Skip to main content

Molecular Mechanisms of Isotype Switching to IgE

  • Chapter
Allergy and Allergic Diseases
  • 152 Accesses

Abstract

During an immune response, B-lymphocytes express different immunoglobulin (Ig) heavy-chain isotypes sharing the same variable region. This phenomenon (isotype switching) allows a single B-cell clone to produce antibodies with the same fine specificity, but different effector functions. In order to switch to a particular isotype, a B-cell needs to receive two signals: signal 1 is cytokine-dependent, results in the activation of transcription at a specific region of the Ig locus, and determines isotype specificity. Signal 2 activates the recombination machinery, and leads to DNA switch recombination.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Coffman RL, Lebman DA, Rothman P (1993) The mechanism and regulation of immunoglobulin isotype switching. Adv Immunol 54: 229.

    Article  PubMed  CAS  Google Scholar 

  2. Vercelli D, Geha RS (1992) Regulation of isotype switching. Curr Opin Immunol 4: 794.

    Article  PubMed  CAS  Google Scholar 

  3. Jung S, Rajewsky K, Radbruch A (1993) Shutdown of class switch recombination by deletion of a switch region control element. Science 259: 984.

    Article  PubMed  CAS  Google Scholar 

  4. Zhang J, Bottaro A, Li S, Stewart V, Alt FW (1993) Targeted mutation in the Iy2b exon results in a selective Py2b deficiency in mice. EMBO J 12: 3529.

    PubMed  CAS  Google Scholar 

  5. Bottaro A, Lansford R, Xu L, Zhang J, Rothman P, Alt FW (1994) S region transcription per se promotes basal IgE class switch recombination but additional factors regulate the efficiency of the process. EMBO J 13: 665.

    PubMed  CAS  Google Scholar 

  6. Lorenz M, Jung S, Radbruch A (1995) Switch transcripts in immunoglobulin class switching. Science 267: 1825.

    Article  PubMed  CAS  Google Scholar 

  7. Li SC, Rothman PB, Zhang J, Chan C, Hirsh D, Alt FW (1994) Expression of Ip.-Cy hybrid germline transcripts subsequent to immunoglobulin heavy chain class switching. Int Immunol 6: 491.

    Article  PubMed  CAS  Google Scholar 

  8. Durdik J, Gerstein RM, Rath S, Robbins PF, Nisonoff A, Seising E (1989) Isotype switching by a micro-injected µ immunoglobulin heavy chain gene in transgenic mice. Proc Natl Acad Sci USA 86: 2346.

    Article  PubMed  CAS  Google Scholar 

  9. Shimizu A, Nussenzweig M, Mizuta T-R, Leder P, Honjo T (1989) Immunoglobulin double-isotype expression by trans-mRNA in a human immunoglobulin transgenic mouse. Proc Nati Acad Sci USA 86: 8020.

    Article  CAS  Google Scholar 

  10. Shimizu A, Nussenzweig MC, Han H, Sanchez M, Honjo T (1991) Trans-splicing as a possible molecular mechanism for the multiple isotype expression of the immunoglobulin gene. J Exp Med 173: 1385.

    Article  PubMed  CAS  Google Scholar 

  11. Delphin S, Stavnezer J (1995) Characterization of an IL-4 responsive region in the immunoglobulin heavy chain germline a promoter: Regulation by NF-IL-4, a C/EBP family member, and NF-kB/p50. J Exp Med 181: 181.

    Article  PubMed  CAS  Google Scholar 

  12. Snapper CM, Zelazowski P, Rosas FR, Kehry MR, Tian M, Baltimore D, Sha WC (1996) B cells from p50/NF-xB knockout mice have selective defects in proliferation, differentiation, germ line CH transcription, and Ig class switching. J Immunol 156: 183.

    PubMed  CAS  Google Scholar 

  13. Hou J, Schindler U, Henzel WJ, Ho TC, Brasseur M, McKnight SL (1994) An interleukin-4-induced transcription factor: IL-4 Stat. Science 265: 1701.

    Article  PubMed  CAS  Google Scholar 

  14. Quelle FW, Shimoda K, Thierfelder W, Fischer C, Kim A, Ruben SM, Cleveland JL, Pierce JH, Keegan AD, Nealms K, Paul WE, Ihle JN (1995) Cloning of murine and human Stat6, Stat proteins that are tyrosine phosphorylated in response to IL-4 and IL-3 but are not required for mitogenesis. Mol Cell Biol 15: 3336.

    PubMed  CAS  Google Scholar 

  15. Ivashkiv LB (1995) Cytokines and STATs: How can signals achieve specificity? Immunity 3: 1.

    Article  PubMed  CAS  Google Scholar 

  16. Malabarba MG, Kirken RA, Rui H, Koettnitz K, Kawamura M, O’Shea JJ, Kalthoff FS, Farrar WL (1995) Activation of JAK3, but not JAK1, is critical to interleukin-4 stimulated proliferation and requires a membrane proximal region of IL-4 receptor a. J Biol Chem 270: 9630.

    Article  PubMed  CAS  Google Scholar 

  17. Schindler U, Wu P, Rothe M, Brasseur M, McKnight SL (1995) Components of a Stat recognition code: evidence for two layers of molecular selectivity. Immunity 2: 689.

    Article  PubMed  CAS  Google Scholar 

  18. Kotanides H, Reich NC (1993) Requirement of tyrosine phosphorylation for rapid activation of a DNA binding factor by IL-4. Science 262: 1265.

    Article  PubMed  CAS  Google Scholar 

  19. Albrecht B, Peiritsch S, Woisetschläger M (1994) A bifunctional control element in the human IgE germline promoter involved in repression and IL-4 activation. Int Immunol 6: 1143.

    Article  PubMed  CAS  Google Scholar 

  20. Köhler I, Rieber EP (1993) Allergy-associated Ia and Fce receptor II (CD23b) genes activated via binding of an interleukin-4-induced transcription factor to a novel responsive element. Eur J Immunol 23: 3066.

    Article  PubMed  Google Scholar 

  21. Liao F, Birshtein BK, Busslinger M, Rothman P (1994) The transcription factor BSAP ( NF-HB) is essential for immunoglobulin germ-line a transcription. J Immunol 152: 2904.

    Google Scholar 

  22. Thienes CP, DeMonte L, Montecelli S, Busslinger M, Gould HJ, Vercelli D (1997) The transcription factor B-cell-specific activator protein (BSAP) enhances both IL-4 and CD40-mediated activator of the human a germline promoter. J Immunol 158: 5874.

    PubMed  CAS  Google Scholar 

  23. Adams B, Dörfler P, Aguzzi A, Kozmik Z, Urbanek P, Maurer-Fogy I, Busslinger M (1992) Pax-5 encodes the transcription factor BSAP and is expressed in B lymphocytes, the developing CNS, and adult testis. Genes Dev 6: 1589.

    Article  PubMed  CAS  Google Scholar 

  24. Hagman J, Grosschedl R (1994) Regulation of gene expression at early stages of B-cell differentiation. Curr Opin Immunol 6: 222.

    Article  PubMed  CAS  Google Scholar 

  25. Reimold AM, Ponath PD, Li Y-S, Hardy RR, David CS, Strominger JL, Glimcher LH (1996) Transcription factor B cell lineage-specific activator protein regulates the gene for human X-box binding protein 1. J Exp Med 183: 393.

    Article  PubMed  CAS  Google Scholar 

  26. Neurath MF, Max EE, Strober W (1995) PaxS (BSAP) regulates the murine immunoglobulin 3’a enhancer by suppressing binding of NF-a13, a protein that controls heavy chain transcription. Proc Natl Acad Sci USA 92: 5336.

    Article  PubMed  CAS  Google Scholar 

  27. Wakatsuki Y, Neurath MF, Max EE, Strober W (1994) The B cell-specific transcription factor BSAP regulates B-cell proliferation. J Exp Med 179: 1099.

    Article  PubMed  CAS  Google Scholar 

  28. Stüber E, Neurath M, Calderhead D, Perry Fell H, Strober W (1995) Cross-linking of OX40 ligand, a member of the TNF/NGF cytokine family, induces proliferation and differentiation in murine splenic B cells. Immunity 2: 507.

    Article  PubMed  Google Scholar 

  29. Fujita K, Jumper MD, Meek K, Lipsky PE (1995) Evidence for a CD40 response element, distinct from the IL-4 response element, in the germline a promoter. Int Immunol 7: 1529.

    Article  PubMed  CAS  Google Scholar 

  30. Kim J, Reeves R, Rothman P, Boothby M (1995) The non-histone chromosomal protein HMG-I(Y) contributes to repression of the immunoglobulin heavy chain germ-line a RNA promoter. Eur J Immunol 25: 798.

    Article  PubMed  CAS  Google Scholar 

  31. Shapira SK, Vercelli D, Jabara HH, Fu SM, Geha RS (1992) Molecular analysis of the induction of IgE synthesis in human B cells by IL-4 and engagement of CD40 antigen. J Exp Med 175: 289.

    Article  PubMed  CAS  Google Scholar 

  32. Warren WD, Berton MT (1995) Induction of germ-line yl and e Ig gene expression in murine B cells. IL-4 and the CD40 ligand-CD40 interactions provide distinct but synergistic signals. J Immunol 155: 5637.

    PubMed  CAS  Google Scholar 

  33. Max EE (1993) Immunoglobins: Molecular Genetics. In: Paul WE, ed. Fundamental Immunology. Raven, New York, p. 235.

    Google Scholar 

  34. MacKenzie T, Dosch HM (1989) Clonal and molecular characteristics of the human IgE-committed B cell subset. J Exp Med 169: 407.

    Article  PubMed  CAS  Google Scholar 

  35. Chan MA, Benedict SH, Dosch H-M, Huy MF, Stein LD (1990) Expression of IgE from a nonrearranged e locus in cloned B-lymphoblastoid cells that also express IgM. J Immunol 144: 3563.

    PubMed  CAS  Google Scholar 

  36. Shapira SK, Jabara HH, Thienes CP, Ahern DJ, Vercelli D, Gould HJ, Geha RS (1991) Deletional switch recombination occurs in IL-4 induced isotype switching to IgE expression by human B cells. Proc Natl Acad Sci USA 88: 7528.

    Article  PubMed  CAS  Google Scholar 

  37. Jabara HH, Loh R, Ramesh N, Vercelli D, Geha RS (1993) Sequential switching from µ to e via y4 in human B cells stimulated with IL-4 and hydrocortisone. J Immunol 151: 4528.

    PubMed  CAS  Google Scholar 

  38. Lundgren M, Persson U, Larsson P, Magnusson C, Smith CIE, Hammarström L, Severinson E (1989) Interleukin 4 induces synthesis of IgE and IgG4 in human B cells. Eur J Immunol 19: 1311.

    Article  PubMed  CAS  Google Scholar 

  39. Gascan H, Gauchat J-F, Aversa G, van Vlasselaer P, de Vries JE (1991) Anti-CD40 monoclonal antibodies or CD4+ T cell clones and IL-4 induce IgG4 and IgE switching in purified human B cells via different signaling pathways. J Immunol 147: 8.

    PubMed  CAS  Google Scholar 

  40. Fujieda S, Zhang K, Saxon A (1995) IL-4 plus CD40 monoclonal antibody induces human B cells y subclass-specific isotype switch: switching to yl, ‘y3, and y4, but not y2. J Immunol 155: 2318.

    PubMed  CAS  Google Scholar 

  41. Mills FC, Mitchell MP, Harindranath N, Max EE (1995) Human Ig Sy regions and their participation in sequential switching to IgE. J Immunol 155: 3021.

    PubMed  CAS  Google Scholar 

  42. Zhang K, Mills FC, Saxon A (1994) Switch circles from IL-4-directed e class switching from human B lymphocytes—evidence for direct, sequential and multiple step sequential switch from to e Ig heavy chain gene. J Immunol 152: 3427.

    PubMed  CAS  Google Scholar 

  43. van der Stoep N, Korver W, Logtenberg T (1994) In vivo and in vitro IgE isotype switching in human B lymphocytes: evidence for a predominantly direct IgM to IgE class switch program. Eur J Immunol 24: 1307.

    Article  PubMed  Google Scholar 

  44. Zhang K, Cheah H-K, Saxon A (1995) Secondary deletional recombination of rearranged switch region in Ig isotype-switched B cells. A mechanism for isotype stabilization. J Immunol 154: 2237.

    Google Scholar 

  45. Jung S, Siebenkotten G, Radbruch A (1994) Frequency of Immunoglobulin E class switching is autonomously determined and independent of prior switching to other classes. J Exp Med 179: 2023.

    CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Vercelli, D. (1998). Molecular Mechanisms of Isotype Switching to IgE. In: Denburg, J.A. (eds) Allergy and Allergic Diseases. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-4757-2776-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-2776-0_1

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-026-7

  • Online ISBN: 978-1-4757-2776-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics