell 80: 249.PubMedCrossRefGoogle Scholar
  59. 59.
    Clapham DE, Neer EJ (1993) New roles of G-protein 13y dimers in transmembrane signaling. Nature 365: 403.PubMedCrossRefGoogle Scholar
  60. 60.
    Bokoch GM, Katada T, Northup JK, Newlett EL, Gilman AG (1983) Identification of the predominant substrate for ADP-ribosylation by islet activating protein. J Biol Chem 258: 2072.PubMedGoogle Scholar
  61. 61.
    Okajima F, Katada T, Ui M (1985) Coupling of the guanine nucleotide regulatory protein chemotactic peptide receptors in neutrophil membrane and its uncoupling by islet-activating protein, pertussis toxin: A possible role of the toxin substrate in Cat+-mobilizing receptor-mediated signal transduction. J Biol Chem 260: 6761.PubMedGoogle Scholar
  62. 62.
    Snyderman R, Perianin A, Evans T, Polakis P, Didsbury J (1990) G proteins and neutrophil function. In: Moss J, Vaughan M, eds. ADP-Ribosylating Toxin and G Proteins. American Society for Microbiology, Washington, p. 295.Google Scholar
  63. 63.
    Ui M (1990) Pertussis toxin as valuable probe for G-protein involvement in signal transduction. In: Moss J, Vaughan M, eds. ADP-Ribosylating Toxins and G Proteins. American Society for Microbiology, Washington, p. 45.Google Scholar
  64. 64.
    Kita H, Abu-Ghazaleh RI, Gleich GJ, Abraham RT (1991) Regulation of Ig-induced eosinophil degranulation by adenosine-3’,5’-cyclic monophosphate. J Immunol 146: 2712.PubMedGoogle Scholar
  65. 65.
    Kato M, Abraham RT, Kita H (1995) Tyrosine phosphorylation is required for eosinophil degranulation induced by immobilized immunoglobulin. J Immunol 155: 357.PubMedGoogle Scholar
  66. 66.
    Agrawal DK, Ali N, Numao T (1992) PAF receptors and G-proteins in human blood eosinophils. J Lipid Med 5: 101.Google Scholar
  67. 67.
    Kapp A, Zeck-Kapp G, Czech W, Schopf E (1994) The chemokine RANTES is more than a chemoattractant: characterization of its effect on human eosinophil oxidative metabolism and morphology in comparison with IL-5 and GM-CSF. J Invest Dermatol 102: 906.PubMedCrossRefGoogle Scholar
  68. 68.
    Cromwell O, Bennett JP, Hide I, Kay AB, Comperts BD (1991) Mechanisms of granule enzyme secretion from permeabilized guinea-pig eosinophils. Dependence on Cat+ and guanine nucleotide. J Immunol 147: 1905.PubMedGoogle Scholar
  69. 69.
    Gomperts BD (1990) GE: a GTP-binding protein mediating exocytosis. Annu Rev Physiol 52: 591.PubMedCrossRefGoogle Scholar
  70. 70.
    Barbacid M (1987) ras genes. Annu Rev Biochem 56:779.Google Scholar
  71. 71.
    McPhil LC, Strum SL, Leone PA, Sozzani S (1992) The neutrophil respiratory burst mechanism. In: Coffey R, ed. Granulocyte Responses to Cytokines: Basic and Clinical Research. Marcel Dekker, New York, p. 47.Google Scholar
  72. 72.
    Dennis EA, Rhee SG, Billah MM, Hannun YA (1991) Role of phospholipases in generating lipid second messengers in signal transduction. FASEB J 5: 2068.PubMedGoogle Scholar
  73. 73.
    Sun FF, Czuk CI, Taylor BM (1989) Arachidonic acid metabolism in guinea pig eosinophils: synthesis of thromboxane B2 and leukotriene B4 in response to soluble or particulate activators. J Leukocyte Biol 46: 152.PubMedGoogle Scholar
  74. 74.
    Debbaghi A, Hidi R, Vargaftig BB, Touqui L (1992) Inhibition of phospholipase A2 activity in guinea pig eosinophils by human recombinant IL-1 beta. J Immunol 149: 1374.PubMedGoogle Scholar
  75. 75.
    Aebischer CP, Pasche I, Jorg A (1993) Nanomolar arachidonic acid influences the respiratory burst in eosinophils and neutrophils induced by GTP-binding protein. A comparative study of the respiratory burst in bovine eosinophils and neutrophils. Eur J Biochem 218: 669.Google Scholar
  76. 76.
    White SR, Strek ME, Kulp GV, Spaethe SM, Burch RA, Neeley SP, Leff AR (1993) Regulation of human eosinophil degranulation and activation by endogenous phospholipase A2. J Clin Invest 91: 2118.PubMedCrossRefGoogle Scholar
  77. 77.
    Tool AT, Koenderman L, Kok PT, Blom M, Roos D, Verhoeven AJ (1992) Release of platelet-activating factor is important for the respiratory burst induced in human eosinophils by opsonized particles. Blood 79: 2729.PubMedGoogle Scholar
  78. 78.
    Kok PT, Hamelink ML, Kijne GM, Verhagen J, Koenderman L, Veldink GA, Bruynzeel PL (1989) Leukotriene C4 formation by purified human eosinophils can be induced by arachidonic acid in the absence of calcium-ionophore A23187. Agents Actions 26: 96.PubMedCrossRefGoogle Scholar
  79. 79.
    Henderson WR, Chi EY, Jorg A, Klebanoff SJ (1983) Horse eosinophil degranulation induced by the ionophore A23187. Ultrastructure and role of phospholipase A2. Am J Pathol 111: 341.PubMedGoogle Scholar
  80. 80.
    Korchak HM, Vosshall LB, Haines KA, Wilkenfeld C, Lundquist KF, Weissmann G (1988) Activation of the human neutrophil by calcium-mobilization ligands. II. Correlation of calcium, diacylglycerol, and phosphatidic acid generation with superoxide anion generation. J Biol Chem 263: 11098.Google Scholar
  81. 81.
    Minnicozzi M, Anthes JC, Siegel MI, Billah M, Egan RW (1990) Activation of phospholipase D in normodense human eosinophils. Biochem Biophys Res Commun 170: 540.PubMedCrossRefGoogle Scholar
  82. 82.
    Billah MM, Anthes JC (1990) The regulation of cellular functions of phosphatidylcholine hydrolysis (review). Biochem J 269: 281.PubMedGoogle Scholar
  83. 83.
    Huang, C-K (1989) Protein kinases in neutrophils: a review. Membr Biochem 8: 61.PubMedCrossRefGoogle Scholar
  84. 84.
    Ramesh KS, Rocklin RE, Pincus SH (1987) Phosphorylation and dephosphorylation of soluble proteins in human eosinophils. J Cell Biochem 34: 203.PubMedCrossRefGoogle Scholar
  85. 85.
    Pincus SH, Schooley WR, DiNapoli AM, Broder S (1981) Metabolic heterogeneity of eosinophils from normal and hypereosinophilic patients. Blood 58: 1175.Google Scholar
  86. 86.
    Kajita T, Yui Y, Mita H, Taniguchi N, Saito H, Mishima T, Shida T (1985) Release of leukotriene C4 from human eosinophils and its relation to cell density. Int Arch Allergy Appl Immunol 78: 406.PubMedCrossRefGoogle Scholar
  87. 87.
    Kurosawa M, Shimizu Y, Tsukagoshi H (1992) Human peripheral blood hypodense eosinophil proteins are more labeled with 32P than the normodense eosinophil proteins. Int Arch Allergy Immunol 97: 283.PubMedCrossRefGoogle Scholar
  88. 88.
    Perlmutter RM, Levin SD, Appleby MW, Anderson SJ, Alberola-Iia J (1993) Regulation of lymphocyte function by protein phosphorylation. Annu Rev Immunol 11: 451.PubMedCrossRefGoogle Scholar
  89. 89.
    Chan AC, Desai DM, Weiss A (1994) The role of protein tyrosine kinases and protein tyrosine phosphatases in T cell antigen receptor signal transduction. Annu Rev Immunol 12: 555.PubMedCrossRefGoogle Scholar
  90. 90.
    Bach MK, Brashler JR, Petzold EN, Sanders ME (1992) Superoxide production by human eosinophils can be inhibited in an agonist-selective manner. Agents Actions 35: 1.PubMedCrossRefGoogle Scholar
  91. 91.
    Kapeller R, Cantley LC (1994) Phosphatidylinositol 3-kinase. BioEssays 16: 565.PubMedCrossRefGoogle Scholar
  92. 92.
    Nishizuka Y (1988) The molecular heterogeneity of protein kinase C and its implications for cellular regulation. Nature 334: 661.PubMedCrossRefGoogle Scholar
  93. 93.
    Bell RM, Bums, DJ (1991) Lipid activation of protein kinase C. J Biol Chem 266: 4641.Google Scholar
  94. 94.
    Pontremoli S, Melloni E, Sparatore B, Michetti M, Salamino F and Horecker BL, (1990) Isozymes of protein kinase C in human neutrophils and their modification by two endogenous proteinases. J Biol Chem 265: 706.PubMedGoogle Scholar
  95. 95.
    Stasia MJ, Strulovici B, Daniel-Issakani S, Pilosin JM, Dianoux AC, Chambaz E, Vignais PV (1990) Immunocharacterization of 13- and Ç-subspecies of protein kinase C in bovine neutrophils. FEBS Lett 274: 61.PubMedCrossRefGoogle Scholar
  96. 96.
    Smallwood JI, Malawista SE (1992) Protein kinase C isoforms in human neutrophil cytoplasts. J Leukocyte Biol 51: 84.PubMedGoogle Scholar
  97. 97.
    Bates ME, Bertics PJ, Calhoun WJ, Busse WW (1993) Increased protein kinase C activity in low density eosinophils. J Immunol 150: 4486.PubMedGoogle Scholar
  98. 98.
    Dobrina A, Menegazzi R, Carlos TM, Narden E, Cramer R, Zacchi T, Harlan JM, Patricia P (1991) Mechanisms of eosinophil adherence to cultured vascular endothelial cells. J Clin Invest 88: 20.PubMedCrossRefGoogle Scholar
  99. 99.
    Sedgwick JB, Geiger KM, Busse WW (1990) Superoxide generation by hypodense eosinophils from patients with asthma. Am Rev Respir Dis 142: 120.PubMedGoogle Scholar
  100. 100.
    Egesten A, Gullberg U, Olsson I, Richter J (1993) Phorbol ester-induced degranulation in adherent human eosinophil granulocytes is dependent on CD11/CD18 leukocyte integrins. J Leukocyte Biol 53: 287.PubMedGoogle Scholar
  101. 101.
    Rabe KF, Giembycz MA, Dent G, Barnes PJ (1992) Activation of guinea pig eosinophil respiratory burst by leukotriene B4; role of protein kinase C. Fund Clin Pharmacol 6: 353.CrossRefGoogle Scholar
  102. 102.
    Kita H, Horie S, Okubo Y, Weiler D, Gleich GJ (1993) Pharmacologic modulation of eosinophil degranulation. J Allergy Clin Immunol 91: 332.Google Scholar
  103. 103.
    Yukawa T, Ukena D, Kroegel C, Chanez P, Dent G, Chung KF, Branes PJ (1990) Beta2-adrenergic receptors on eosinophils. Binding and functional studies. Am Rev Respir Dis 141: 1446.Google Scholar
  104. 104.
    Souness JE, Carter CM, Diocee BK, Hassall GA, Wood LJ, Turner NC (1991) Characterization of guinea-pig eosinophil phosphodiesterase activity. Assessment of its involvement in regulating superoxide generation. Biochem Pharmacol 42: 937.Google Scholar
  105. 105.
    Rabe KF, Giembycz MA, Dent G, Evans PM, Barnes PJ (1991) ß2-adrenoceptor agonists and respiratory burst activity in guinea-pig and human eosinophils. Fund Clin Pharmacol 5: 402.Google Scholar
  106. 106.
    Munoz NM, Vita AJ, Neeley SP, McAllister K, Spaethe SM, White SR, Leff AR (1994) Beta adrenergic modulation of formyl-methionyl-leucyl-phenylalanine-stimulated secretion of eosinophil peroxidase and leukotriene C4. J Phannacol Exp Ther 268: 139.Google Scholar
  107. 107.
    Nicholson CD, Challiss RAJ, Shahid M (1991) Differential modulation of tissue function and therapeutic potentials of selective inhibitors of cyclic nucleotide phosphodiesterase isoenzymes. Trends Pharmacol Sci 12: 19.PubMedCrossRefGoogle Scholar
  108. 108.
    Dent G, Giembycz MA, Rabe KF, Barnes PJ (1991) Inhibition of eosinophil cyclic nucleotide PDE activity and opsonized zymosan-stimulated respiratory burst by “type IV”-selective PDE inhibitor. Br J Pharmacol 103: 1339.PubMedCrossRefGoogle Scholar
  109. 109.
    Yukawa T, Kroegel C, Dent G, Chanez P, Ukena D, Barnes PJ (1989) Effect of theophylline and adenosine on eosinophil function. Am Rev Respir Dis 140: 327.PubMedCrossRefGoogle Scholar
  110. 110.
    Cassel D, Selinger Z (1997) Mechanism of adenylate cylase activation by cholera toxin: inhibition of GTP hydrolysis at the regulatory site. Proc Natl Acad Sci USA 74: 3307.CrossRefGoogle Scholar
  111. 111.
    Chihara J, et al. (1990) Characterization of a receptor for interleukin 5 on human eosinophils: Variable expression and induction by granulocyte-macrophage colony-stimulating factor. J Exp Med 172: 1347.PubMedCrossRefGoogle Scholar
  112. 112.
    Lopez AF, Eglinton JM, Gillis D, et al. (1989) Reciprocal inhibition of binding between interleukin 3 and granulocyte-macrophage colony-stimulating factor to human eosinophils. Proc Natl Acad Sci USA 86: 7022.PubMedCrossRefGoogle Scholar
  113. 113.
    Gearing DP, et al. (1989) Expression cloning of a receptor for human granulocyte-macrophage colony-stimulating factor. EMBO J 8: 3667.PubMedGoogle Scholar
  114. 114.
    Kitamura T, et al. (1991) Expression cloning of the human IL-3 receptor cDNA reveals a shared ß subunit for the human IL-3 and GM-CSF receptors. Cell 66: 1165.PubMedCrossRefGoogle Scholar
  115. 115.
    Murata Y, et al. (1992) Molecular cloning and expression of the human interleukin 5 receptor. J Exp Med 175: 341.PubMedCrossRefGoogle Scholar
  116. 116.
    Tavernier J, et al. (1991) A human high affinity interleukin-5 receptor, ILSR, is composed of an IL5specific alpha chain and a beta chain shared with the receptor for GM-CSF. Cell 66: 1175.PubMedCrossRefGoogle Scholar
  117. 117.
    Hayashida K, Kitamura T, Gorman DM, et al. (1990) Molecular cloning of a second subunit of the receptor for human granulocyte-macrophage colony-stimulating factor (GM-CSF): reconstitution of a high-affinity GM-CSF receptor. Proc Natl Acad Sci USA 87: 9655.PubMedCrossRefGoogle Scholar
  118. 118.
    Lopez AF, et al. (1992) GM-CSF, IL-3 and IL-5: cross-competition on human haemopoietic cells. Immunol Today 13: 495.PubMedCrossRefGoogle Scholar
  119. 119.
    Weiss M, Yokoyama C, Shikama Y, Naugle C, Druker B, Sieff CA (1993) Human granulocyte-macrophage colony-stimulating factor receptor signal transduction requires the proximal cytoplasmic domains of the alpha and beta subunit. Blood 82: 3298.PubMedGoogle Scholar
  120. 120.
    Takaki S, Kanazawa H, Shiiba M, Takatsu K (1994) A critical cytoplasmic domain of the interleukin-5 (IL-5) receptor a chain and its function in IL-5 mediated growth signal transduction. Mol Cell Biol 14: 7404.PubMedGoogle Scholar
  121. 121.
    Polotskaya A, Zhao Y, Lilly MB, Kraft AS (1994) Mapping the intracytoplasmic regions of the alpha granulocyte-macrophage colony-stimulating factor receptor necessary for cell growth regulation. J Biol Chem 269: 14, 607.Google Scholar
  122. 122.
    Sun Z, Yergeau DA, Tuypens T, Tavernier J, Paul CC, Baumann MA, Tenen DG, Ackerman SJ (1995) Identification and characterization of a functional promotor region in the human eosinophil IL-5 receptor a subunit gene. J Biol Chem 270: 1462.PubMedCrossRefGoogle Scholar
  123. 123.
    Gomolin HI, Yamaguchi Y, Paulpillai AV, Dvorak LA, Ackerman SJ, Tenen DG (1983) Human eosinophil Charcot-Leyden crystal protein: cloning and characterization of a lysophospholipase gene promoter. Blood 82: 1868.Google Scholar
  124. 124.
    Zon LI, Yamaguchi Y, Yee K, Albee EA, Kimura A, Bennett JC, Orkin SH, Ackerman SJ (1993) Expression of mRNA for the GATA-binding proteins in human eosinophils and basophils: potential role in gene transcription. Blood 81: 3234.PubMedGoogle Scholar
  125. 125.
    Gomez Cambronero J, Yamazaki M, Metwally F, Molski TF, Bonak VA, Huang CK, Becker EL, Sha’afi RI (1989) Granulocyte-macrophage colony-stimulating factor and human neutrophils: role of guanine nucleotide regulatory proteins. Proc Natl Acad Sci USA 86: 3569.CrossRefGoogle Scholar
  126. 126.
    Koyasu S, Tojo A, Miyajima A, Akiyama T, Kasuga M, Urabe A, Schreur J, Arai KI, Takaku F, Yahana I (1987) Interleukin 3-specific tyrosine phosphorylation of a membrane glycoprotein of Mr 150,000 in multi-factor-dependent myeloid cell line. EMBO J 6: 3979.PubMedGoogle Scholar
  127. 127.
    Sorensen PHB, Mui ALF, Murthy SC, Krystal G (1989) Interleukin-3, GM-CSF and TPA induce distinct phosphorylation events in an interleukin 3-dependent multipotential cell line. Blood 73: 406.PubMedGoogle Scholar
  128. 128.
    Murata Y, Yamaguchi N, Hitoshi Y, Tominaga A, Takatsu K (1990) Interleukin 5 and interleukin 3 induce serine and tyrosine phosphorylation of several cellular proteins in an interleukin 5-dependent cell line. Biochem Biophys Res Commun 173: 1102.PubMedCrossRefGoogle Scholar
  129. 129.
    Torigoe T, O’Connor R, Santoli D, Reed JC (1992) Interleukin-3 regulates the activity of the LYN protein-tyrosine kinase in myeloid-committed leukemic cell lines. Blood 80: 617.PubMedGoogle Scholar
  130. 130.
    Corey S, Eguinoa A, Puyana-Theall K, Bolen JB, Cantley L, Mollinedo F, Jackson TR, Hawkins PT, Stephens LR (1993) Granulocyte macrophage-colony stimulating factor stimulates both association and activation of phosphoinositide 3OH-kinase and src-related tyrosine kinase(s) in human myeloid derived cells. EMBO J 12: 2681.PubMedGoogle Scholar
  131. 131.
    Linnekin D, Howard OMZ, Park L, Farrar W, Ferris D, Longo DL (1994) Hck expression correlates with granulocyte-macrophage colony-stimulating factor induced proliferation in HL-60 cells. Blood 84: 94.PubMedGoogle Scholar
  132. 132.
    Sato S, Katagiri T, Takaki S, Kikuchi Y, Hitoshi Y, Yonehara S, Tsukada S, Kitamura D, Watanabe T, Witte O, Takatsu K (1994) IL-5 receptor-mediated tyrosine phosphorylation of SH2/SH3-containing proteins and activation of Bruton’s tyrosine kinase and Janus 2 kinases. J Exp Med 180: 2101.PubMedCrossRefGoogle Scholar
  133. 133.
    Mano H, Yamashita Y, Sato K, Yazaki Y, Hirai H (1995) Tec protein-tyrosine kinase is involved in interleukin-3 signaling pathway. Blood 85: 343.PubMedGoogle Scholar
  134. 134.
    Hanazono Y, Chiba S, Sasaki K, Mano H, Miyajima A, Arai KI, Yazaki Y, Hirai H (1993) c-fps/fes protein-tyrosine kinase is implicated in a signaling pathway triggered by granulocyte-macrophage colony-stimulating factor and interleukin-3. EMBO J 12: 1641.Google Scholar
  135. 135.
    Silvennoninen O, Witthuhn BA, Quelle FW, Cleveland JL, Yi T, Ihle JN (1993) Structure of the murine JAK2 protein tyrosine kinase and its role in interleukin 3 signal transduction. Proc Natl Acad Sci USA 90: 8429.CrossRefGoogle Scholar
  136. 136.
    Quelle FW, Sato N, Witthuhn BA, Inhom RC, Eder M, Miyajima A, Griffin JD, Ihle JN (1994) JAK2 associates with the beta c chain of the receptor for granulocyte-macrophage colony-stimulating factor, and its activation requires the membrane-proximal region. Mol Cell Biol 14: 4335.PubMedGoogle Scholar
  137. 137.
    van der Bruggen T, Kok PTM, Raaijmakers JAM, Verhoeven AJ, Kessels RGC, Lammers JWJ, Koenderman L (1993) Cytokine priming of the respiratory burst in human eosinophils is Cat+ independent and accompanied by induction of tyrosine kinase activity. J Leukocyte Biol 53: 347.PubMedGoogle Scholar
  138. 138.
    Mire-Sluis A, Page LA, Wadhwa M, Thorpe R (1995) Evidence for a signaling role for the a chains of granulocyte-macrophage colony-stimulating factor (GM-CSF), interleukin-3 (IL-3), and IL-5 receptor: divergent signaling pathways between GM-CSF/IL-3 and IL-5. Blood 86: 2679.PubMedGoogle Scholar
  139. 139.
    Linnekin D, Mou SM, Greer P, Longo DL, Ferris DK (1995) Phosphorylation of a fes-related protein in response to granulocyte-macrophage colony-stimulating factor. J Biol Chem 270: 4950.PubMedCrossRefGoogle Scholar
  140. 140.
    Pazdrak K, Schreiber D, Forsythe P, Justement L, Alam R (1995) The intracellular signal transduction mechanisms of interleukin 5 in eosinophils: the involvement of lyn tyrosine kinase and the ras-raf-MEKmicrotubulus-associated protein kinase pathway. J Exp Med 181: 1827.PubMedCrossRefGoogle Scholar
  141. 141.
    van der Bruggen T, Caldenhoven E, Kanters D, Coffer P, Raaijmakers JAM, Lammers JWJ, Koenderman L (1995) IL-5 signaling in human eosinophils involves JAK2 tyrosine kinase and Statla. Blood 85: 1442.PubMedGoogle Scholar
  142. 142.
    Pazdrak K, Stafford S, Alam R (1995) The activation of the JAK-Stati signaling pathway by IL-5 in eosinophils. J Immunol 155: 397.PubMedGoogle Scholar
  143. 143.
    Pazdrak K, Justment L, Alam R (1995) Mechanism of inhibition of eosinophil activation by transforming growth factor-p: Inhibition of Lyn, MAP, Jak2 Kinase and STAT1 nuclear factor. J Immunol 155: 4454.PubMedGoogle Scholar
  144. 144.
    Yousefi S, Green DR, Blaser K, Simon HU (1994) Protein tyrosine phosphorylation regulates apoptosis in human eosinophils and neutrophils. Proc Natl Acad Sci USA 91: 10, 868.Google Scholar
  145. 145.
    Schweizer RC, Kessel-Welmers BAC, Warringa RAJ, Maikoe T, Raaijmakers JAM, Lammers JWJ, Koenderman L (1996) Mechanisms involved in eosinophil migration. Platelet-activating factor-induced chemotaxis and interleukin 5-induced chemokinesis are mediated by different signals. J Leukocyte Biol 59: 347.PubMedGoogle Scholar
  146. 146.
    Satoh T, Nakafuku M, Kaziro Y (1992) Function of ras as a molecular switch in signal transduction. J Biol Chem 267: 24149.PubMedGoogle Scholar
  147. 147.
    Satoh T, Nakafuku M, Miyajima A, Kaziro Y (1993) Involvement of ras p21 protein in signal-transduction pathways from interleukin 2, interleukin 3, and granulocyte/macrophage colony stimulating factor, but not from interleukin 4. Proc Natl Acad Sci USA 88: 3314.CrossRefGoogle Scholar
  148. 148.
    Cutler RL, Liu L, Damen JE, Krystal G (1993) Multiple cytokines induce the tyrosine phosphorylation of Shc and its association with Grb2 in hemopoietic cells. J Biol Chem 268: 21463.PubMedGoogle Scholar
  149. 149.
    Welhaum MJ, Duronio V, Lislie KB, Bowtell D, Schrader JW (1994) Multiple hemopoietins, with the exception of interleukin-4, induce modification of Shc and mSosl, but not their translocation. J Biol Chem 269:21,165:Google Scholar
  150. 150.
    Matsuguchi T, Salgia R, Hallek M, Eder M, Druker B, Ernst TJ, Griffin JD (1994) Shc phosphorylation in myeloid cells is regulated by granulocyte macrophage colony-stimulating factor, interleukin-3, and steel factor and is constitutively increased by p210 BCR/ABL. J Biol Chem 269: 5016.PubMedGoogle Scholar
  151. 151.
    Liu L, Damen JE, Cutler RL, Krystal G (1994) Multiple cytokines stimulate the binding of a common 145-kilodalton protein to Shc at the Grb2 recognition site of Shc. Mol Cell Biol 14: 6926.PubMedGoogle Scholar
  152. 152.
    Lanfrancone L, Pelicci G, Brizzi MF, Arouica MG, Carciani C, Giuli S, Pegoraro L, Pawson T, Pelicci PG (1995) Overexpression of she proteins potentiates the proliferative response to the granulocyte-macrophage colony-stimulating factor and recruitment of Grb2/Sos and Grb2/p140 complexes to the (3 receptor subunit. Oncogene 10: 907.PubMedGoogle Scholar
  153. 153.
    Gulbins E, Coggeshall KM, Baier G, Katzav S, Burn P, Atlman A (1993) Tyrosine kinase-stimulated guanine nucleotide exchange activity of Vav in T cell activation. Science 260: 822.PubMedCrossRefGoogle Scholar
  154. 154.
    Carroll MP, Clark Lewis I, Rapp UR, May WS (1990) Interleukin-3 and granulocyte-macrophage colony-stimulating factor mediate rapid phosphorylation and activation of cytosolic c-raf. J Biol Chem 265: 19, 812.Google Scholar
  155. 155.
    Thompson HL, Marshall CJ, Saklatvala J (1994) Characterization of two different forms of mitogenactivated protein kinase induced in polymorphonuclear leukocytes following stimulation by N-formylmethionyl-leucyl-phenylalaine or granulocyte-macrophage colony-stimulating factor. J Biol Chem 269: 9486.PubMedGoogle Scholar
  156. 156.
    Welham MJ, Duronio V, Sanghera JS, Peleshi SL, MA Shrader (1992) Multiple hemopoietic growth factors stimulate activation of mitogen-activated protein kinase family members. J Immunol 149: 1683.PubMedGoogle Scholar
  157. 157.
    Ahlers A, Engel K, Scott C, Gaestel M, Herrmann F, Brach MA (1994) Interleukin-3 and granulocyte-macrophage colony-stimulating factor induce activation of the MAPKAP kinase 2 resulting in in vitro serine phosphorylation of the small heat shock protein (Hsap 27). Blood 83: 1791.Google Scholar
  158. 158.
    Satoh N, Sakamaki K, Terada N, Arai K, Miyajima A (1993) Signal transduction by the high-affinity GM-CSF receptor: two distinct cytoplasmic regions of the common beta subunit responsible for different signaling. EMBO J 12: 4181.Google Scholar
  159. 159.
    Darnell JE Jr, Kerr IM, Stark GR (1994) Jak-stat pathways and transcriptional activation in response to IFNs and other extracellular signaling proteins. Science 264: 1415.PubMedCrossRefGoogle Scholar
  160. 160.
    Ihle JN, Kerr IM (1995) JAKs and Stats in signaling by the cytokine receptor superfamily. Trends Genetics 11: 69.CrossRefGoogle Scholar
  161. 161.
    Lanier AC, David M, Feldman GM, Igarashi K, Hackett RH, Webb DSA, Sweitzer SM, Petricoin EF III, Finbloom DS (1993) Tyrosine phosphorylation of DNA binding proteins by multiple cytokines. Science 261: 1730.CrossRefGoogle Scholar
  162. 162.
    Lamb P, Kessler LV, Suto C, Levy DE, Seidel HM, Stein RB, Rosen J (1994) Rapid activation of proteins that interact with the interferon-y activation site in response to multiple cytokines. Blood 83: 2063.PubMedGoogle Scholar
  163. 163.
    Mui ALF, Wakao H, O’Farrell AM, Hanada N, Miyajima A (1995) Interleukin-3, granulocyte-macrophage colony stimulating factor and interleukin-5 transduce signals through two STATS homologs. EMBO J 14: 1166.PubMedGoogle Scholar
  164. 164.
    Azam M, Erdjument-Bromage H, Kreider BL, Xia M, Quelle F, Basu R, Saris C, Tempst P, Ihle JN, Schindler C (1995) Interleukin-3 signals through multiple isoforms of StatS. EMBO J 14: 1402.PubMedGoogle Scholar
  165. 165.
    Gouilleux F, Pallard C, Dusanter-Fourt I, Wakao H, Haldosen LA, Norstedt G, Levy D, Groner B (1995) Prolactin, growth hormone, erythropoietin and granulocyte-macrophage colony stimulating factor induce MGF-Stat5 DNA binding activity. EMBO J 14: 2005.Google Scholar
  166. 166.
    Quelle FW, Shimoda K, Thierfelder W, Fisher C, Kim A, Rubin SM, Cleveland JL, Pierce JH, Keegan AD, Nelms K, Paul WE, Ihle JN (1995) Cloning of murine Stat6 and human Stat6, Stat proteins that are tyrosine phosphorylated in response to IL-4 and IL-13 but are not required for mitogenesis. Mol Cell Biol 15: 3336.PubMedGoogle Scholar
  167. 167.
    Caldenhoven E, van Dijk T, Raaijmakers JAM, Lammers JWJ, Koenderman L, de Groot RP (1995) Activation of the Stat3/APRF transcription factor by interleukin-5. J Biol Chem 270: 25, 778.Google Scholar
  168. 168.
    Matsuda T, Hirano T (1994) Association of p72 tyrosine kinase with Stat factors and its activation by interleukin-3, interleukin-6, and granulocyte colony-stimulating factor. Blood 83: 3457.PubMedGoogle Scholar
  169. 169.
    Conscience JF, Verrier B, Martin G (1994) Interleukin-3-dependent expression of the c-myc and c-fos proto-oncogene in hemopoietic cell lines. EMBO J 5: 317.Google Scholar
  170. 170.
    Lilly M, Le T, Holland P, Hendrickson SL (1992) Sustained expression of the pim-1 kinase is specifically induced in myeloid cells by cytokines whose receptors are structurally related. Oncogene 7: 727.PubMedGoogle Scholar
  171. 171.
    Kitamura D, Kaneko H, Miyagoe Y, Ariyasu T, Watanabe T (1989) Isolation and characterization of a novel human gene expressed specifically in the cells of hematopoietic lineage. Nucleic Acid Res 17: 9367.PubMedGoogle Scholar
  172. 172.
    Sakamoto KM, Fraser JK, Lee HJ, Lehman E, Gasson JC (1994) Granulocyte-macrophage colony-stimulating factor and interleukin-3 signaling pathways converge on the CREB-binding site in the human egr-1 promoter. Mol Cell Biol 14: 5975.PubMedCrossRefGoogle Scholar
  173. 173.
    Clark EA, Grugge JS (1995) Integrins and signal transduction pathways: the road taken. Science 268: 233.PubMedCrossRefGoogle Scholar
  174. 174.
    Zhou MJ, Todd RF, van der Winkel JGJ, Petty HR (1993) Cocapping of the leukoadhesion molecules complement receptor type 3 and lymphocyte function-associated antigen-1 with Fcy receptor III on human neutrophils. J Immunol 150: 3030.PubMedGoogle Scholar
  175. 175.
    Petty HR, Todd RF III (1993) Receptor-receptor interactions of complement receptor type 3 in neutrophil membranes. J Leukocyte Biol 54: 492.PubMedGoogle Scholar
  176. 176.
    Schlaepfer DD, Hanks SK, Hunter T, van der Geer P (1994) Integrin-mediated signal transduction linked to ras pathway by grb2 binding to focal adhesion kinase. Nature 372: 786.PubMedGoogle Scholar
  177. 177.
    Chen HC, Guan JL (1994) Association of focal adhesion kinase with its potential substrate phosphatidylinositol 3-kinase. Proc Natl Acad Sci USA 91: 10, 148.CrossRefGoogle Scholar
  178. 178.
    Petruzzelli L, Takami M, Herrera R (1996) Adhesion through the interaction of lymphocyte function-associated antigen-1 with intracellular adhesion molecule-1 induces tyrosine phosphorylation of p130`a’ ant its association with c-CrkII. J Biol Chem 271: 7796.PubMedCrossRefGoogle Scholar
  179. 179.
    Berton G, Fumagalli L, Laudanna C, Sorio C (1993) 132 integrin-dependent protein tyrosine phosphorylation and activation of the FGR protein tyrosine kinase in human neutrophils. J Cell Biol 126: 1111.Google Scholar
  180. 180.
    Kato M, Abraham RT, Gleich GJ, Kita H (1996) Cross-linking and clustering of Mac-1 (4M132) molecules induces activation and degranulation of human eosinophils. Am J Respir Crit Care Med 153: A58.Google Scholar
  181. 181.
    Kato M, Abraham RT, Okada S, Kita H (1998) Ligation of the 132 integrin triggers activation and degranulation of human eosinophils. Am J Respir Cell Mol Biol. In press.Google Scholar
  182. 182.
    Kanner SB, Grosmaire LS, Ledbetter JA, Damale NK (1993) 132-integrin LFA-1 signaling through phospholipase C-’y1 activation. Proc Natl Acad Sci USA 90: 7099.Google Scholar
  183. 183.
    Fällman M, Andersson R, Andersson T (1993) Signaling properties of CR3 (CD11b/CD18) and CR1 (CD35) in relation to phagocytosis of complement-opsonized particles. J Immunol 151: 330.PubMedGoogle Scholar
  184. 184.
    Jaconi MEE, Theler JM, Schlegel W, Appel RD, Wright SD, Lew PD (1991) Multiple elevations of cytosolic-free Calf in human neutrophils: initiation by adherence receptors of the integrin family. J Cell Biol 112: 1249.PubMedCrossRefGoogle Scholar
  185. 185.
    Walzog B, Seifert R, Zakrzewicz A, Gaehtgens P, Ley K (1994) Cross-linking of CD18 in human neutrophils induces an increase of intracellular free Cat+ exocytosis of azurophilic granules, qualitative up-regulation of CD18, shedding of L-selectin, and actin polymerization. J Leukocyte Biol 56: 625.PubMedGoogle Scholar
  186. 186.
    Kita H, Horie S, Gleich GJ (1996) Extracellular matrix proteins attenuate activation and degranulation of stimulated eosinophils. J Immunol 156: 1174.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • Hirohito Kita

There are no affiliations available

Personalised recommendations