Skip to main content

Adhesion Receptors in Allergic Disease

  • Chapter
Allergy and Allergic Diseases
  • 143 Accesses

Abstract

The inflammatory process in allergic disease is characterized by a distinct pattern of leukocyte accumulation, in particular increased numbers of activated eosinophils, T-lymphocytes, and monocytes with a relative paucity of neutrophils. Leukocyte migration through endothelium has been shown to be a staged process in which the cells are initially lightly tethered to the endothelium under flow conditions and roll along its surface. This is followed by cell activation, thought to be mediated by a soluble chemotactic stimulus that allows a firmer bond to develop between the leucocyte and the endothelial cell, which results in successful adhesion and transmigration (Fig. 1) (1). The steps occur in series so that each is essential for transmigration to occur. This means that selectivity can be introduced at each of the steps, resulting in considerable diversity in the pattern of signals at any one inflammatory site. It also means that migration can be modulated at each of the steps, offering a range of targets for pharmacological inhibition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Springer TA (1994) Traffic signals for lymphocyte re-circulation and leukocyte emigration: the multistep paradigm. Cell 76: 310.

    Article  Google Scholar 

  2. Bevilacqua MP (1993) Endothelial leukocyte adhesion molecules. Annu Rev Immunol 11: 767–804.

    Article  PubMed  CAS  Google Scholar 

  3. Rosen SD (1993) Cell surface lectins in the immune system. Semin Immunol 5: 237–247.

    Article  PubMed  CAS  Google Scholar 

  4. Bevilacqua MP, Pober JS, Mendrick DL, Cotran RS, Gimbrone MA (1987) Identification of an inducible endothelial leukocyte adhesion molecule ELAM-1. Proc Natl Acad Sci USA 84: 9238–9242.

    Article  PubMed  CAS  Google Scholar 

  5. Geng JG, Bevilacqua MP, Moore KL, McIntyre TM, Prescott SM, Kim JM, Bliss GA, Zimmerman GA, McEver RP (1990) Rapid neutrophil adhesion to activated endothelium mediated by GMP-140. Nature 343: 757–760.

    Article  PubMed  CAS  Google Scholar 

  6. Khew-Goodall Y, Butcher CM, Litwin MS, Newlands S, Korpelainen EI, Noack LM, Berndt MC, Lopez AF, Gamble JR, Vadas MA (1996) Chronic expression of P-selectin on endothelial cells stimulated by the T cell cytokine interleukin 3. Blood 87: 1432–1438.

    PubMed  CAS  Google Scholar 

  7. Yao L, Pan J, Setiadi H, Patel KD, McEver RP (1996) Interleukin 4 or oncostatin induces a prolonged increase in P-selectin mRNA and protein in human endothelial cells. J Exp Med 184: 81–92.

    Article  PubMed  CAS  Google Scholar 

  8. Kishimoto TK, Jutila MA, Butcher EC (1990) Identification of a human peripheral lymph node homing receptor; a rapidly down regulated adhesion molecule. Proc Natl Acad Sci USA 87: 2244–2248.

    Article  PubMed  CAS  Google Scholar 

  9. Springer TA, Lasky LA (1991) Sticky sugars for selectins. Nature 349: 425–434.

    Article  Google Scholar 

  10. Ley K, Tedder TF (1995) Leukocyte interactions with vascular endothelium. New insights into selectin mediated attachment and rolling. J Immunol 155: 525–528.

    Google Scholar 

  11. Frenette PS, Mayadas TN, Rayburn H, Hynes RO, Wagner DD (1996) Susceptibility to infection and altered hematopoiesis in mice deficient in both P and E-selectins. Cell 84: 563–574.

    Article  PubMed  CAS  Google Scholar 

  12. Lasky LA, Singer MS, Dowbenko D, et al. (1992) An endothelial ligand for L-selectin is a novel mucin like molecule. Cell 69: 927–938.

    Article  PubMed  CAS  Google Scholar 

  13. Baumheuter S, Singer MS, Henzel W, Hemmerich S, Renz H, Rosen SD, Lasky LA (1993) Binding of L-selectin to the vascular sialomucin CD34. Science 262: 436–438.

    Article  Google Scholar 

  14. Berg EL, McEvoy LM, Berlin C, Bargatze RF, Butcher EC (1993) L-selectin mediated lymphocyte rolling on MAdCAM-1. Nature 366: 695–698.

    Article  PubMed  CAS  Google Scholar 

  15. Sako D, Chang XJ, Barone KM (1993) Expression cloning of a functional glycoprotein ligand for P-selectin. Cell 75: 1179.

    Article  PubMed  CAS  Google Scholar 

  16. Sako D, Comess KM, Barone KM, Camphausen RT, Cumming DA, Shaw GD (1995) A sulfated peptide segment at the amino terminus of PSGL-1 is critical for P-selectin binding. Cell 83: 323–331.

    Article  PubMed  CAS  Google Scholar 

  17. Berg EL, Yoshin T, Rott LS (1991) The cutaneous lymphocyte antigen is a skin lymphocyte homing receptor for the vascular lectin endothelial cell-leukocyte adhesion molecule 1. J Exp Med 174: 1461–1466.

    Article  PubMed  CAS  Google Scholar 

  18. Alon R, Rossiter H, Wang X, Springer TA, Kupper TS (1994) Distinct cell surface ligands mediate T-lymphocyte attachment and rolling on P and E-selectin under physiological flow. J Cell Biol 127: 1485–1495.

    Article  PubMed  CAS  Google Scholar 

  19. Steegmaler M, Levinovitz A, Isenmann S, Borges E, Lenter M, Kocher HP, Kleuser B, Vestweber D (1995) The E-selectin ligand ESL-1 is a variant of a receptor for fibroblast growth factor. Nature 373: 615–620.

    Article  Google Scholar 

  20. Picker LJ, Warnock RA, Bums AR, Doerschuk CM, Berg EL, Butcher EC (1991) The neutrophil selectin LECAM-1 presents carbohydrate ligands to the vascular selectins ELAM-1 and GMP-140. Cell 66: 921–933.

    Article  PubMed  CAS  Google Scholar 

  21. Hynes RO (1992) Integrins: versatility, modulation and signalling in cell adhesion. Cell 69: 11–25.

    Article  PubMed  CAS  Google Scholar 

  22. Hogg H, Berlin C (1995) Structure and function of adhesion receptors in leukocyte trafficking. Immunol Today 16: 327–330.

    Article  PubMed  CAS  Google Scholar 

  23. Krensky AM, Sanchez-Madrid F, Robbins E, Nagy J, Springer TA, Burakoff SJ (1983) The functional significance, distribution and structure of LFA-1, LFA-2, and LFA-3: cell surface antigens associated with CTL-target interactions. J Immunol 131: 611–616.

    PubMed  CAS  Google Scholar 

  24. Arnaout MA, Colten HR (1984) Complement C3 receptors: structure and function. Mol Immunol 21: 1191–1199.

    Article  PubMed  CAS  Google Scholar 

  25. Anderson DC, Springer TA (1987) Leukocyte adhesion deficiency: an inherited defect in the Mac-1, LFA-1 and p150,95 glycoproteins. Annu Rev Med 38: 175–194.

    Article  PubMed  CAS  Google Scholar 

  26. Beller DI, Springer TA, Schreiber RD (1982) Anti-Mac-1 selectivity inhibits the mouse and human type three complement receptor. J Exp Med 156: 1006–1009.

    Article  Google Scholar 

  27. Russell DG, Wright SD (1988) Complement receptor type 3 (CR3) binds to an arg-gly-asp containing region of the major surface glycoprotein, gp63, of Leishmania promastigotes. J Exp Med 168: 279–292.

    Article  PubMed  CAS  Google Scholar 

  28. Anderson DC, Miller LJ, Schmalsteig FC, Rothlein R, Springer TA (1986) Contributions of the Mac-1 glycoprotein family to adherence-dependent granulocytic functions: structure-function assessments employing sub-unit specific monoclonal antibodies. J Immunol 137: 15–27.

    PubMed  CAS  Google Scholar 

  29. Wallis WJ, Hickstein DD, Schwartz BR, June CH, Ochs HD, Beatty PG, Klebanoff SJ, Harlan JM (1986) Monoclonal antibody-defined functional epitopes on the adhesion promoting glycoprotein complex (Cdw18) of human neutrophils. Blood 67: 1007–1013.

    PubMed  CAS  Google Scholar 

  30. Savill J, Dransfield I, Hogg N, Haslett C (1990) Vitronectin receptor-mediated phagocytosis of cells undergoing apoptosis. Nature (Lond) 343: 170–173.

    Article  CAS  Google Scholar 

  31. Elices MJ, Osbourn L, Takada Y, et al. (1990) VCAM-1 on activated endothelium interacts with the leukocyte integrin VLA-4 at a site distinct from the VLA-4/fibronectin binding site. Cell 60: 577–584.

    Article  PubMed  CAS  Google Scholar 

  32. Cepek KL, Shaw SK, Parker CM, Russell GJ, Morrow JS, Rimm DL, Brenner MB (1994) Adhesion between epithelial cells and T lymphocytes mediated by E-cadherin and the aE137 integrin. Nature 372: 190–193.

    Article  PubMed  CAS  Google Scholar 

  33. Erle DJ, Briskin MJ, Butcher ED, Garcia-Pardo A, Lazarovits AI, Tidswell M (1994) Expression and function of the MAdCAM-1 receptor integrin a4/ß7 on human leukocytes. J Immunol 153: 517–528.

    PubMed  CAS  Google Scholar 

  34. Berlin C, Bargatze RF, Campbell JJ, von Adrian UH, Szabo MC, Hasslen SR, Nelson EL, Berg EL, Ferlandsen SL, Butcher EC (1995) œ4 integrin mediates lymphocyte attachment and rolling under physiologic flow. Cell 80: 413–422.

    Google Scholar 

  35. Kassner AR, Carr MW, Finger EB, Hemler ME, Springer TA (1995) The integrin VLA-4 supports tethering and rolling in flow on VCAM-1. J Cell Biol 128: 1243–1253.

    Article  PubMed  Google Scholar 

  36. Dustin ML, Rothlein R, Bhan AK, Dinarello CA, Springer TA (1986) Induction by IL-1 and interferon-gamma: tissue distribution, biochemistry and function of natural adherence molecule (ICAM-1). J Immunol 137: 245–254

    PubMed  CAS  Google Scholar 

  37. Simmons D, Makgoba MW, Seed B (1988) ICAM-1 an adhesion ligand of LFA-1 is homologous to the neural cell adhesion molecule NCAM. Nature 331: 624–627

    Article  PubMed  CAS  Google Scholar 

  38. Makgoba MW, Sanders ME, Ginther GE, et al. (1988) ICAM-1 a ligand for LFA-1 dependent adhesion of B, T and myeloid cells. Nature 331: 86–88.

    Article  PubMed  CAS  Google Scholar 

  39. Diamond MS, Staunton DE, de Fougerolles AR, Stacker SA, Garcia-Aguilar J, Hibbs ML, Springer TA (1990) ICAM-1 (CD54): a counter-receptor for Mac-1 (CD11b/CD18). J Cell Biol 111, 3129–3139.

    Article  PubMed  CAS  Google Scholar 

  40. Berendt AR, Simmons DL, Tansy J, Newbold CI, Marsh K (1989) Intercellular adhesion molecule-1 is an endothelial cell adhesion receptor for Plasmodium falciparum. Nature 341: 57–59.

    Article  PubMed  CAS  Google Scholar 

  41. Greve JM, Davies G, Meyer AM, Forte CP, Yost SC, Marlow CW, Kamarck ME, McClelland A (1989) A major human rhinovirus receptor is ICAM-1. Cell 56: 839–847.

    Article  PubMed  CAS  Google Scholar 

  42. Tomassini JE, Graham D, DeWitt CM, Lineberger DW, Rodkey JA, Colonno RJ (1989) cDNA cloning reveals that the major group rhinovirus receptor on HeLa cells is intercellular adhesion molecule-1. Proc Natl Acad Sci USA 86: 4907–4911.

    Google Scholar 

  43. Miller J, Knorr R, Ferrone M, Houdei R, Garcon S, Dustin ML (1995) Intercellular adhesion molecule-1 dimerisation and its consequences for adhesion mediated by lymphocyte function associated-1. J Exp Med 182: 1231–1241

    Article  PubMed  CAS  Google Scholar 

  44. Pober JS, Gimbrone MA Jr, Lapierre LA, Mendrick DL, Fiers W, Rothlein R, Springer TA (1986) Overlapping patterns of activation by human endothelial cells by interleukin-1, tumor necrosis factor and immune interferon. J Immunol 137: 1893–1896.

    PubMed  CAS  Google Scholar 

  45. Staunton DE, Dustin ML, Springer TA (1989) Functional cloning of ICAM-2, a cell adhesion ligand for LFA-1 homologous to ICAM-1. Nature 339: 61–64

    Article  PubMed  CAS  Google Scholar 

  46. de Fougerolles AR, Stacker SA, Schwarting R, Springer TA (1991) Characterisation of ICAM-2 and evidence for a third counter-receptor for LFA-1. J Exp Med 174: 253–267.

    Article  PubMed  Google Scholar 

  47. de Fougerolles AR, Springer TA (1992) Intercellular adhesion molecule 3, a third adhesion counter receptor for lymphocyte function-associated molecule-1 on resting lymphocytes. J Exp Med 175: 185–190.

    Article  PubMed  Google Scholar 

  48. Thornhill MH, Wellicome SM, Mahiouz DL, Lanchbury JS, Kyan-Aung U, Haskard DO (1991) Tumor necrosis factor combines with IL-4 or IFN-a to selectively enhance endothelial cell adhesiveness for T-cells. J Immunol 146: 592.

    PubMed  CAS  Google Scholar 

  49. Bochner BS, Klunk DA, Sterbinsky SA, Coffman RL, Schleimer RP (1995) IL-13 selectively induces vascular cell adhesion molecule-1 expression in human endothelial cells. J Immunol 154: 799–803.

    PubMed  CAS  Google Scholar 

  50. Schwartz BR, Wayner EA, Carlos TM, Ochs HD, Harlan JM (1990) Identification of surface proteins mediating adherence of CD11/18-deficient lymphoblastoid cells to cultured endothelium. J Clin Invest 85: 2019–2022.

    CAS  Google Scholar 

  51. Walsh GM, Hartnell A, Mermod JJ, Kay AB, Wardlaw AJ (1991) Human eosinophil, but not neutrophil adherence to IL-1 stimulated HUVEC is a4b1 (VLA-4) dependent. J Immunol 146: 3419–3423.

    PubMed  CAS  Google Scholar 

  52. Bochner BS, Lusckinskas FW, Gimbrone MA, Newman W, Sterbinsky A, Derse-Anthony CP, Klunk D, Schleimer RP (1991) Adhesion of human basophils and eosinophils to IL-1 activated human vascular endothelial cells: contribution of endothelial cell adhesion molecules. J Exp Med 173: 1552.

    Article  Google Scholar 

  53. Dobrina A, Menegazzi R, Carlos TM, Nardon E, Cramer R, Zacchi T, Harlan JM, Patriarca P (1991) Mechanisms of eosinophil adherence to cultured vascular endothelial cells: eosinophils bind to the cytokine induced endothelial ligand vascular cell adhesion molecule-1 via the very late antigen-4 receptor. J Clin Invest 88: 20.

    Article  PubMed  CAS  Google Scholar 

  54. Weller PF, Rand TH, Golez SE, Chi-Rosso G, Lobb RR (1991) Human eosinophil adherence to vascular endothelium mediated by binding to vascular cell adhesion molecule-1 and endothelial leukocyte adhesion molecule-1. Proc Natl Acad Sci USA 88: 7430.

    Article  PubMed  CAS  Google Scholar 

  55. Campanero MR, Puliod R, Ursa MA, Rodriguez-Moya M, de Landazuri MO, Sanchez-Madrid F (1990) An alternative leukocyte adhesion mechanism, LFA-1/ICAM-1 independent, triggered through the human VLA-4 integrin. J Cell Biol 110: 2157–2165.

    Article  PubMed  CAS  Google Scholar 

  56. Hemler ME (1988) Adhesive protein receptors on haemopoietic cells. Immunol Today 9: 109–113.

    Article  PubMed  CAS  Google Scholar 

  57. Shyjan AM, Bertagnolli M, Kenney CJ, Briskin Mi (1996) Human mucosal addressin cell adhesion molecule-1 (MAdCAM-1) demonstrates structural and functional similarities to the a4(37-integrin binding domains of murine MAdCAM-1, but extreme divergence of mucin-like sequences. J Immunol 156: 2851–2857

    PubMed  CAS  Google Scholar 

  58. Berlin C, Berg EL, Briskin MJ, Andrew DP, Kilshaw PJ, Holzman B, Weissman IL, Hamann A, Butcher EC (1993) a4137 integrin mediates lymphocyte binding to the mucosal vascular addressin MAdCAM-1. Cell 74: 185–195.

    Google Scholar 

  59. Newman PJ, Berndt MC, Gorski J, White GC, Lyman S, Paddock C, Muller WA (1990) PECAM-1 (CD31) cloning and relation to adhesion molecules of the immunoglobulin gene superfamily. Science 247: 1219–1222

    Article  PubMed  CAS  Google Scholar 

  60. Muller WA, Ratti CM, McDonnell SL, Cohn ZA (1989) A human endothelial cell-restricted, externally disposed plasmalemmal protein enriched in intercellular junctions. J Exp Med 170: 399–414.

    Article  PubMed  CAS  Google Scholar 

  61. Liao F, Huynh HK, Eiroa A, Greene T, Polizzi E, Muller WA (1995) Migration of monocytes across endothelium and passage through extracellular matrix involve separate molecular domains of PECAM-1. J Exp Med 182: 1337–1343.

    Article  PubMed  CAS  Google Scholar 

  62. Kyan-Aung U, Haskard DO, Poston RN, Thornhill MH, Lee TH (1991) Endothelial leukocyte adhesion molecule-1 and intercellular adhesion molecule-1 mediated the adhesion of eosinophils to endothelial cells in vitro and are expressed by endothelium in allergic cutaneous inflammation in vivo. J Immunol 146: 521–528.

    PubMed  CAS  Google Scholar 

  63. Leung YM, Pober JS, Cotran RS (1991) Expression of endothelial-leukocyte adhesion molecule-1 in elicited late phase allergic reactions. J Clin Invest 87: 1805–1809.

    CAS  Google Scholar 

  64. Bentley AM, Durham SR, Robinson DS, Menz G, Storz C, Cromwell O, Kay AB, Wardlaw AJ (1993) Expression of endothelial and leukocyte adhesion molecules, intercellular adhesion molecule-1, E-selectin and vascular cell adhesion molecule-1 in the bronchial mucosa in steady state and allergen induced asthma. J Allergy Clin Immunol 92: 857–868.

    Article  PubMed  CAS  Google Scholar 

  65. Montefort S, Gratziou C, Goulding D, Polosa R, Haskard DO, Howart PH, Holgate ST, Caroll M (1993) Upregulation of leukocyte-endothelial cell adhesion molecules 6 hours after local allergen challenge of sensitized asthmatic airways. J Clin Invest 93: 1411–1421.

    Article  Google Scholar 

  66. Murphy G, Leventhal L, Zweiman B (1994) Endothelial CD62 and E-selectin expression in developing late-phase IgE mediated skin reactions. J Allergy Clin Immunol 93: 183 (abstract).

    Google Scholar 

  67. Lee B-J, Nacleiro RM, Bochner BS, Taylor RM, Lim MC, Baroody FM (1994) Nasal challenge with allergen upregulates the local expression of vascular endothelial adhesion molecules. J Allergy Clin Immunol 94: 1006–1016.

    Article  PubMed  CAS  Google Scholar 

  68. Montefort S, Roche WR, Howarth PH, Djukanovic R, Gratziou C, Carroll M, Smith L, Britten KM, Haskard D, Lee TH, et al. (1992) Intercellular adhesion molecule-1 (ICAM-1) and endothelial leucocyte adhesion molecule-1 (ELAM-1) expression in the bronchial mucosa of normals and asthmatic subjects. Eur Respir J 5: 815–823.

    PubMed  CAS  Google Scholar 

  69. Ohkawara Y, Yamauchi K, Maruyama N, Hoshi H, Ohno I, Honma M, Tanno Y, Tamura G, Shirato K, Ohtani H (1995) In situ expression of the cell adhesion molecules in bronchial tissues from asthmatics with air flow limitation: in vivo evidence of VCAM-1/VLA-4 interaction in selective eosinophil infiltration. Am J Respir Cell Mol Biol 12: 4–12.

    PubMed  CAS  Google Scholar 

  70. Gosset P, Tillie-Leblond I, Janin A, Marquette CH, Copin MC, Wallaert B, Tonnel AB (1995) Expression of E-selectin, ICAM-1 and VCAM-1 on bronchial biopsies from allergic and non-allergic asthmatic patients. Int Arch Allergy Immunol 106: 69–77.

    Article  PubMed  CAS  Google Scholar 

  71. Fukuda T, Fukushima Y, Numao T, Ando N, Arima M, Nakajima H, Sagara H, Adachi T, Motojima S, Makino S (1996) Role of interleukin-4 and vascular cell adhesion molecule-1 in selective eosinophil migration into the airways in allergic asthma. Am J Respir Cell Mol Biol 14: 84–94.

    PubMed  CAS  Google Scholar 

  72. Montefort S, Feather IH, Wilson SJ (1992) The expression of leukocyte endothelial adhesion molecules is increased in perennial allergic rhinitis. Am J Respir Cell Mol Biol 7: 393–398.

    PubMed  CAS  Google Scholar 

  73. Symon FA, Walsh GM, Watson SR, Wardlaw M (1994) Eosinophil adhesion to nasal polyp endothelium is P-selectin dependent. J Exp Med 180: 371–376.

    Article  PubMed  CAS  Google Scholar 

  74. Jahnsen FL, Haraldsen G, Aanesen JP, Haye R, Brandtzeg P (1995) Eosinophil infiltration is related to increased expression of vascular cell adhesion molecule-1 in nasal polyps. Am J Respir Cell Mol Biol 12: 624–632.

    PubMed  CAS  Google Scholar 

  75. Wakita H, Sakamoto T, Tokura Y, Takigawa W (1994) E-selectin and vascular cell adhesion molecule 1 as critical adhesion molecules for infiltration of T lymphocytes and eosinophils in atopic dermatitis. J Cutan Pathol 21: 33–99.

    Article  PubMed  CAS  Google Scholar 

  76. Maestrelli P, diStefano A, Occari P, Turato G, Milani G, Pivirotto F, Mapp CE, Fabbri LM, Saetta M (1995) Cytokines in the airway mucosa of subjects with asthma induced by toluene diisocyanate. Am J Respir Crit Care Med 151: 607–612.

    PubMed  CAS  Google Scholar 

  77. Smith CH, Barker JNWN, Morris RW, MacDonald DM, Lee TH (1993) Neuropeptides induce rapid expression of endothelial cell adhesion molecules and elicit granulocytic infiltration in human skin. J Immunol 151: 3274–82.

    PubMed  CAS  Google Scholar 

  78. Vignola AM, Campbell AM, Chanez P, Lacoste P, Michel FB, Godard P, Bousquet J (1993) HLA-DR and ICAM-1 expression on bronchial epithelial cells in asthma and chronic bronchitis. Am Rev Respir Dis 147: 529–534.

    PubMed  Google Scholar 

  79. Manolitsas ND, Trigg CJ, McAulay AE, Wang JH, Jordan SE, D’Ardenne Ai, Davies Ri (1994) The expression of intercellular adhesion molecule-1 and the 131-integrins in asthma. Eur Respir J 7: 1439–1444.

    Article  PubMed  CAS  Google Scholar 

  80. Ciprandi G, Pronzato C, Ricca V, Passalacqua G, Bagnasco M, Canonica GW (1994) Allergen specific challenge induces intercellular adhesion molecule-1 (ICAM-1/CD54) expression on nasal epithelial cells in allergic subjects. Relationship with early and late inflammatory phenomena. Am J Respir Crit Care Med 150: 1653–1659.

    Google Scholar 

  81. Ciprandi G, Buscaglia S, Pesce GP, Villaggio B, Bagnesco M, Canonica GW (1993) Allergic subjects express intracellular adhesion molecule 1 (ICAM-i or CD54) on epithelial cells of conjunctiva after allergen challenge. J Allergy Clin Immunol 91: 783–792

    Article  PubMed  CAS  Google Scholar 

  82. Gearing AJ, Newman W (1993) Circulating adhesion molecules in disease. Immunol Today 14: 506–512

    Article  PubMed  CAS  Google Scholar 

  83. Montefort S, Lai CKW, Kapahi P, Leung J, Lai KN, Chan HS, Haskard DO, Howarth PH, Holgate ST (1994) Circulating adhesion molecules in asthma. Am J Respir Crit Care Med 149: 1149–1152.

    PubMed  CAS  Google Scholar 

  84. Kobayashi T, Hashimoto S, Imai K, Amemiya E, Yamaguchi M, Yachi A, Horie T (1994) Elevation of serum soluble intercellular adhesion molecule-1 (sICAM-1) and sE-selectin levels in bronchial asthma. Clin Exp Immunol 96: 110–115.

    Article  PubMed  CAS  Google Scholar 

  85. Koizumi A, Hashimoto S, Kobayashi T, Imai K, Yachi A, Hone T (1995) Elevation of serum soluble vascular cell adhesion molecule-1 (sVCAM-1) levels in bronchial asthma. Clin Exp Immunol 101: 468–473.

    Article  PubMed  CAS  Google Scholar 

  86. Kowalzick L, Kleinheinz A, Neuber K, Weichenthal M, Kohler I, Ring J (1995) Elevated serum levels of soluble adhesion molecules ICAM-1 and ELAM-1 in patients with severe atopic eczema and influence of UVA-1 treatment. Dermatology 190: 14–18.

    Article  PubMed  CAS  Google Scholar 

  87. Georas SN, Liu MC, Newman W, Beall LD, Stealey BA, Bochner BS (1992) Altered adhesion molecule expression and endothelial cell activation accompany the recruitment of human granulocytes to the lung after segmental antigen challenge. Am J Respir Cell Mol Biol 7: 261–269.

    PubMed  CAS  Google Scholar 

  88. Takahashi N, Liu MC, Proud D, Yu, X-Y, Hasegawa S, Spannhake EW (1994) Soluble intercellular adhesion molecule-1 in bronchoalveolar lavage fluid of allergic subjects following segmental antigen challenge. Am J Respir Crit Care Med 150: 704–709.

    PubMed  CAS  Google Scholar 

  89. Zangrilli JG, Shaver JR, Cirelli RA, Cho SK, Garlisi CG, Falcone A, Cuss FM, Fish JE, Peters SP (1995) sVCAM-1 levels after segmental allergen challenge correlates with eosinophil influx, IL-4 and IL-5 production and the late pahse response. Am J Respir Crit Care Med 151: 1346–1353.

    Google Scholar 

  90. Wardlaw AJ, Walsh GM, Symon FA (1994) Mechanisms of eosinophil and basophil migration. Allergy 49: 797–807.

    Article  PubMed  CAS  Google Scholar 

  91. Bochner BS, Schleimer RP (1994) The role of adhesion molecules in human eosinophil and basophil recruitment. J Allergy Clin Immunol 94: 427–438.

    Article  PubMed  CAS  Google Scholar 

  92. Knol EF, Kansas GS, Tedder TF, Schleimer RP, Bochner BS (1993) Human eosinophils use L-selectin to bind to endothelial cells under non static conditions. J Allergy Clin Immunol 91: 334.

    Google Scholar 

  93. Smith JB, Kunjummen RD, Kishimoto TK, Anderson DC (1992) Expression and regulation of L-selectin on eosinophils from human adults and neonates. Pediatr Res 32: 465–471.

    Article  PubMed  CAS  Google Scholar 

  94. Georas SN, Liu MC, Newman W, Beall LD, Stealey BA, Bochner BS (1992) Altered adhesion molecule expression and endothelial cell activation accompany the recruitment of human granulocytes to the lung after segmental antigen challenge. Am J Respir Cell Mol Biol 7: 261–269.

    PubMed  CAS  Google Scholar 

  95. Wein M, Sterbinsky SA, Bickel CA, Schleimer RP, Bochner BS (1995) Comparison of human eosinophil and neutrophil ligands for P-selectin: Ligands for P-selectin differ from those for E-selectin. Am J Respir Cell Mol Biol 12: 315–319.

    Google Scholar 

  96. Bochner BS, Sterbinsky SA, Bickel CA, Werfel S, Wein M, Newman W (1994) Differences between human eosinophils and neutrophils in the function and expression of sialic acid containing counter-ligands for E-selectin. J Immunol 152: 774–782.

    PubMed  CAS  Google Scholar 

  97. Symon FA, Lawrence MB, Williamson M, Walsh GM, Watson SR, Wardlaw AJ (1996) Characterisation of the eosinophil P-selectin ligand. J Immunol 157: 1711–1719.

    PubMed  CAS  Google Scholar 

  98. Kimani G, Tonnensen MG, Henson PM (1988) Stimulation of eosinophil adherence to human vascular endothelial cell in vitro by platelet activating factor. J Immunol 140: 3161.

    PubMed  CAS  Google Scholar 

  99. Lamas AMC, Mulroney CM, Schleimer RP (1988) Studies of the adhesive interaction between purified human eosinophils and cultured vascular endothelial cells. J Immunol 140: 1500.

    PubMed  CAS  Google Scholar 

  100. Walsh GM, Hartnell A, Wardlaw AJ, Kurihara K, Sanderson CJ, Kay AB (1990) Il-5 enhances the in vitro adhesion of human eosinophils, but not neutrophils in a leucocyte integrin (CD11/18) dependent manner. Immunology 71: 258–265.

    PubMed  CAS  Google Scholar 

  101. Moser R, Fehr J, Olgati L, Bruijnzeel PLB (1992) Migration of primed human eosinophils across cytokine activated endothelial cell monolayers. Blood 79: 2937–2945.

    PubMed  CAS  Google Scholar 

  102. Ebisawa M, Bochner BS, Georas SN, Schleimer RP (1992) Eosinophil transendothelial migration induced by cytokines. Role of the endothelial and eosinophil adhesion molecules in IL-lb induced transendothelial migration. J Immunol 149: 4021–4028.

    Google Scholar 

  103. Schleimer RP, Sterbinsky SA, Kaiser J, Bickel CA, Klunk DA, Tomioka K, Newman W, Luscinskas FW, Gimbrone MA, McIntyre BW, Bochner B (1992) IL-4 induces adherence of human eosinophils and basophils, but not neutrophils to endothelium. Association with expression of VCAM-1. J Immunol 148: 1086–1092.

    PubMed  CAS  Google Scholar 

  104. Hartnell A, Robinson DS, Kay AB, Wardlaw AJ (1993) CD69 is expressed by human eosinophils activated in vivo in asthma and in vitro by cytokines. Immunology 80: 281–286.

    PubMed  CAS  Google Scholar 

  105. Desreumauz P, Janin A, Colomble JF (1992) Interleukin 5 messenger RNA expression by eosinophils in the intestinal mucosa of patients with coeliac disease. J Exp Med 175: 293–296.

    Article  Google Scholar 

  106. Azzawi M, Bradley B, Jeffery PK, Frew A, Wardlaw AJ, Knowles G, Assoufi B, Collins JV, Durham S, Kay AB (1990) Identification of activated T lymphocytes and eosinophils in bronchial biopsies in stable atopic asthma. Am Rev Respir Dis 142: 1407–1413.

    PubMed  CAS  Google Scholar 

  107. Kroegel C, Liu MC, Hubbard WC, Lichenstein LM, Bochner BS (1994) Blood and bronchoalveolar eosinophils in allergic subjects after segemental antigen challenge: surface phenotype, density heterogeneity and prostanoid production J Allergy Clin Immunol 93: 725–734.

    CAS  Google Scholar 

  108. Mengelers HJJ, Kaikoe T, Hooibrink B, et al. (1993) Down modulation of L-selectin expression on eosinophils recovered from bronchoalveolar lavage fluid after allergen provocation. Clin Exp Allergy 23:196–204.

    Article  PubMed  CAS  Google Scholar 

  109. Dri P, Cramer R, Spessotto P, Romano M, Patriarca P (1991) Eosinophil activation on biologic surfaces. J Immunol. 147: 613–620.

    PubMed  CAS  Google Scholar 

  110. Anwar ARE, Cromwell O, Walsh GW, Kay AB, Wardlaw M (1994) Adhesion to fibronectin primes eosinophils via a4/b1. Immunology 82: 222–228.

    PubMed  CAS  Google Scholar 

  111. Neeley SP, Hamann KJ, Dowling T, McAllister KT, White SR, Leff AR (1994) Augmentation of stimulated eosinophil degranulation by VLA-4 (CD49d)-mediated adhesion to fibronectin. Am J Respir Cell Mol Biol 11: 206–213.

    PubMed  CAS  Google Scholar 

  112. Kita H, Hone S, Gleich GJ (1996) Extracellular matrix proteins attenuate activation and degranulation of stimulated eosinophils. J Immunol 156: 1174–1181.

    PubMed  CAS  Google Scholar 

  113. Anwar ARE, Cromwell O, Walsh GM, Kay AB, Wardlaw AJ (1993) Adhesion to fibronectin prolongs eosinophil survival. J Exp Med 177: 839–843.

    Article  PubMed  CAS  Google Scholar 

  114. Walsh GM, Symon FA, Wardlaw M (1995) Human eosinophils preferentially survive on tissue fibronectin compared with plasma fibronectin. Clin Exp Allergy 25: 1128–1136.

    Article  PubMed  CAS  Google Scholar 

  115. Mould AP, Wheldon A, Komoriya EA, Wayner EA, Yamada KM, Humphries MJ (1990) Affinity chromatic isolation of the melanoma adhesion receptor for the IIICS region of fibronectin and its identification as the integrin a4131. J Biol Chem 265: 4020.

    PubMed  CAS  Google Scholar 

  116. Walsh GM, Symon FA, Lazarovits AI, Wardlaw AJ (1996) Integrin a4ß7 mediates human eosinophil interaction with MAdCAM-1, vascular cell adhesion molecules-1 and fibronectin. Immunology 89: 112–119.

    Article  PubMed  CAS  Google Scholar 

  117. Georas SN, McIntyre WB, Ebisawa M, Bednarczyk JL, Sterbinsky SA, Schlemier RP, Bochner BS (1993) Expression of a functional laminin receptor a6131 (very late activation antigen-6) on human eosinophils. Blood 82: 2872–2879.

    PubMed  CAS  Google Scholar 

  118. Tourkin A, Anderson T, Carwile, Le-Roy E, Hoffman S (1993) Eosinophil adhesion and maturation is modulated by laminin. Cell Adhesion Commun 1: 161.

    Article  CAS  Google Scholar 

  119. Walsh GM, Wardlaw AJ (1997) Matrix protein induced eosinophil survival is inhibited by dexamethasone. J Allergy Clin Immunol 100: 208–215.

    Article  PubMed  CAS  Google Scholar 

  120. Jalkanen S, Bargatze RF, de los Toyos JM, Butcher EC (1987) Lymphocyte recognition of high endothelium: antibodies to distinct epitopes of an 85–95 kd glycoprotein antigen differentially inhibit binding to lymph node, mucosal or synovial endothelial cells. J Cell Biol 105: 983–990.

    Article  PubMed  CAS  Google Scholar 

  121. Picker LJ, Kishimoto TK, Smith CW, Warnock RA, Butcher EC (1991) ELAM-1 is an adhesion molecule for skin-horning T cells. Nature 349; 796.

    Article  PubMed  CAS  Google Scholar 

  122. Picker LJ, Martin RJ, Trumble AE, et al. (1994) Control of lymphocyte re-circulation in man: differential expression of homing associated adhesion molecules by memory/effector T cells in pulonary versus cutaneous effector sites. Eur J Immunol 24: 1269–1277.

    Article  PubMed  CAS  Google Scholar 

  123. Abernathy-Carver KJ, Sampson HA, Picker LJ, Leung DYM (1995) Milk-induced eczema is associated with the expansion of T cells expressing cutaneous lymphocyte antigen. J Clin Invest 95: 913–918.

    Article  PubMed  CAS  Google Scholar 

  124. Babi LFS, Picker LJ, Soler MTP (1995) Circulating allergen reactive T cells from patients with atopic dermatitis and allergic contact dermatitis express the skin-selective homing receptor the cutaneous lymphocyte associated antigen ( CLA ). J Exp Med 181: 747–753.

    Article  Google Scholar 

  125. Corrigan CJ, Kay AB (1992) In: Barnes PJ, Rodger IW, Thomson NC, eds. T Lymphocytes Ch. 9. In Asthma: Basic Mechanisms and Clinical Management. Academic Press, U.K. London, pp. 125–142.

    Google Scholar 

  126. Kennedy JD, Hatfield CA, Fidler SF, Winterrowd GE, Haas JV, Chin JE, Richards IM (1995) Phenotypic characterisation of T lymphocytes emigrating into lung tissue and the airway lumen after antigen inhalation in sensitised mice. Am J Respir Cell Mol Biol 12: 613–623.

    PubMed  CAS  Google Scholar 

  127. Columbo M, Bochner BS, Marone G (1995) Human skin mast cells express functional (31 integrins that mediate adhesion to extracellular matrix proteins. J Immunol 154: 6058–6064.

    PubMed  CAS  Google Scholar 

  128. Sperr WR, Agis H, Czerwenka K, Klepetko K, Kubista E, Boltz-Nitulescu G, Lechner K, Valent P (1992) Differential expression of cell surface integrins on human mast cells and human basophils. Ann Hematol 65: 10.

    Article  PubMed  CAS  Google Scholar 

  129. Lavens SE, Goldring K, Thomas LH, Warner JA (1996) Effects of integrin clustering on human lung mast cells and basophils. Am J Respir Cell Mol Biol 14: 95–103.

    PubMed  CAS  Google Scholar 

  130. Sriramarao P, von Adrian UH, Butcher EC, Bourdon MA, Broide DH (1994) L-selectin and very late antigen-4 integrin promote eosinophil rolling at physiological sheer street rate in vivo. J Immunol 153: 4238–4246.

    PubMed  CAS  Google Scholar 

  131. Gundel RH, Wegner CD, Torcellini CA, Clarke CC, Haynes N, Rothlein R, Smith CW, Letts LG (1991) ELAM-1 mediates antigen-induced acute airway inflammation and late phase obstruction in monkeys. J Clin Invest 88: 1407–1411.

    Article  PubMed  CAS  Google Scholar 

  132. Wegner CD, Grundel RH, Reilly P, Haynes N, Letts GL, Rothlein R (1990) ICAM-1 in the pathogenesis of asthma. Science 247: 416–418.

    Article  Google Scholar 

  133. Wegner CD, Gundel RH, Churchill L, Letts LG (1993) Adhesion glycoproteins as regulators of airway inflammation; emphasis on the role of ICAM-1. In: Holgate ST, Austen KF, Lichtenstein LF, Kay AB, eds. Asthma: Physiology Pharmacology and Treatment. Academic, London, pp. 227–242.

    Google Scholar 

  134. Abraham WM, Sielczak MW, Ahmed A, et al. (1993) a4 integrins mediate antigen-induced late bronchial responses and prolonged airway hyperresponsiveness in sheep. J Clin Invest 776–87.

    Google Scholar 

  135. Rabb HA, Olivenstein R, Issekutz TB, Renzl PM, Martin JG (1994) The role of the leucocyte adhesion molecules VLA-4, LFA-1 and Mac-1 in allergic airway in rat. Am J Respir Crit Care Med 149: 1186–1191.

    PubMed  CAS  Google Scholar 

  136. Weg VB, Williams TJ, Lobb PR, Nourshargh S (1993) A monoclonal antibody recognizing the very late activation antigen-4 inhibits eosinophil accumulation in vivo. J Exp Med 177: 561–566.

    Article  PubMed  CAS  Google Scholar 

  137. Pretolani MC, Ruffie C, de Silva L, Joseph D, Lobb R, Vargaftig B (1994) Antibody to very late activation antigen 4 presents antigen-induced bronchial hyperreactivity and cellular infiltration in the guinea pig airways. J Exp Med 180: 795–805.

    Article  PubMed  CAS  Google Scholar 

  138. Nakajima H, Sano H, Nishimura T, Yoshida S, Iwanoto I (1994) Role of vascular cell adhesion molecule 1/very late antigen 4 and intercellular adhesion molecule 1 interactions in antigen-induced eosinophil and T cell recruitment into the tissue. J Exp Med 179: 1145–1154.

    Article  PubMed  CAS  Google Scholar 

  139. Metzger WJ, Ridgr V, Tollefson V, Arrheius T, Gaeta FCA, Elices M (1994) Anti-VLA-1 antibody and CS 1 peptide inhibitor modify airway inflammation and bronchial airway hyperresponsiveness (BHR) in the allergic rabbit. J Allergy Clin Immunol 93: 183 (abstract).

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Wardlaw, A. (1998). Adhesion Receptors in Allergic Disease. In: Denburg, J.A. (eds) Allergy and Allergic Diseases. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-4757-2776-0_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-2776-0_18

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-026-7

  • Online ISBN: 978-1-4757-2776-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics