Skip to main content

Abstract

Roughly 70 years ago Henderson (1927) wrote a book entitled The Fitness of the Environment in which he identified the physical and chemical properties of the environment that facilitated the evolution of life. One of the aspects that he focused on was the unique properties of water that enabled life to survive in this medium. These included its specific heat, latent heats of melting and evaporation, thermal conductivity, surface tension, expansion before freezing, and solvent and ionization properties. Fifty years afterwards, Tanford (1978) described the hydrophobic effect and its influence on the organization of living matter. The essence of his argument was that this is a unique organizing force based on repulsion by the solvent. As such it is responsible for the assembly of most of the cellular and subcellular membrane compartments that form the basis of cellular organization. Clearly water has not been a passive influence in the evolution of life. Despite these great insights and the fact that cells consist of 75–85% water, its role in biology remains controversial and poorly understood. Discussions range from modelling the state of water around the polyelectrolytes in the cell to its role in numerous reactions. As an example of such controversies we can consider osmosis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams, D.J., Dwyer, T.M. and Hille, B. (1980) The permeability of end plate channels to monovalent and divalent metal cations. J. Gen. Physiol. 75, 493–570.

    Article  CAS  Google Scholar 

  • Atkins, R.E. and Tuan, R.S. (1993) Transepithelial calcium transport in the chick chorioallantoic membrane II compartmentalization of calcium during uptake. J. Cell Sei. 105, 381–385.

    Google Scholar 

  • Berridge, M.J. (1993) Inositol triphosphate and calcium signalling. Nature 361, 315–325.

    Article  CAS  Google Scholar 

  • Borgmann, V. (1983) Metal speciation and toxicity of free metal ions to aquatic biota, in Advanced Environmental Science and Technology (ed. J.O. Nriago) 13, 47–72.

    Google Scholar 

  • Bronner, F. (1991) Calcium transport across epithelia. (1991) Int. Review Cytol. 131, 169–212.

    Article  CAS  Google Scholar 

  • Bryan, G.W. and Langston, W.J. (1992) Bioavailability accumulation and effects of heavy metals in sediments with special reference to United Kingdom estuaries: a review. Environ. Pollution 76, 89–131.

    Article  CAS  Google Scholar 

  • Bryan, G.W., Gibbs, P.E., Burt, G.R. and Hummerstone, L.G. (1987) The effects of tributyl tin (TBT) accumulation on adult dogwhelks Nucella lapillus, long term field and laboratory experiments. J. Marine Biol. Assoc. 67, 525–544.

    Article  CAS  Google Scholar 

  • Burgess, J. (1988) Ions in solution: Basic Principles of Chemical Interactions, Ellis Horwood, Chichester, 191 pp.

    Google Scholar 

  • Carruther, A. and Melchior, D.L. (1988) Effects of lipid environment on membrane transport. The human erythrocyte sugar transport protein/lipid bilayer system. Ann. Rev. Biochem. 50, 257–271.

    Google Scholar 

  • Davies, N.A. and Simkiss, K. (1996) The uptake of zinc from artificial sediments by Mytilus edulis. J. Mar. Biol. Assoc. 76, 1073–1079.

    Article  CAS  Google Scholar 

  • Davis, B.D. (1958) The importance of being ionized. Arch. Biochem. Biophys. 78, 497–509.

    Article  CAS  Google Scholar 

  • Dwyer, T.M., Adams, D.J. and Hille, B. (1980) The permeability of the end plate channel to organic cations in frog muscle. J. General Physiol. 75, 469–492.

    Article  CAS  Google Scholar 

  • Easwaran, K.R.K. (1991) Ionophores: structure and interaction in relation to transmembrane ion-transport, in Molecular Conformation and Biological Interactions, (eds P. Balaram and S. Ramaseshan), Indian Academy of Science, Bangalore, pp. 671–685.

    Google Scholar 

  • Eisenman, G. (1962) Cation selective glass electrodes and their mode of operation. Biophys. J. 2 (Suppl. 2), 259–323.

    Article  CAS  Google Scholar 

  • Feher, J.J., Fullmer, CS. and Wasserman, R.H. (1992) Role of facilitated diffusion of calcium by calbindin in intestinal calcium absorption. Amer. J. Physiol. 262, C517–526.

    CAS  Google Scholar 

  • Flik, G., Verbost, P.M. and Atsma, W. (1994) Calcium transport in gill plasma membranes of the crab Carcinus maenas: evidence for carriers driven by ATP and a Na+ gradient. J. Exptl Biol. 195, 109–122.

    CAS  Google Scholar 

  • George, S.G., Pirie, B.J.S. and Coombs, T.L. (1976) The kinetics of accumulation and excretion of ferric hydroxide in Mytilus edulis (L) and its distribution in the tissue. J. Exptl Mar. Biol. Ecol. 23, 71–84.

    Article  CAS  Google Scholar 

  • George, S.G., Pirie, B.J.S. and Coombs, T.L. (1977) Absorption, accumulation and excretion of iron-protein complexes by Mytilus edulis. Proc. Intern. Conf. Heavy Metal Environ. Can., Natural Resources Council of Canada, Publication no. 2, Toronto, 887–900.

    Google Scholar 

  • Gunshin, H., Mackenzie, B., Berger, U.V., Gunshin, Y., Romero, M.F., Boron, W.F., Nussberger, S., Gollan, J.L. and Hediger, M.A. (1977) Cloning and characterization of a mammalian proton-coupled metal-ion transporter. Nature, 388, 482–488.

    Article  Google Scholar 

  • Gutknecht, J. (1981) Inorganic mercury (Hg2+) transport through lipid bilayer membrane. J. Memb. Biol. 61, 61–66.

    Article  CAS  Google Scholar 

  • Harvey, R.W. and Luoma, S.N. (1985) Effect of adherent bacteria and bacterial extracellular polymers upon assimilation by Macoma balthica of sediment-bound Cd, Zn and Ag. Mar. Ecol. Prog. Series 22, 281–289.

    Article  CAS  Google Scholar 

  • Hazel, J.R.(1988) Homeoviscous adaptation in animal cell membranes, in Physiological Regulation of Membrane Fluidity (eds R.C. Aloia, C.C. Curtain and L.M. Gordon), Alan R. Liss, New York, pp. 149–188.

    Google Scholar 

  • Heinemann, S.H., Terlau, H., Stuhmer, W. et al.(1992) Calcium channel characteristics conferred on the sodium channel by single mutations. Nature 356, 441–443.

    Article  CAS  Google Scholar 

  • Henderson, L.T. (1927) The Fitness of the Environment, MacMillan, New York, 317 pp.

    Google Scholar 

  • Higgins, CF. (1995) The ABC of channel regulation. Cell 82, 693–696.

    Article  CAS  Google Scholar 

  • Hille, B. (1992) Ionic Channels of Excitable Membranes, 2nd edn, Sinauer Associates, Sunderland, Massachusetts, 607 pp.

    Google Scholar 

  • Hogstrand, C, Wilson, R.W., Polgard, D. and Wood, CM. (1994) Effects of zinc on the kinetics of branchial calcium uptake in freshwater rainbow trout during adaptation to waterborne zinc. J. Exptl. Biol. 186, 55–73.

    CAS  Google Scholar 

  • Hunter, K.A. and Liss, P.S. (1982) Organic matter and the surface charge of suspended particles in estuarine waters. Limnol. Oceanogr. 27, 322–335.

    Article  CAS  Google Scholar 

  • Jensen, S. and Jernel0v, A. (1969) Biological methylation of mercury in aquatic organisms. Nature 223, 753–754.

    Article  CAS  Google Scholar 

  • Kotyk, A., Janacek, K. and Koryta, J.H. (1988) Biophysical Chemistry of Membrane Functions, John Wiley, Chichester.

    Google Scholar 

  • Laughlin, R.B., French, W. and Guard, H.E. (1985) On the correlation between acute and sub-lethal stress in mud crab larvae Rhithropanopeus larrisii. The example of triorganotin compounds, in Marine Biology of the Polar Regions and Effects of Stress on Marine Organisms, Proceedings of the 18th European Marine Biology Symposium, (eds J.S. Gray and M.E. Christiansen), John Wiley, Chichester, pp. 513–526.

    Google Scholar 

  • Luoma, S.N. (1989) Can we determine the biological availability of sediment-bound trace elements? Hydrobioligia 176/177, 379–396.

    Article  Google Scholar 

  • Mercer, J.F.B., Livingston, J., Hall, B. et al.(1993) Isolation of a partial candidate gene for Menkes disease by positional cloning. Nature 3, 20–25.

    CAS  Google Scholar 

  • Scharff, O. and Foder, B. (1993) Regulation of cytosolic calcium in red blood cells. Physiol. Rev. 73, 547–582.

    CAS  Google Scholar 

  • Simkiss, K. (1996a) Ecotoxicants at the cell-membrane barrier, in Ecotoxicology, a Hierarchical Approach, (eds M.C. Newman and C.H. Jagoe), Lewis, Boca Raton, pp. 59–83.

    Google Scholar 

  • Simkiss, K. (1996b) Calcium transport across calcium-regulated cells. Physiol. Zool. 69, 343–350.

    CAS  Google Scholar 

  • Singer, S.J. (1990) The structure and insertion of integral proteins in membranes. Ann. Rev. Cell Biol. 6, 247–296.

    Article  CAS  Google Scholar 

  • Singer, S.J. and Nicholson, G.L. (1972) The fluid mosaic model of the structure of cell membranes. Science 175, 720–731.

    Article  CAS  Google Scholar 

  • Skrtic, D. and Eanes, E.D. (1992) Effect of different phospholipid-cholesterol membrane compositions on liposome-mediated formation of calcium phosphates. Calcif Tissue Int. 50, 253–260.

    Article  CAS  Google Scholar 

  • Stumm, W. and Morgan, J.J. (1970) Aquatic Chemistry. An Introduction Emphasizing Chemical Equilibria in Natural Waters, Wiley-Interscience, New York, 583 pp.

    Google Scholar 

  • Tanford, C. (1978) The hydrophobic effect and the organization of living matter. Science 200, 1012–1018.

    Article  CAS  Google Scholar 

  • Thayer, J.S. (1993) Global bioalkylation of the heavy elements, in Metal Ions in Biological Systems, (eds H. Sigel and A. Segel), M. Dekker, New York, pp. 1–36.

    Google Scholar 

  • Tsien, R.W. and Tsien, R.Y. (1990) Calcium channels, stores and oscillations. Ann. Rev. Cell. Biol. 6,715–760.

    Article  CAS  Google Scholar 

  • Vulpe, C, Levinson, B., Whitney, S. et al.(1993) Isolation of a candidate gene for Menkes disease and evidence that it encodes a copper-transporting ATPase. Nature Genet. 3, 7–13.

    Article  CAS  Google Scholar 

  • Williams, R.J.P. (1981) Natural selection of the chemical elements. Proc. Royal Soc. 213B, 361–397.

    Google Scholar 

  • Zachowski, A. and Devaux, P.F. (1990) Transmembrane movement of lipids. Experientia 46, 644–656.

    Article  CAS  Google Scholar 

  • Zeuthen, T. (1995) Molecular mechanisms for passive and active transport of water. Int. Review Cytol. 160, 99–161.

    Article  CAS  Google Scholar 

  • Zhuang, Z., Duerr, J.M. and Ahearn, G.A. (1995) Ca2+ and Zn2+ are transported by the electrogenic 2Na+/H+ antiporter in echinoderm gastrointestinal epithelium. J. Exptl Biol. 198, 1207–1217.

    CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Simkiss, K. (1998). Mechanisms of metal uptake. In: Langston, W.J., Bebianno, M.J. (eds) Metal Metabolism in Aquatic Environments. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-2761-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-2761-6_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-4731-4

  • Online ISBN: 978-1-4757-2761-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics