Skip to main content

Airway Wall Structure

  • Chapter
Allergy and Allergic Diseases

Abstract

In man and other mammalian species, the upper and lower airways are lined by a continuous mucosal layer. It is the site at which immune responses are initiated by immuno-competent cells on recognition of foreign molecules, suitably processed by resident antigen- presenting cells (APC). In humans, subsequent exposure to the relevant allergen initiates immune reactions, which may become persistent. Immune reactions are designed as defense mechanisms that normally protect the body; however, inappropriate or misdirected responses may lead to damage of host tissues. Control is maintained by cell—cell signaling via the release of cytokines that have the potential to induce an allergic inflammatory response. At rest, approx 10,000 to 15,000 L of air, containing allergen and pollutants, moves daily over the nasal and tracheobronchial airway mucosal lining of the adult human lung. hi the upper respiratory tract and proximal conducting airways of the lung the air is sampled, conditioned, and rendered free of many irritants and allergens before reaching the respiratory portion of the lung. The function of the conducting airways, in many respects, depends on the branching pattern and the dynamic interaction of structural, immuno-competent, and neural elements. Changes in the composition and integrity of airway-wall structural components may alter its effectiveness. A prerequisite to understanding the pathogenesis of allergic inflammatory disorders is an appreciation of normal airway structure and function. The present chapter focuses on cells that comprise the normal structure of the airway wall of the lower respiratory tract and considers briefly the cellular and structural variations that occur in allergic disease, in particular, those that may lead to the process of airway-wall remodeling, a characteristic change in chronic asthma.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Horsefield K (1974) The relation between structure and function in the airways of the lung. Br J Dis Chest 68: 145.

    Article  Google Scholar 

  2. Horsefield K (1981) The structure of the tracheobronchial tree. In: Scadding JG, Cumming G, Thurlbeck WM, eds. Respiratory Medicine. Heinemann, London, p. 54.

    Google Scholar 

  3. Evans MJ, Plopper CG (1988) The role of basal cells in adhesion of columnar epithelium to airway basement membrane. Am Rev Respir Dis 138: 481–483.

    Article  PubMed  CAS  Google Scholar 

  4. Jeffery PK, Reid L (1975) New observations of rat airway epithelium: a quantitative electron microscopic study. J Anat 120: 295–320.

    PubMed  CAS  Google Scholar 

  5. Lumsden AB, McLean A, Lamb D (1984) Goblet and Clara cells of human distal airways: evidence for smoking-induced changes in numbers. Thorax 39: 844–853.

    Article  PubMed  CAS  Google Scholar 

  6. Jeffery PK (1983) Morphology of airway surface epithelial cells and glands. Am Rev Respir Dis 128:S 14–S20.

    Google Scholar 

  7. Jeffery PK (1978) The structure and function of the mucus-secreting cells of cat and goose airway epithelium. In: Porter R, ed. Respiratory Tract Mucus, 56th CIBA Foundation Symposium. Elsevier/Excerpta Med, Amsterdam, pp. 5–24.

    Google Scholar 

  8. Jeffery PK (1995) Microscopic structure of normal lung. In: Brewis RAL, Gibson GJ, Geddes GM, eds. Respiratory Medicine. 2nd Ed. Bailliere Tindall, London/Toronto, pp. 54–72.

    Google Scholar 

  9. Jeffery PK, Corrin B (1984) Structural analysis of the respiratory tract. In: Bienenstock J, ed. Immunology of the Lung. McGraw-Hill, New York, pp. 1–27.

    Google Scholar 

  10. Breeze RG, Wheeldon EB (1977) The cells of the pulmonary airways. Am Rev Respir Dis 116: 705–777.

    PubMed  CAS  Google Scholar 

  11. McDermott MR, Befus AD, Bienenstock J (1982) The structural basis for immunity in the respiratory tract. Internat Rev Exp Path 23: 47–112.

    CAS  Google Scholar 

  12. Jeffery PK (1986) Innervation of airway epithelium. In: Kay AB, ed. Asthma: Clinical Pharmacology and Therapeutic Progress. Blackwell, Oxford, pp. 376–392.

    Google Scholar 

  13. Jeffery PK (1994) Innervation of the airway mucosa: structure, function and changes in airway disease. In: Goldie R, et al., eds. Immunopharmacology of Epithelial Barriers. Academic, London, pp. 85–118.

    Google Scholar 

  14. Sleigh HA (1977) The nature and action of respiratory tract cilia. In: Brain JD, et al., eds. Respiratory Defense Mechanisms, Part 1. Dekker, New York.

    Google Scholar 

  15. Pavia D, Lopez-Vidriero MT, Clarke SW (1987) Mediators and mucociliary clearance in asthma. Bull Eur Physiopathol Respir 23Suppl. 10: 89s–94s.

    Google Scholar 

  16. Mossberg B, Strandberg K, Phillipson K, Camner P (1976) Tracheobronchial clearance in bronchial asthma: response to beta-adrenoceptor stimulation. Scand J Respir Dis 57: 119–128.

    PubMed  CAS  Google Scholar 

  17. Carlstedt I, Sheehan JK (1984) Macromolecular properties and polymeric structure of mucus glycoproteins. In: Nugent J, O’Connor M, eds. Mucus and Mucosa, Ciba Foundation Symposium 109. Pitman, Bath, pp. 157–172.

    Chapter  Google Scholar 

  18. Lamb D, Reid L (1968) Mitotic rates, goblet cell increase and histochemical changes in mucus in rat bronchial epithelium during exposure to SO2. J Pathol Bacteriol 96: 97–111.

    Article  PubMed  CAS  Google Scholar 

  19. Jones R, Bolduc P, Reid L (1972) Protection of rat bronchial epithelium against tobacco smoke. Br Med J 2: 142–144.

    Article  PubMed  CAS  Google Scholar 

  20. Jeffery PK, Reid L (1981) The effect of tobacco smoke with or without phenylmethyloxadiazole (PMO) on rat bronchial epithelium: a light and electron microscopic study. J Pathol 133: 341–359.

    Article  PubMed  CAS  Google Scholar 

  21. Jeffery PK (1990) Tobacco smoke-induced lung disease. In: Cohen RD, Lewis B, Alberti KGMM, Denman AM, eds. The Metabolic and Molecular Basis of Acquired Disease. Balliere Tindall, London, pp. 466–495.

    Google Scholar 

  22. McDowell EM, Trump BF (1983) Conceptual review: histogenesis of preneoplastic and neoplastic lesions in tracheobronchial epithelium. Sury Synth Path Res 2: 235–279.

    Google Scholar 

  23. Ayers M, Jeffery PK (1982) Cell division and differentiation in the respiratory tract. In: Cumming G, Bonsignore G, eds. Cell Biology and the Lung. Plenum, New York, pp. 33–60.

    Chapter  Google Scholar 

  24. Jeffery PK, Ayers M, Rogers DF (1982) The mechanisms and control of bronchial mucous cell hyperplasia. Chest 815: 27S–29S.

    Article  Google Scholar 

  25. Ayers M, Jeffery PK (1988) Proliferation and differentiation in adult mammalian airway epithelium: a review. Eur Respir J 1: 58–80.

    PubMed  CAS  Google Scholar 

  26. Ellefsen P, Tos M (1972) Goblet cells in the human trachea: quantitative studies of a pathological biopsy material. Arch Otolaryngol 95: 547–555.

    Article  PubMed  CAS  Google Scholar 

  27. Jeffery PK, Wardlaw A, Nelson FC, Collins JV, Kay AB (1989) Bronchial biopsies in asthma: an ultra-structural quantification study and correlation with hyperreactivity. Am Rev Respir Dis 140: 1745–1753.

    Article  PubMed  CAS  Google Scholar 

  28. Rogers AV, Dewar A, Corrin B, Jeffery PK (1993) Identification of serous-like cells in the surface epithelium of human bronchioles. Eur Respir J 6: 498–504.

    PubMed  CAS  Google Scholar 

  29. Willems LNA, Kramps JA, Jeffery PK, Dijkman JH (1988) Detection of antileukoprotease in the developing foetal lung. Thorax 43: 784–786.

    Article  PubMed  CAS  Google Scholar 

  30. Niden AH (1980) Bronchiolar and large alveolar cell in pulmonary phospholipid metabolism. Science 158: 1323–1324.

    Article  Google Scholar 

  31. Gil J, Weibel E (1971) Extracellular lining of bronchioles after perfusion-fixation of rat lungs for electron microscopy. Anat Rec 169: 185–200.

    Article  PubMed  CAS  Google Scholar 

  32. Sallenave JM, Silva A, Marsden ME, Ryle AP (1993) Secretion of mucus proteinase inhibitor and alefin by Clara cell and type II pneumocyte cell lines. Am J Resp Cell Mol Biol 8: 126–133.

    CAS  Google Scholar 

  33. Evans MJ, Cabral-Anderson LJ, Freeman G (1978) Role of the Clara cell in renewal of bronchiolar epithelium. Lab Invest 38: 648–655.

    PubMed  CAS  Google Scholar 

  34. Lauweryns JM, Cokelaere M, Theunynck P (1972) Neuro-epithelial bodies in the respiratory mucosa of various mammals. Z Zellforsch Mikrosk Anatomy 135: 569–592.

    Article  CAS  Google Scholar 

  35. Lauweryns JM, De Bock V, Verhofstad AAJ, Steinbusch HWM (1982) Immunohistochemical localization of serotonin in intrapulmonary neuro-epithelial bodies. Cell Tiss Res 226: 215–223.

    CAS  Google Scholar 

  36. Wharton J, Polak JM, Bloom SR, Ghatei MA, Solcia E, Brown MR, Pearse AG (1978) Bombesin-like immunoreactivity in the lung. Nature 273: 769–770.

    Article  PubMed  CAS  Google Scholar 

  37. Schlegel R, Banko-Schlegel S, Pinkus GS (1980) Immunohistochemical localization of keratin in normal human tissues. Lab Invest 42: 91–96.

    PubMed  Google Scholar 

  38. Blenkinsopp WK (1967) Proliferation of respiratory tract epithelium in the rat. Exp Cell Res 46: 144–154.

    Article  PubMed  CAS  Google Scholar 

  39. Bolduc P, Reid L (1978) The effect of isoprenaline and pilocarpine on mitotic index and goblet cell number in rat respiratory epithelium. Br J Exp Pathol 59: 311–318.

    PubMed  CAS  Google Scholar 

  40. Erjefalt JS, Erjefalt I, Sundler F, Persson CGA (1995) In vivo restitution of airway epithelium. Cell Tissue Res 281: 305–316.

    Article  PubMed  CAS  Google Scholar 

  41. Beasley R, Roche W, Roberts JA, Holgate ST (1989) Cellular events in the bronchi in mild asthma and after bronchial provocation. Am Rev Respir Dis 139: 806–817.

    PubMed  CAS  Google Scholar 

  42. Montefort S, Roberts JA, Beasley R, Holgate ST, Roche WR (1992) The site of disruption of the bronchial epithelium in asthmatic and non-asthmatic subjects. Thorax 47: 499–503.

    Article  PubMed  CAS  Google Scholar 

  43. Lamb D, Lumsden A (1982) Infra-epithelial mast cells in human airway epithelium: evidence for smoking-induced changes in their frequency. Thorax 37: 334–342.

    Article  PubMed  CAS  Google Scholar 

  44. Irani AA, Bradford TR, Kepley CL, Schechter NM, Schwartz LB (1989) Detection of MC-T and MCTC types of human mast cells by immunohistochemistry using new monoclonal anti-tryptase and antichymase antibodies. J Histochem Cytochem 37: 1509–1515.

    Article  PubMed  CAS  Google Scholar 

  45. Razin E, Ihle JW, Seldin D, et al. (1984) Interleukin 3: a differentiation and growth factor for the mouse mast cell that contains chondroitin sulfate E proteoglycan. J Immunol 132: 1479–1486.

    CAS  Google Scholar 

  46. Irani AA, Schechter NM, Craig SS, Deblois G, Schwartz LB (1986) Two types of human mast cells that have distinct neutral protease compositions. Proc Natl Acad Sci USA 83: 4464–4468.

    Article  PubMed  CAS  Google Scholar 

  47. Kent JF (1966) Distribution and fine structure of globular leukocytes in respiratory and digestive tracts of the laboratory rat. Anat Rec 156: 439–454.

    Article  PubMed  CAS  Google Scholar 

  48. Jeffery PK, Reid L (1977) The ultrastructure of the airway lining and its development. In: Hodson WA, ed. The Development of the Lung. Marcel Dekker, New York, pp. 87–134.

    Google Scholar 

  49. Fournier M, Lebargy F, Le Roy Ladurie F, Lenormand E, Pariente R (1989) Intraepithelial T-lymphocyte subsets in the airways of normal subjects and of patients with chronic bronchitis. Am Rev Respir Dis 140: 737–742.

    Google Scholar 

  50. Corrigan CJ, Hartnell A, Kay AB (1988) T lymphocyte activation in acute severe asthma. Lancet, Vol 1: 1129–1131.

    Google Scholar 

  51. Robinson DS, Hamid Q, Sun-Ying, Tsicopoulos A, Barhani J, Bentley AM, Corrigan CJ, Durham SR, Kay AB (1992) Predominant Th2-type bronchoalveolar lavage T lymphocyte popularity in atopic asthma. N Engl J Med 326: 298–304.

    Google Scholar 

  52. De Carlo Massaro G (1989) Nonciliated bronchoepithelial (Clara) cells. In: Massaro D, ed. Lung Cell Biology. Markel Dekker, New York, pp. 81–107.

    Google Scholar 

  53. O’Shaughnessy TC, Ansari TW, Barnes NC, Jeffery PK (1995) T-cell markers in smokers’ chronic bronchitis with and without airflow obstruction. Eur Respir J 8 (Suppl. 19): 493s.

    Google Scholar 

  54. Holt PG (1993) Regulation of antigen-presenting cell function(s) in lung and airway tissues. Eur Respir J 6: 120–129.

    PubMed  CAS  Google Scholar 

  55. Holt PG, Schon-Hegrad MA, Phillips MJ, McMenamin PG (1989) Ia-positive dendritic cells form a tightly meshed network within the human airway epithelium. Clin Exp Allergy 19: 597–601.

    Article  PubMed  CAS  Google Scholar 

  56. Holt PG, Schon-Hegrad MA, Oliver J, Holt BJ, McMenamin PG (1990) A contiguous network of dendritic antigen-presenting cells within the respiratory epithelium. Int Arch Allergy Appl Iinmunl 91: 155–159.

    Article  CAS  Google Scholar 

  57. Caux C, Dezutter-Dambuyant C, Scmitt D, Banchereau J (1992) GM-CSF and TNF-a cooperate in the generation of dendritic Langerhans cells. Nature 360: 258–261.

    Article  PubMed  CAS  Google Scholar 

  58. Kasinrerk W, Baumruker T, Majdic O, Knapp W, Stockinger H (1993) CD1 molecule expression on human monocytes induced by GM-CSF. J Immunol 150: 579–584.

    PubMed  CAS  Google Scholar 

  59. Steinbach F, Krause B, Thiele B (1995) Monocyte derived dendritic cells ( MODC) present phenotype and functional activities of Langerhans cells/dendritic cells. Adv Exp Med Biol 378: 151–153.

    Google Scholar 

  60. Xu H, Kramer M, Spengel HP, Peters JH (1995) Dendritic cells differentiated from human monocytes through a combination of IL-4, GM-CSF and IFN-i exhibit phenotype and function of blood dendritic cells. Adv Exp Med Biol 378: 75–78.

    Google Scholar 

  61. Peters JH, Ruppert J, Gieseler RK, Najar HM, Xu H (1991) Differentiation of human monocytes into CD14 negative accessory cells: do dendritic cells derive from the monocyte lineage? Pathobiology 59: 122–126.

    Article  PubMed  CAS  Google Scholar 

  62. Reid CD, Stackpoole A, Meager A, Tikarpae J (1992) Interaction of TNF with GM-CSF and other cytokines in the regulation of dendritic cell growth in vitro from early bipotent CD34+ progenitors in human bone marrow. J Immunol 149: 2681–2688.

    PubMed  CAS  Google Scholar 

  63. Rossi G, Heveker N, Thiele B, Gelderblom H, Steinbach F (1992) Development of Langerhans cell phenotype from peripheral blood monocytes. Immunol Lett 31: 189–197.

    Article  PubMed  CAS  Google Scholar 

  64. Peters JH, Ruhl S, Friedrichs D (1987) Veiled accessory cells deduced from monocytes. Immunobiology 176: 154–166.

    Article  PubMed  CAS  Google Scholar 

  65. Steinbach F, Thiele B (1993) Monocyte-derived Langerhans cells from different species-morphological and functional characterization. Adv Exp Med Biol 239: 213–218.

    Article  Google Scholar 

  66. Peters JH, Gieseler R, Thiele B, Steinbach F (1996) Dendritic cells: from ontogenetic orphans to myelomonocytic descendants. Immunol Today 17: 273–278.

    Article  PubMed  CAS  Google Scholar 

  67. Glanville AR, Tazelaar HD, Therodore J, et al. (1989) The distribution of mhc class I and II antigens on bronchial epithelium. Am Rev Respir Dis 139: 330–334.

    Article  PubMed  CAS  Google Scholar 

  68. Natali PC, De Martino C, Quarawta V (1981) Expression of Ia-like antigens in normal human non-lymphoid tissues. Transplantation 31: 75–78.

    Google Scholar 

  69. Dunnill MS (1960) The pathology of asthma, with special reference to changes in the bronchial mucosa. J Clin Pathol 13: 27–33.

    Article  PubMed  CAS  Google Scholar 

  70. Laitinen LA, Heino M, Laitinen A, Kava T, Haahtela T (1985) Damage of the airway epithelium and bronchial reactivity in patients with asthma. Am Rev Respir Dis 131: 599–606.

    PubMed  CAS  Google Scholar 

  71. Ilowite JS, Bennett WD, Sheetz MS, Groth ML, Nierman DM (1989) Permeability of the bronchial mucosa to 99mTc DTPA in asthma. Am Rev Respir Dis 139: 1139–1143.

    PubMed  CAS  Google Scholar 

  72. Godfrey RWA, Severs NJ, Jeffery PK (1992) Freeze-fracture morphology and quantification of human bronchial epithelial tight junctions. Am J Respir Cell Molec Biol 6: 453–458.

    CAS  Google Scholar 

  73. Schneeberger EE, Lynch RD (1992) Structure, function, and regulation of cellular tight junctions. J Appl Phys 262: L647–L661.

    CAS  Google Scholar 

  74. Faff O, Mitreiter R, Muckter H, Ben-Shaul Y, Bacher A (1988) Rapid formation of tight junctions in HT 29 human adenocarcinoma cells by hypertonic salt solutions. Exp Cell Res 177: 60–72.

    Article  PubMed  CAS  Google Scholar 

  75. Madara JL (1988) Tight junction dynamics: is paracellular transport regulated. Cell 53: 497–498.

    Article  PubMed  CAS  Google Scholar 

  76. Elia C, Bucca C, Rolla G, Scappaticci E, Cantino D (1988) A freeze-fracture study of tight junctions in human bronchial epithelium in normal, bronchitic and asthmatic subjects. J Submic Cytol Pathol 20: 509–517.

    CAS  Google Scholar 

  77. Ohashi Y, Montojima S, Fukuda T, Makino S (1992) Airway hyperresponsiveness, increased intracellular spaces of bronchial epithelium, and increased infiltration of eosinophils and lymphocytes in bronchial mucosa in asthma. Am Rev Respir Dis 145: 1469–1476.

    PubMed  CAS  Google Scholar 

  78. Lake FR, Ward LD, Simpson PJ, Thompson PJ (1991) The group III allergens from house dust mite Dermatophagoides pteronyssinus is a trypsin-like enzyme. Immunobiology 87: 1035–1042.

    CAS  Google Scholar 

  79. Herbert CA, King CM, Ring PC, Holgate ST, Stewart GA, Thompson PJ (1995) Augmentation of permeability in the bronchial epithelium by the house dust mite allergen, Der pl. Am J Respir Cell Mol Biol 129: 369–378.

    Google Scholar 

  80. Takeichi M (1996) Cadherins: a molecular family important in selective cell-cell adhesion. Annu Rev Biochem 59: 237–252.

    Article  Google Scholar 

  81. Trigg CJ, Manolitsas ND, Wang J, Calderon MA, McAulay A, Jordan SE, Herdman MJ, Jhalli N, Duddle JM, Hamilton SA, Devalia JL, Davies RJ (1994) Placebo-controlled immunopathologic study of four months of inhaled corticosteroids in asthma. Am J Respir Crit Care Med 150: 17–22.

    PubMed  CAS  Google Scholar 

  82. Gosset P, Tillie-Leblond I, Janin A, Marquette CH, Copin MC, Wallaert B, Tonnel AB (1994) Increased expression of ELAM-1, ICAM-1, and VCAM-1 on bronchial biopsies from allergic asthmatic patients. Ann N Y Acad Sci 725: 163–172.

    PubMed  CAS  Google Scholar 

  83. Wegner CD, Gundel RH, Reilly P, Haynes N, Letts LG, Rothlein R (1990) Intercellular adhesion molecule-1 [ICAM-1] in the pathogenesis of asthma. Science 247: 456–459.

    Article  PubMed  CAS  Google Scholar 

  84. Kleinman HK, Graf J, Iwamoto Y, Kitten GT, Ogle RC, Sasaki M, Yamada Y, Martin GR, LuckenbillEdds L (1987) Role of basement membranes in cell differentiation. Ann N Y Acad Sci 513: 134–145.

    Article  PubMed  CAS  Google Scholar 

  85. Merker HJ (1994) Morphology of the basement membrane. Microsc Res Tech 28: 95–124.

    Article  PubMed  CAS  Google Scholar 

  86. Timpl R, Dziadek M (1986) Structure, development, and molecular biology of basement membranes. Int Rev Exp Pathol 29: 1–112.

    PubMed  CAS  Google Scholar 

  87. Scittny JC, Yurchenco PD (1989) Basement membranes: molecular organisation and function in development and disease. Curr Opin Cell Biol 1: 983–988.

    Article  Google Scholar 

  88. Ozawa M, Sato M, Muramatsu T (1983) Basement membrane glycoprotein laminin is an agglutin. J Biochem 94: 479–485.

    PubMed  CAS  Google Scholar 

  89. Laurie GW, Bing JT, Kleinman HK, Hassell JR, Aumailley M, Martin GR, Feldmann RJ (1986) Localization of binding sites for laminin, heparan sulfate proteoglycan and fibronectin on basement membrane (type IV) collagen. J Mol Biol 189: 205–216.

    Article  PubMed  CAS  Google Scholar 

  90. Abrahamson DR (1986) Recent studies on the structure and pathology of basement membranes. J Pathol 149: 257–278.

    Article  PubMed  CAS  Google Scholar 

  91. Timpl R (1989) Structure and biological activity of basement membrane proteins. Eur J Biochem 180: 487–502.

    Article  PubMed  CAS  Google Scholar 

  92. Chung AE, Durkin ME (1990) Entactin: structure and function. Am J Resp Cell Mol Biol 3: 275–282.

    CAS  Google Scholar 

  93. Martin GR, Timpl R (1987) Laminin and other basement membrane components. Ann Rev Cell Biol 3: 57–85.

    Article  PubMed  CAS  Google Scholar 

  94. Dziadek M (1995) Role of laminin-nidogen complexes in basement membrane formation during embryonic development. Experientia 51: 901–913.

    Article  PubMed  CAS  Google Scholar 

  95. Timpl R (1993) Proteoglycans of basement membrane. Experientia 49: 417–428.

    Article  PubMed  CAS  Google Scholar 

  96. Kuhn K (1995) Basement membrane (type IV) collagen. Matrix Biology 14: 439–445 (abstract).

    Article  PubMed  CAS  Google Scholar 

  97. Crepea SB, Harman JW (1955) The pathology of bronchial asthma. I. The significance of membrane changes in asthmatic and non-allergic pulmonary disease. J Allergy 26: 453–460.

    Google Scholar 

  98. Roche WR, Beasley R, Williams JH, Holgate ST (1989) Subepithelial fibrosis in the bronchi of asthmatics. Lancet i: 520–523.

    Google Scholar 

  99. Lambert RK (1991) Role of bronchial basement membrane in airway collapse. J Appl Physiol 71: 666–673.

    PubMed  CAS  Google Scholar 

  100. Rennard SI, Bitterman PB, Crystal RG (1984) Pathogenesis of the granulomatous lung disease. IV. Mechanisms of fibrosis. Am J Resp Crit Care Med 130: 492–496.

    Google Scholar 

  101. Stetler-Stevenson WG (1996) Dynamics of matrix turnover during pathologic remodelling of the extra-cellular matrix. Am J Pathol 148: 1345–1350.

    PubMed  CAS  Google Scholar 

  102. Lin LL, Lin AY, DeWitt DL (1992) Interleukin-1 alpha induces the accumulation of cytosolic phospholipase A2 and the release of prostaglandin E2 in human fibroblasts. J Biol Chem 267: 23451–23454.

    PubMed  CAS  Google Scholar 

  103. Dayer JM, Beutler B, Cerami A (1985) Cachectin/tumor necrosis factor stimulates collagenases and prostaglandin E production by human synovial cells and dermal fibroblasts. J Exp Med 162: 2163–2166.

    CAS  Google Scholar 

  104. Snijdewint FGM, Kalinsky P, Wierenga EA, Bos JD, Kapsenberg ML (1993) Prostaglandin E2 differentially modulates cytokine secretion profiles of human T-helper lymphocytes. J Immunol 150: 5321–5329.

    PubMed  CAS  Google Scholar 

  105. Roper RL, Conrad DH, Brown DM, Warner GL, Phipps RP (1990) Prostaglandin E2 promotes IL-4 induced IgE and IgG1 synthesis. J Immunol 145: 2644–2651.

    PubMed  CAS  Google Scholar 

  106. Betz M, Fox BS (1991) Prostaglandin E2 inhibits production of Thl lymphokines but not of Th2 lymphokines. J Immunol 146: 108–113.

    PubMed  CAS  Google Scholar 

  107. Lukacs NW, Chensue SW, Smith RE, et al. (1994) Production of monocyte chemoattractant-1 (MCP-1) and macrophage inflammatory protein (M1P-1a) by inflammatory granuloma fibroblasts. Am J Pathol 144: 711–718.

    PubMed  CAS  Google Scholar 

  108. Stiles AD, D’Ercole AJ (1990) The insulin-like growth factors and the lung. Am J Resp Cell Mol Biol 3: 93–100.

    CAS  Google Scholar 

  109. Zucali JR, Dinarello CA, Oblon DJ, Gross MA, Anderson L, Weiner RS (1986) Interleukin-1 stimulates fibroblasts to produce GM-CSF. J Clin Invest 77: 1857–1863.

    Article  PubMed  CAS  Google Scholar 

  110. Vancheri C, Ohtoshi T, et al. (1991) Neutrophil differentiation by human upper airway fibroblast-derived granulocyte/macrophage colony stimulating factor ( GM-CSF ). Am J Resp Cell Mol Biol 4: 11–17.

    Google Scholar 

  111. Rubbia-Brandt L, Sappino A, Gabbiani G (1991) Locally applied GM-CSF induces accumulation of alpha-smooth muscle actin containing fibroblasts. Virchows Arch B Cell Pathol 60: 73–82.

    Article  CAS  Google Scholar 

  112. Franke WW, Schinko W (1969) Nuclear shape in muscle cells. J Cell Biol 42: 326–331.

    Article  PubMed  CAS  Google Scholar 

  113. Kapanci Y, Assimacopoulos A, Irle C, Zwahlen A, Gabbiani G (1974) Contractile interstitial cells in pulmonary alveolar septa: A possible role of ventilation/perfusion ratio? J Cell Biol 60:375–392.

    Google Scholar 

  114. Brewster CEP, Howarth PH, Djukanovic R, Wilson J, Holgate ST, Roche WR (1990) Myofibroblasts and subepithelial fibrosis in bronchial asthma. Am J Respir Cell Mol Biol 3: 507–511.

    PubMed  CAS  Google Scholar 

  115. Gizycki MJ, Adelroth E, Rogers AV, O’Byrne PM, Jeffery PK (1997) Myofibroblast involvement in the allergen induced late response in mild atopic asthma. Am J Respir Crit Care Med 16: 664–673.

    CAS  Google Scholar 

  116. Skalli O, Schurch W, Seemayer T, Lagace R, Montandon D, Pittet B, Gabbiani G (1989) Myofibroblast from diverse pathologic settings are heterogenous in their content of actin isoforms and intermediate filament proteins. Lab Invest 60: 275–285.

    PubMed  CAS  Google Scholar 

  117. Schmitt-Graff A, Desmouliere A, Gabbiani G (1994) Heterogeneity of myofibroblast phenotypic features: an example of fibroblastic cell plasticity. Virchows Archiv 425: 3–24.

    Article  PubMed  CAS  Google Scholar 

  118. Sappino AP, Schurch W, Gabbiani G (1990) Differentiation repertoire of fibroblast cells: expression of cytoskeletal proteins as markers of phenotypic modulation. Lab Invest 63: 144–161.

    PubMed  CAS  Google Scholar 

  119. Adler KB, Callahan LM, Evans JN (1986) Cellular alterations in the alveolar wall in bleomycin-induced lung fibrosis in rats: An ultrastructural morphometric study. Am J Resp Crit Care Med 133: 1043–1048.

    Google Scholar 

  120. Kapanci Y, Burgan S, Pietra GG, Conne B, Gabbiani G (1990) Modulation of actin isoforms expression in alveolar myofibroblasts (contractile interstitial cells) during pulmonary hypertension. Am J Pathol 136: 881–889.

    PubMed  CAS  Google Scholar 

  121. Mitchell J, Woodcock-Mitchell J, Reynolds S, Low RB, Leslie KO, Adler K, Gabbiani G, Omar S (1989) Alpha smooth muscle actin in parenchymal cells of bleomycin-injured rat lung. Lab Invest 60: 643–650.

    PubMed  CAS  Google Scholar 

  122. Gabbiani G, Lous ML, Bailey AJ, Bazin S, Delaunay A (1976) Collagen and myofibroblasts of granulation tissue. A chemical, ultrastructural and immunologic study. Virchows Arch B Cell Pathol 21: 133–145.

    Google Scholar 

  123. Gabbiani G, Chaponnier C, Huttner I (1978) Cytoplasmic filaments and gap junctions in epithelial cells and myofibroblasts during wound healing. J Cell Biol 76: 561–568.

    Article  PubMed  CAS  Google Scholar 

  124. Darby I, Skalli O, Gabbiani G (1990) a-Smooth muscle actin is transiently expressed by myofibroblasts during experimental wound healing. Lab Invest 63: 21–29.

    Google Scholar 

  125. Carroll N, Elliot A, Morton A, James A (1993) The structure of large and small airways in nonfatal and fatal asthma. Am Rev Respir Dis 147: 405–410.

    PubMed  CAS  Google Scholar 

  126. Severs NJ, Robenek H (1992) Constituents of the arterial wall and atherosclerotic plaque: an introduction to atherosclerosis. In: Cell Interactions in Atherosclerosis. Robenek H, Severs NJ, eds. CRC Press, Boca Raton, pp. 1–49.

    Google Scholar 

  127. Campbell GR, Chamley-Campbell JH, Burnstock G (1981) Differentiation and phenotypic modulation of arterial smooth muscle. In: Schwartz CJ, Werthessen NT, Wolf S, eds. Structure and Function of Circulation, vol. 3. Plenum, New York, pp. 357–399.

    Chapter  Google Scholar 

  128. Thyberg J, Nilsson J, Palmberg L, Sjolund M (1985) Adult human arterial smooth muscle cells in primary culture: modulation from contractile to synthetic phenotype. Cell Tissue Res 239: 501–513.

    Article  Google Scholar 

  129. Okamoto E, Imataka K, Fujii J, Kuro M, Nakaharak K, Nishimura H, Yazaki Y, Nagai R (1992) Heterogeneity in smooth muscle cell populations in neointimas and the media of post-stenotic dilatation of rabbit carotid artery. Biochem Biophys Res Commun 185: 459–464.

    Article  PubMed  CAS  Google Scholar 

  130. Kelleher MD, Schneider SD, Naureckas ET, Abe Mk, Jain M, Solvay J, Hershenson MB (1994) Responsiveness of bovine tracheal smooth muscle cells to various mitogens. Am J Resp Crit Care Med 149: A304 (abstract).

    Google Scholar 

  131. Hirst SJ, Barnes PJ, Twort CHC (1996) PDGF receptor expression and differential proliferation induced by PDGF isoforms in human cultured bronchial smooth muscle. Am J Physiol 270: L415–428.

    PubMed  CAS  Google Scholar 

  132. Hirst SJ, Barnes PJ, Twort CHC (1994) Proliferation of human and rabbit smooth muscle in culture by platelet-derived growth factor isoforms. Am J Resp Crit Care Med 149: A303 (abstract).

    Google Scholar 

  133. Black PN, Young PG, Scott L, Merrolees MJ, Skinner SJM (1994) Is Transforming growth factor-beta an autocrine growth factor for airway smooth muscle? Am J Resp Crit Care Med 149: A302 (abstract).

    Google Scholar 

  134. Amento EP, Ehsani N, Palmer H, Libby P (1991) Cytokines and growth factors positively and negatively regulate interstitial collagen synthesis gene expression in human vascular smooth muscle cells. Arteriosclerosis Thromb 11: 1223–1230.

    Article  CAS  Google Scholar 

  135. Brown JK, Tyler CL, Jones CA, Ruoss SJ, Hartmann T, Caughey GH (1995) Tryptase, the dominant secretory granular protein in human mast cells, is a potent mitogen for cultured dog tracheal smooth muscle cells. Am J Resp Cell Mol Biol 13: 227–236.

    CAS  Google Scholar 

  136. Rennick RE, Connat J-L, Burnstock G, Rothery S, Severs NJ, Green CR (1993) Expression of connexin 43 gap junctions between cultured vascular smooth muscle cells is dependent upon phenotype. Cell Tissue Res 271: 323–332.

    Article  PubMed  CAS  Google Scholar 

  137. Skalli O, Pelte MF, Peclet MC, Gabbiani G, Gugliotta P, Bussolati G, Ravazzola M, Orci L (1989) Alpha smooth muscle actin, a differentiation marker of smooth muscle cells, is present in microfilamentous boundles of pericytes. J Histochem Cytochem 37: 315.

    Article  PubMed  CAS  Google Scholar 

  138. Shepro D, Morel NML (1993) Pericyte physiology. FASEB J 7: 1031–1038.

    PubMed  CAS  Google Scholar 

  139. Diaz-Flores L, Gutierrez R, Varela H, Rencel N, Valladares F (1991) Microvascular pericytes: a review of their morphological and functional characteristics. Histol Histopath 6: 269–286.

    CAS  Google Scholar 

  140. Charan NB, Baile EM, Paré PD (1997) Bronchial vascular congestion and angiogenesis. Eur Respir J 10: 1173–1180.

    Article  PubMed  CAS  Google Scholar 

  141. Hislop A, Reid L (1976) New findings in pulmonary arteries of rats with hypoxia-induced hypertension. Br J Exp Path 57: 542–554.

    CAS  Google Scholar 

  142. Langlebeb D, Jones RC, Aronovitz MJ, Hill NS, Ou L-C, Reid LM (1987) Pulmonary artery structural changes in two colonies of rats with different sensitivity to chronic hypoxia. Am J Pathol 1128: 61–66.

    Google Scholar 

  143. Meyrick B, Reid L (1978) The effect of continued hypoxia on rat pulmonary arterial circulation: an ultrastructural study. Lab Invest 38: 188–192.

    PubMed  CAS  Google Scholar 

  144. Sundberg C, Ivarsson M, Rubin K (1996) Pericytes as collagen-producing cells in excessive dermal scarring. Lab Invest 74: 452–466.

    PubMed  CAS  Google Scholar 

  145. Miller (1937).

    Google Scholar 

  146. Dunnill MS, Massarella GR, Anderson JA (1969) A comparison of the quantitative anatomy of the bronchi in normal subjects, in status asthmaticus, in chronic bronchitis, and in emphysema. Thorax 24: 176–179.

    Article  PubMed  CAS  Google Scholar 

  147. Jeffery PK (1992) Pathology of asthma. Br Med Bull 48: 23–39.

    PubMed  CAS  Google Scholar 

  148. Heard BE, Hossain S (1973) Hyperplasia of bronchial muscle in asthma. J Pathol 110: 319–331.

    Article  Google Scholar 

  149. Ebina M, Takahashi T, Chiba T, Motomiya M (1993) Cellular hypertrophy and hyperplasia of airway smooth muscle underlying bronchial asthma. Am J Resp Crit Care Med 148: 720–726.

    Article  CAS  Google Scholar 

  150. Gabella G (1994) Anatomy of airways smooth muscle. In: Reabum D, Giembycz MA, eds. Airways Smooth Muscle: Structure, Innervation and Neurotransmission. Birkhauser Verlag, Basel, pp. 1–27.

    Google Scholar 

  151. Daniel EE, Triggle DJ (1993) Structure and function of airway smooth muscle. In: Middleton E Jr, Busse WW, Ellis EF, Reed CR, Yunginger JW, eds. Allergy: Principles and Practice. Mosby Year Book Co., St. Louis, MO, pp. 629–649.

    Google Scholar 

  152. Janssen L, Daniel EE (1994) Myogenic control of airways smooth muscle and cell-to-cell coupling. In: Raeburn D, Giembycz MA, eds. Airways Smooth Muscle: Development, and Regulation of Contractility. Birkhauser Verlag, Basel, pp. 101–136.

    Chapter  Google Scholar 

  153. Laitinen A, Laitinen LA, Moss R, Widdicombe JG (1989) Organisation and structure of the tracheal and bronchial blood vessels in the dog. J Anat 165: 133–140.

    PubMed  CAS  Google Scholar 

  154. Laitinen LA, Robinson NP, Laitinen A, Widdicombe JG (1986) Relationship between tracheal mucosal thickness and vascular resistance in dogs. J Appl Physiol 61: 2186–2194.

    PubMed  CAS  Google Scholar 

  155. Widdicombe J (1993) New perspectives on basic mechanisms in lung disease: 4. Why are the airways so vascular? Thorax 48: 290–295.

    Article  PubMed  CAS  Google Scholar 

  156. Laitinen LA, Laitinen A (1992) The bronchial circulation: Histology and electron microscopy. In: Butler J, ed. The Bronchial Circulation. Dekker, New York, pp. 79–98.

    Google Scholar 

  157. Laitinen LA, Laitinen A, Widdicombe J (1987) Effects of inflammatory and other mediators on airway vascular beds. Am Rev Respir Dis 135: S67–S70.

    PubMed  CAS  Google Scholar 

  158. Lundberg JM, Lundblad C, Martling C, Saria A, St. Jame P, Anggard A (1987) Coexistence of multiple peptides and classic transmitters in airway neurons: functional and pathophysiologic aspects. Am Rev Respir Dis 136:S16–S22.

    Google Scholar 

  159. Lundblad L (1984) Protective reflexes and vascular beds in the nasal mucosa elicited by activation of capsaicin sensitive substance P immunoreactive trigeminal neurons. Acta Physiol Scand (Suppl)529: 1–42.

    Google Scholar 

  160. Deffebach ME, Salonen RO, Webber SE, Widdicombe JG (1991) Cold and hyperosmolar fluids in canine trachea: vascular and smooth muscle tone and albumin flux. J Appl Physiol 71: 50–59.

    PubMed  Google Scholar 

  161. Salonen RO, Webber SE, Deffebach ME, Widdicombe JG (1991) Tracheal vascular and smooth muscle responses to air temperature and humidity in dogs. J Appl Physiol 71: 50–59.

    PubMed  CAS  Google Scholar 

  162. McFadden ERJ (1990) Hypothesis: exercise-induced asthma as a vascular phenomenon. Lancet, 335: 880–883.

    Article  PubMed  Google Scholar 

  163. Cauna N (1982) Blood and nerve supply of the nasal lining. In: Proctor DE, Anderson ID, eds. The Nose: Upper Airway Physiology and the Atmospheric Environment. Elsevier Biomedical, Amsterdam, pp. 45–69.

    Google Scholar 

  164. McDonald DM (1990) The ultrastructure and permeability of tracheobronchial blood vessels in health and disease. Eur Respir J 3: 572–855.

    Google Scholar 

  165. Cole P (1988) Nasal airflow resistance. In: Mathew OP, Sant’Ambrogio G, eds. Respiratory Function of the Upper Airway. Dekker, New York, pp. 391–414.

    Google Scholar 

  166. Baffle EM, Sotres-Vega A, Pare PD (1994) Airway blood flow and bronchovascular congestion in sheep. Eur Respir J 7: 1300–1307.

    Article  Google Scholar 

  167. Schleimer RP, Benenati SV, Friedman B, Bochner BS (1991) Do cytokines play a role in leukocyte recruitment and activation in the lungs? Am Rev Respir Dis 143: 1169–1174.

    PubMed  CAS  Google Scholar 

  168. Schleimer, Sterbinsky, Saiser, Bickel, Klunk, Tomoika, Newman, Luscinskas, Gimbrone, McIntyre, Bochner, (1992) IL-4 induces adherence of human eosinophils and basophils but not neutrophils to endothelial cells. J Immunol 148: 1048–1092.

    Google Scholar 

  169. Jeffery PK (1982) Bronchial mucosa and its innervation. In: Cumming G, Bonsignore G, eds. Cell Biology and the Lung Plenum, New York, pp. 1–32.

    Google Scholar 

  170. Shipperbottom CA (1988) Histochemical studies of the autonomic innervation of normal and diseased human lung. Thesis submitted to the University of London for MPhil degree.

    Google Scholar 

  171. Uddman R, Sundler F (1987) Neuropeptides in the airways. Am Rev Respir Dis 136: S3–S8.

    Article  PubMed  CAS  Google Scholar 

  172. Dusser DJ, Umeno E, Graf PD, Djokic T, Borson DB, Nadel JA (1988) Airway neutral endopeptidaselike enzyme modulates tachykinin-induced bronchoconstriction in vivo. J Appl Physiol 65: 2585–2591.

    PubMed  CAS  Google Scholar 

  173. Dusser DJ, Djokic TD, Borson DB, Nadel JA (1989) Cigarette smoke induces bronchoconstrictor hyper-responsiveness to substance P and inactivates airway neutral endopeptidase in the guinea pig lung. Possible role of free radicals. J Clin Invest 84: 900–906.

    Google Scholar 

  174. Barnes PJ (1992) Modulation of neurotransmission in airways. Physiol Rev 72: 699–729.

    PubMed  CAS  Google Scholar 

  175. Jeffery PK, Reid L (1973) Intraepithelial nerves in normal rat airways: a quantitative electron microscopic study. J Anat 114: 33–45.

    Google Scholar 

  176. Hung KS (1976) Fine structure of tracheobronchial epithelial nerves of the cat. Anat Rec 185: 85–91.

    Article  PubMed  CAS  Google Scholar 

  177. Das RM, Jeffery PK, Widdicombe JG (1978) The epithelial innervation of the lower respiratory tract of the cat. J Anat 126: 123–131.

    PubMed  CAS  Google Scholar 

  178. Fillenz M, Woods MJ (1970) Sensory innervation of airways. In: Porter R, ed. Breathing: Hering-Breuer Centenary Symposium. Ciba Foundation Symp., Amsterdam, pp. 101–109.

    Chapter  Google Scholar 

  179. Boucher RC, Johnson J, Inoue S, Hulbert W, Hogg JC (1980) The effect of cigarette smoking on the permeability of guinea pig airways. Lab Invest 43: 94–100.

    PubMed  CAS  Google Scholar 

  180. Cook RD, King RS (1969) A neurite-receptor complex in the avian lung: electron microscopical observations. Experientia 25: 1162–1164.

    Article  PubMed  CAS  Google Scholar 

  181. Cook RD, King RS (1969) Nerves of the avian lung: electron microscopy. J Anat 105: 202–203.

    PubMed  CAS  Google Scholar 

  182. King AS, McLelland J, Cook RD, King DZ, Walsh C (1974) The ultrastructure of afferent nerve endings in the avian lung. Resp Physiol 22: 21–40.

    Article  CAS  Google Scholar 

  183. Walsh C, McLelland J (1974) The ultrastructure of the avian extrapulmonary respiratory epithelium. Acta Anat 89: 412–422.

    Article  PubMed  CAS  Google Scholar 

  184. Phipps RJ, Richardson PS, Corfield A, Gallagher JT, Jeffery PK, Kent PW, Passatore M (1977) A physiological biochemical and histological study of goose tracheal mucin and its secretion. Phil Trans Roy Soc (Lond) B, 279: 513–543.

    Article  CAS  Google Scholar 

  185. Rhodin J (1966) The ciliated cells. Ultrastructure and function of the human tracheal mucosa. Am Rev Respir Dis 93: 1–15.

    PubMed  Google Scholar 

  186. Lauweryns JM, Peuskens JC, Cokelaere M (1970) Argyrophil, fluorescent and granulated (peptide and amine producing?) AFG cells in human infant bronchial mucosa. Light and electron microscopic studies. Life Sci 9: 1417–1429.

    Google Scholar 

  187. Laitinen A (1985) Ultrastructural organization of intraepithelial nerves in the human airway tract. Thorax 40: 488–492.

    Article  PubMed  CAS  Google Scholar 

  188. Hulbert WC, Walker DC, Jackson A, Hogg JC (1981) Airway permeability to horseradish peroxidase in guinea pigs: the repair phase after injury by cigarette smoke. Am Rev Respir Dis 123: 320–326.

    PubMed  CAS  Google Scholar 

  189. McDonald DM (1987) Neurogenic inflammation in the respiratory tract: actions of sensory nerve mediators on blood vessels and epithelium of the airway mucosa. Am Rev Respir Dis 136: S65 — S71.

    PubMed  CAS  Google Scholar 

  190. McDonald DM (1988) Neurogenic inflammation in the rat trachea I. Changes in venules, leucocytes and epithelial cells. J Neurocytol 17: 583–603.

    Article  PubMed  CAS  Google Scholar 

  191. Richardson JB, Ferguson CC (1979) Neuromuscular structure and function in the airways. Fed Proc 38: 202–208.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Jeffery, P.K., Gizycki, M.J., Rogers, A.V. (1998). Airway Wall Structure. In: Denburg, J.A. (eds) Allergy and Allergic Diseases. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-4757-2776-0_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-2776-0_14

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-026-7

  • Online ISBN: 978-1-4757-2776-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics