Influence of ecological factors on accumulation of metal mixtures

  • Claude Amiard-Triquet
  • Jean-Claude Amiard


A very large number of experimental studies in aquatic ecotoxicology have been devoted to the assessment of metal uptake in different classes of living organisms. Most of them are based on analysis of single toxicants, despite the fact that under field conditions the biota is generally exposed to multicontaminant pollution. In addition to producing a direct response in biota, a toxic metal can also act by interfering with other metal ions or elements. Thus, the concurrent presence of two or more metallic contaminants in the organism often yields metal uptake that deviates from those currently observed for individual metals. If the effect is an enhancement of bioaccumulation, it is said to be synergistic. If the effect is a decrease of metal incorporation, it is said to be antagonistic.


Mytilus Edulis High Molecular Weight Protein Shore Crab Metal Mixture Pilot Whale 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ahsanullah, M., Negilski, D.S. and Mobley, M.C. (1981) Toxicity of zinc, cadmium and copper to the shrimp Callianassa australiensis. III. Accumulation of metals. Mar. Biol. 64, 311–316.Google Scholar
  2. Amiard, J.-C. and Berthet, B. (1996) Fluctuations of cadmium, copper, lead and zinc concentrations in field populations of the Pacific oyster Crassostrea gigas in the Bay of Bourgneuf (France). Ann. Inst. Oceanogr. 72(2), 195–207.Google Scholar
  3. Amiard-Triquet, C. (1989) Bioaccumulation et nocivité relatives de quelques polluants métalliques à l’égard des espèces marines. Bull. Ecol. 20 (2), 129–151.Google Scholar
  4. Amiard-Triquet, C, Jeantet, A.-Y. and Berthet, B. (1993) Metal transfer in marine food chains: bioaccumulation and toxicity. Acta Biol. Hung. 44 (4), 387–409.Google Scholar
  5. Aoyama, I. and Okamura, H. (1993) Interactive toxic effect and bioconcentration between cadmium and chromium using continuous algal culture. Environ. Toxicol. Wat. Qual. 8 (3), 255–269.CrossRefGoogle Scholar
  6. Ballan-Dufrançais, C, Marcaillou, C. and Amiard-Triquet, C. (1991) Response of the phytoplanktonic alga Tetraselmis suecica to copper and silver exposure: vesicular metal bioaccumulation and lack of starch bodies. Biol. Cell 72, 103–112.CrossRefGoogle Scholar
  7. Barghigiani, C, D’Ulivo, A., Zamboni, R. and Lampugnani, L. (1993) Interaction between selenium and cadmium in Eledone cirrhosa of the Northern Tyrrhenian Sea. Mar. Pollut. Bull. 26 (4), 212–216.CrossRefGoogle Scholar
  8. Berthet, B., Amiard, J.-C, Amiard-Triquet, C. and Métayer, C. (1985) Accumulation de quatre métaux (Cd, Pb, Cu, Zn) chez les animaux marins côtiers et leurs interactions mutuelles, in Actes du 1er Colloque d’Océanologie côtière (éd. @@ADERMA), Bordeaux, pp. 287–299.Google Scholar
  9. Bjerregaard, P. (1982) Accumulation of cadmium and selenium and their mutual interaction in the shore crab Carcinus maenas (L.). Aquat. Toxicol. 2, 113–125.CrossRefGoogle Scholar
  10. Bjerregaard, P. (1985) Effect of selenium on cadmium uptake in the shore crab Carcinus maenas (L.). Aquat. Toxicol. 7, 177–189.CrossRefGoogle Scholar
  11. Bjerregaard, P. (1988a) Effect of selenium on cadmium uptake in selected benthic invertebrates. Mar. Ecol. Prog. Ser. 48, 17–28.CrossRefGoogle Scholar
  12. Bjerregaard, P. (1988b) Interaction between selenium and cadmium in the hemolymph of the shore crab Carcinus maenas (L.). Aquat. Toxicol. 13, 1–11.CrossRefGoogle Scholar
  13. Braek, G.S., Maines, D. and Jensen, A. (1980) Heavy metal tolerance of marine phy-toplankton. IV. Combined effect of zinc and cadmium on growth and uptake in some marine diatoms. J. Exp. Mar. Biol. Ecol. 42, 39–54.CrossRefGoogle Scholar
  14. Brown, B.E. (1978) Lead detoxification by a copper-tolerant isopod. Nature 276, 388–390.CrossRefGoogle Scholar
  15. Brown, B.E. (1982) The form and function of metal-containing granules in invertebrate tissues. Biol. Res. 57, 621–667.CrossRefGoogle Scholar
  16. Bryan, G.W. and Hummerstone, L.G. (1973) Adaptation of the polychaete Nereis diversicolor to estuarine sediments containing high concentrations of zinc and cadmium. J. Mar. Biol. Ass. UK 53, 839–857.CrossRefGoogle Scholar
  17. Carpene, E. and George, S.G. (1981) Absorption of cadmium by gills of Mytilus edulis (L.). Molec. Physiol. 1, 23–24.Google Scholar
  18. Caurant, F. (1994) Bioaccumulation de quelques éléments traces (As, Cd, Cu, Hg, Se, Zn) chez le Globicéphale noir (Globicephala melas, Delphinidé), pêché au large des îles Féroé. Thèse de Doctorat, Université de Nantes, 206 pp. + Annexes.Google Scholar
  19. Caurant, F., Amiard, J.-C, Amiard-Triquet, C. and Sauriau, P.G. (1994) Ecological and biological factors controlling the concentrations of trace elements (As, Cd, Cu, Hg, Se, Zn) in delphinids Globicephala melas from the North Atlantic Ocean. Mar. Ecol. Prog. Ser. 103, 207–219.CrossRefGoogle Scholar
  20. Chappuis, P. (1991) Les oligo-éléments en médecine et biologie, Lavoisier, Paris.Google Scholar
  21. Chou, CL., Uthe, J.F., Castell, J.D. and Kean, J.C. (1987) Effect of dietary cadmium on growth, survival, and tissue concentrations of cadmium, zinc, copper, and silver in juvenile American lobster (Homarus americanus). Can. J. FishAquat. Sci. 44 (8), 1443–1450.CrossRefGoogle Scholar
  22. Coombs, T.L. (1976) The significance of multielement analyses in metal pollution studies, in Ecological Toxicology Research, (eds A.D. Mclntyre and CF. Mills), Plenum Publ. Corp., New York, pp. 187–195.Google Scholar
  23. Cosson, R.P. (1989) Relationship between heavy metal and metallothionein-like protein levels in the liver and kidney of two birds: the greater flamingo and the little egret. Comp. Biochem. Physiol. 96C (1), 243–248.Google Scholar
  24. Cosson, R.P. and Métayer, C (1993) Etude de la contamination des flamants de Camargue par quelques éléments traces: Cd, Cu, Hg, Pb, Se et Zn. Bull. Ecol. 24 (1), 17–30.Google Scholar
  25. Cosson, R.P., Amiard-Triquet, C and Amiard, J.-C. (1991) Metallothioneins and detoxification. Is the use of detoxication protein for Mts a language abuse? Water, Air, Soil Pollut. 57–58, 555–567.CrossRefGoogle Scholar
  26. Couillard, Y., Campbell, P.G.C, Pellerin-Massicotte, J. and Auclair, J.C. (1995) Field transplantation of a freshwater bivalve, Pyganodon grandis, across a metal contamination gradient. II. Metallothionein response to Cd and Zn exposure, evidence for cytotoxicity, and links to effects at higher levels of biological organization. Can. J. Fish. Aquat. Sci. 52, 703–715.CrossRefGoogle Scholar
  27. Cuvin-Aralar, M.L. and Furness, R. (1991) Mercury and selenium interaction: a review. Ecotoxicol. Environ. Saf. 21, 348–364.CrossRefGoogle Scholar
  28. Dallinger, R. (1993) Strategies of metal detoxification in terrestrial invertebrates, in Ecotoxicology of Metals in Invertebrates, (eds R. Dallinger and P.S. Rainbow), Lewis Publishers, Boca Raton, pp. 245–289.Google Scholar
  29. Eisler, R. and Gardner, G.R. (1973) Acute toxicity to an estuarine teleost of mixtures of cadmium, copper and zinc salts. J. Fish. Biol. 5, 131–142.CrossRefGoogle Scholar
  30. Elliott, N.G., Swain, R. and Ritz, D.A. (1986) Metal interaction during the accumulation by the mussel Mytilus edulis planulatus. Mar. Biol. 93 (3), 395–399.CrossRefGoogle Scholar
  31. Ettajani, H., Amiard-Triquet, C and Amiard, J.-C. (1992) Etude expérimentale du transfert de deux éléments traces (Ag, Cu) dans une chaîne trophique marine: eau — particules (sédiment naturel, microalgue) — Mollusques filtreurs (Crassostrea gigas Thunberg). Wat. Air Soil Polin 65, 215–236.CrossRefGoogle Scholar
  32. Ettajani, H. and Pirastru, L. (1992) Méthodologie pour prévoir le transfert des métaux lourds dans les chaînes trophiques marines incluant des Mollusques filtreurs. Hydroécol. Appl. 4 (2), 79–90.CrossRefGoogle Scholar
  33. Evtushenko, Z.S., Lukyanova, O.N. and Khristoforova, N.N. (1984) Biochemical changes in selected body tissues of the scallop Patinopecten yessoensis under long-term exposure to low Cd concentrations. Mar. Ecol. Prog. Ser. 20, 165–170.CrossRefGoogle Scholar
  34. Evtushenko, Z.S., Belcheva, N.N. and Lukyanora, O.N. (1986a) Cadmium accumulation in organs of the scallop Mizuhopecten yessoensis. I. Activities of phosphatases and composition and amount of lipids. Comp. Biochem. Physiol. 83C, 371–376.Google Scholar
  35. Evtushenko, Z.S., Belcheva, N.N. and Lukyanora, O.N. (1986b) Cadmium accumulation in organs of the scallop Mizuhopecten yessoensis. II. Subcellular distribution of metals and metal-binding proteins. Comp. Biochem. Physiol. 83C, 377–383.Google Scholar
  36. Fowler, S.W. and Benayoun, G. (1974) Experimental studies on cadmium flux through marine biota, in Comparative Studies of Food and Environmental Contamination, (ed. @@IAEA, Vienna), Radioactivity in the Sea 44, 159–178.Google Scholar
  37. Funk, A.E., Day, F.A. and Brady, F.O. (1987) Displacement of zinc and copper from copper-induced metallothionein by cadmium and by mercury: in vivo and ex vivo studies. Comp. Biochem. Physiol. 86C (1), 1–6.Google Scholar
  38. George, S.G. and Olsson, P.-E. (1994) Metallothioneins as indicators of trace metal pollution, in Biomonitoring of Coastal Waters and Estuaries, (ed. KJ.M. Kramer), CRC Press, Boca Raton, pp. 151–178.Google Scholar
  39. Gill, T.S., Bianchi, C.P. and Epple, A. (1992) Trace metal (Cu and Zn) adaptation of organ systems of the American eel, Anguilla rostrata, to external concentrations of cadmium. Comp. Biochem. Physiol. 100C, 361–371.Google Scholar
  40. Haguenoer, J.M. and Furon, D. (1982) Toxicologie et hygiène industrielle. Vol. II. Les dérivés minéraux. Techniques et Documentation, Paris.Google Scholar
  41. Haritonidis, S., Rijstenbil, J.W., Malea, P. et al. (1994) Trace metal interactions in the macroalga Enteromorpha proliféra (O.F. Müller)J.Ag., grown in water of the Scheldt estuary (Belgium and SW Netherlands), in response to cadmium exposure. BioMetals 7, 61–66.CrossRefGoogle Scholar
  42. Helle, E. (1981) Reproductive trends and occurrence of organochlorines and heavy metals in the Baltic seal populations. Comm. Meet. int. Coun. Explor. Sea C.M.-ICES E:37.Google Scholar
  43. Hemelraad, J., Kleinveld, H.A., De Roos, A.M. et al. (1987) Cadmium kinetics in freshwater clams. III. Effects of zinc on uptake and distribution of cadmium in Anodonta cygnea. Arch. Environ. Contam. Toxicol. 16, 95–101.CrossRefGoogle Scholar
  44. Hilton, J.W. and Hodson, P.V. (1983) Effect of increased dietary carbohydrate on selenium metabolism and toxicity in rainbow trout (Salmo gairdneri). J. Nutr. 113 (6), 1241–1248.Google Scholar
  45. Holwerta, D.A. (1991) Cadmium kinetics in freshwater clams. V. Cadmium-copper interaction in metal accumulation by Anodonta cygnea and characterization of the metal-binding protein. Arch. Environ. Contam. Toxicol. 21, 432–437.CrossRefGoogle Scholar
  46. Holwerta, D.A., De Knecht, J.A., Hemelraad, J. and Veenof, P.R. (1989) Cadmium kinetics in freshwater clams. Uptake of cadmium by the excised gill of Anodonta cygnea. Bull. Environ. Contam. Toxicol. 42, 382–388.CrossRefGoogle Scholar
  47. Honda, K. and Tasukawa, R. (1983) Distribution of cadmium and zinc in tissues and organs and their age-related changes in striped dolphins, Stenella coeruleoalba. Arch. Environ. Contam. Toxicol. 12, 543–550.CrossRefGoogle Scholar
  48. Ishiguro, T., Kitajama, K., Chiba, M. et al. (1982) Studies on Cd-binding proteins in short-necked clam. Bull. Jap. Soc. Sci. Fish. 48, 793–798.CrossRefGoogle Scholar
  49. Jackim, E., Morrison, G. and Steele, R. (1977) Effects of environmental factors on radiocadmium uptake by four species of marine bivalves. Mar. Biol. 40 (4), 303–308.CrossRefGoogle Scholar
  50. Julshamn, K., Andersen, A., Ringdal, O. and Morkore, J. (1987) Trace elements intake in the Faroe Islands. I. Element levels in edible parts of pilot whales (Globicephalus melaenus). Sci. Tot. Environ. 65, 53–62.CrossRefGoogle Scholar
  51. Kim, J.H., Birks, E. and Heisinger, J.F. (1977) Protective action of selenium against mercury in Northern Creek chubs. Bull. Environ. Contam. Toxicol. 17 (2), 132–136.CrossRefGoogle Scholar
  52. Klaverkamp, J.F., Hodgins, D.A. and Lutz, A. (1983) Selenite toxicity and mercury-selenium interactions in juvenile fish. Arch. Environ. Contam. Toxicol. 12, 405–413.Google Scholar
  53. Köhler, K. and Rijsgard, H.U. (1982) Formation of metallothioneins in relation to accumulation of cadmium in the common mussel Mytilus edulis. Mar. Biol. 66, 53–58.CrossRefGoogle Scholar
  54. Kungolos, A. and Aoyama, I. (1993) Interactive effect, food effect, and bioaccumulation of cadmium and chromium for the system Daphnia magna-Chlorella ellipsoidea. Environ. Toxicol. Wat. Qual. 8 (4), 351–369.CrossRefGoogle Scholar
  55. Lauren, DJ. (1991) The fish gill: a sensitive target for waterborne pollutants. Aquat. Toxicol. Risk Assessment: 14th Vol., ASTM STP 1124, (eds M.A. Mayes and M.G. Barron), American Society for Testing and Materials, pp. 223–244.Google Scholar
  56. Mackay, N.J., Kazacos, M.N., Williams, R.J. and Leedow, M.I. (1975) Selenium and heavy metals in black marlin. Mar. Pollut. Bull. 6 (4), 57–61.CrossRefGoogle Scholar
  57. Magos, L. and Webb, M. (1980) The interactions of selenium with cadmium and mercury. CRC Crit. Rev. Toxicol. 8, 1–42.CrossRefGoogle Scholar
  58. Magos, L., Clarkson, T.W., Sparrow, S. and Hudson, A.R. (1987) Comparison of the protection given by selenite, selenomethionine and biological selenium against the renotoxicity of mercury. Arch. Toxicol. 60, 422–426.CrossRefGoogle Scholar
  59. Martin, J.-L. (1973) Iron metabolism in Cancer irroratus (Crustacea Decapoda) during the intermoult cycle, with special reference to iron in the gills. Comp. Biochem. Physiol. 46A, 123–129.CrossRefGoogle Scholar
  60. Martoja, R. and Berry, J.P. (1980) Identification of tienmannite as a probable product of demethylation of mercury by selenium in cetaceans. A complement to the scheme of the biological cycle of mercury. Vie Milieu 30 (1), 7–10.Google Scholar
  61. McLeese, D.W. and Ray, S. (1984) Uptake and excretion of cadmium, CdEDTA, and zinc by Macoma balthica. Bull. Environ. Contam. Toxicol. 32, 85–92.CrossRefGoogle Scholar
  62. Mouneyrac, C, Berthet, B., Amiard, J.-C. and Cosson, R.P. (1995) Caractérisation des composés moléculaires fixant le Cd chez des huîtres (Crassostrea gigas) provenant d’un site contaminé, in Colloque International ‘Marqueurs biologiques de pollution’, ANPP, Chinon, pp. 47–54.Google Scholar
  63. Nielsen, G. and Bjerregaard, P. (1991) Interaction between accumulation of cadmium and selenium in the tissues of turbot Scophthalmus maximus. Aquat. Toxicol. 20 (4), 253–266.CrossRefGoogle Scholar
  64. Nolan, C.V. and Duke, E.J. (1983) Cd-binding proteins in Mytilus edulis: relation to mode of administration and significance in tissue retention of Cd. Chemosphere 12, 65–74.CrossRefGoogle Scholar
  65. Nordberg, M.I., Nuottaniemi, M.I., Cherian, M.G. et al. (1986) Characterization studies on the cadmium-binding proteins from two species of New Zealand oysters. Environ. Health Perspec. 65, 57–62.Google Scholar
  66. Norheim, G. (1987) Levels and interactions of heavy metals in sea birds from Svalbard and the Antarctic. Environ. Pollut. 47, 83–94.CrossRefGoogle Scholar
  67. Odzak, N., Martincic, D., Zvonaric, T. and Branica, M. (1994) Bioaccumulation rate of Cd and Pb in Mytilus galloprovincialis foot and gills. Mar. Chem. 46, 119–131.CrossRefGoogle Scholar
  68. Okamura, H. and Aoyama, I. (1994) Interactive toxic effect and distribution of heavy metals in phytoplankton. Environ. Toxicol. Wat. Qual. 9(1), 7–15.CrossRefGoogle Scholar
  69. Otvos, J.D., Liu, X., Li, H. et al. (1993) Dynamic aspects of metallothionein structure, in Metallothionein III: Biological Roles and Medical Implications, (eds K.T. Suzuki, N. Imura, and M. Kimura), Birkhäuser Verlag, Basel, pp. 51–74.Google Scholar
  70. Patel, B. and Anthony, K. (1991) Uptake of cadmium in tropical marine lamellibranchs, and effects on physiological behaviour. Mar. Biol. 108 (2), 457–470.CrossRefGoogle Scholar
  71. Pelgrom, S.M.G.J., Lamers, L.P.M., Garritsen, J.A.M, et al. (1994) Interactions between copper and cadmium during single and combined exposure in juvenile tilapia Oreochromis mossambicus: Influence of feeding condition on whole body metal accumulation and the effect of the metals on tissue water and ion content. Aquat. Toxicol. 30 (2), 117–135.CrossRefGoogle Scholar
  72. Pelletier, E. (1985) Mercury-selenium interactions in aquatic organisms: a review. Mar.Env.Res. 18, 111–132.CrossRefGoogle Scholar
  73. Price, N.M. and Morel, F.M.M. (1990) Cadmium and cobalt substitution for zinc in a marine diatom. Nature 344, 658–660.CrossRefGoogle Scholar
  74. Rainbow, P.S. (1993) The significance of trace metal concentrations in marine invertebrates, in Ecotoxicology of Metals in Invertebrates, (eds R. Dallinger and P.S. Rainbow) Lewis Publishers, Boca Raton, pp. 3–23.Google Scholar
  75. Rainbow, P.S., Malik, I. and O’Brien, P. (1993) Physico-chemical and physiological effects on the uptake of dissolved zinc and cadmium by the amphipod crustacean Orchestria gammarellus. Aquat. Toxicol. 25, 15–30.CrossRefGoogle Scholar
  76. Ray, S., McLeese, D.W. and Pezzack, D. (1979) Chelation and interelemental effects on the bioaccumulation of heavy metals by marine invertebrates, in International Conference Management and Control of Heavy Metals in the Environment (ed. @@@CCE, OMS, IWPC, IPHE, IWES), pp. 35–38.Google Scholar
  77. Ray, S., McLeese, D.W., Waiwood, B.A. and Pezzack, D. (1980) The disposition of cadmium and zinc in Pandalus montagui. Arch. Environ. Contam. Toxicol. 9, 675–681.CrossRefGoogle Scholar
  78. Ribeyre, F., Amiard-Triquet, C, Boudou, A. and Amiard, J.-C. (1995) Experimental study of interactions between five trace elements — Cu, Ag, Se, Zn, and Hg — toward their bioaccumulation by fish (Brachydanio rerio) from the direct route. Ecotox. Environ. Saf. 32, 1–11.CrossRefGoogle Scholar
  79. Rijstenbil, J.W., Haritonidis, S., Drie, J.v. et al. (1993) Interactions of copper with trace metals and thiols in the macro-algae Enteromorpha prolifera (O.F. Müll)J.Ag., grown in water of the Scheldt Estuary (Belgium and SW Netherlands), in response to cadmium exposure. Sci. Tot. Environ. Suppl. 1992, 539–549.Google Scholar
  80. Risso, C, Gnassia-Barelli, M., Cosson, R. et al. (1996) Evaluation du contenu en MT dans le foie du Loup Dicentrachus labrax, intoxiqué par un mélange de polluants: comparaison de deux méthodes de dosage, in La qualité de Veau (eds C. Amiard-Triquet and T. Hamon), Université de Nantes, Nantes pp. 45–48.Google Scholar
  81. Ritz, D.A., Swain, R. and Elliott, N.G. (1982) Use of the Mussel Mytilus edulis planulatus (Lamarck) in monitoring heavy metal levels in seawater. Aust. J. Mar. Freshwater Res. 33, 491–506.CrossRefGoogle Scholar
  82. Robinson, W.E. and Ryan, D.K. (1986) Metal interactions within the kidney, gill, and digestive gland of the hard clam, Mercenaria mercenaria, following laboratory exposure to cadmium. Arch. Environ. Contam. Toxicol. 15, 23–30.CrossRefGoogle Scholar
  83. Roméo, M. and Gnassia-Barelli, M. (1993) Organic ligands and their role in com-plexation and transfer of trace metals (micronutrients) in marine algae, in Macroalgae, Eutrophication and Trace Metal Cycling in Estuaries and Lagoons, Proceedings of the Cost-48 Symposium, Thessaloniki, 24–26 September 1993, (eds J.W. Rijstenbil and S. Haritonidis).Google Scholar
  84. Schoer, J. (1985) Iron-hydroxydes and their significance to the behavior of heavy metals in estuaries, in Heavy Metals in the Environment, (ed. T.D. Lekkas), CEP Consultants Ltd, Edinburgh, Vol. 1, pp. 384–388.Google Scholar
  85. Schreinemakers, W.A.C. and Dorhout, R. (1985) Effects of copper ions on growth and ion absorption by Spirodela polyrhiza (L.) Schleiden. J. Plant Physiol. 121, 343–351.CrossRefGoogle Scholar
  86. Schroeder, H.A., Nason A.P., Tipton, I.H. and Balassa, J.J. (1967) Essential trace metals in man: zinc. Relation to environmental cadmium. J. Chron. Dis. 20, 179–210.CrossRefGoogle Scholar
  87. Siewicki, T.C., Sydlowski, J.S. and Webb, E.S. (1983) The nature of cadmium binding in commercial eastern oysters (Crassostrea virginica). Arch. Environm. Contam. Toxicol. 12, 299–304.CrossRefGoogle Scholar
  88. Simkiss, K. and Taylor, M.G. (1989) Metal fluxes across the membranes of aquatic organisms. CRC Crit. Rev. Aquat. Sci. 1, 173–187.Google Scholar
  89. Skwarzec, B., Kentzer-Baczewska, A., Styczynska-Jurewicz, E. and Neugebauer, E. (1984) Influence of accumulation of cadmium on the content of other microelements of two species of Black Sea decapods. Bull. Environ. Contam. Toxicol. 32, 93–101.CrossRefGoogle Scholar
  90. Sorensen, E.M.B. (1991) Interactions, in Metal Poisoning in Fish, (ed. E.M.B. Sorensen), CRC Press, Boca Raton, pp. 333–358.Google Scholar
  91. Stokes, P. (1975) Uptake and accumulation of copper and nickel by metal-tolerant strains of Scenedesmus. Verh. Internat. Verein. Limnol. 19 (3), 2128–2137.Google Scholar
  92. Turner, M.A. and Swick, A.L. (1983) The English-Wabigoon river system: IV. Interaction between mercury and selenium accumulated from waterborne and dietary sources by northern pike (Esox lucius). Can. J. Fish. Aquat. Sci. 40 (12), 2241–2250.CrossRefGoogle Scholar
  93. Twiss, M.R., Nalewajko, C. and Stockes, P.M. (1989) The influence of phosphorus nutrition on copper tolerance in Scenedesmus spp., in Heavy Metals in the Environment (ed. J.-P. Vernet), CEP Consultants Ltd, Edinburgh, Vol. 2, pp. 174–177.Google Scholar
  94. Underwood, EJ. (1977) Trace Elements in Human and Animal Nutrition, Academic Press, New York.Google Scholar
  95. Wang, W. (1987) Factors affecting metal toxicity to (and accumulation by) aquatic organisms. Overview. Env. Intern. 13 (6), 437–457.CrossRefGoogle Scholar
  96. Weiss, P., Bodgen, J.D. and Enslee, E.C. (1986) Hg- and Cu-induced hepatocellular changes in the munnichog Fundulus heteroclitus. Environ. Health Perspect. 65, 167–173.Google Scholar
  97. Westemhagen, H.V., Dethlefsen, V. and Rosenthal, H. (1979) Combined effects of cadmium, copper and lead on developing herring eggs and larvae. Helgolander wiss. Meerest. 32, 257–278.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1998

Authors and Affiliations

  • Claude Amiard-Triquet
  • Jean-Claude Amiard

There are no affiliations available

Personalised recommendations