Granulocyte Colony-Stimulating Factor (G-CSF)-Deficient Mice

  • Graham J. Lieschke
  • Ashley R. Dunn
Part of the Contemporary Immunology book series (CONTIM)


Granulocyte colony-stimulating factor (G-CSF) is a glycoprotein hemopoietic growth factor that regulates the survival, proliferation, differentiation, and function of neutrophils and their precursors (for a review, see ref. 1). Neutrophils are the most common granulocytic cell found in the blood and hemopoietic tissues. G-CSF was first purified from other granulopoietic activities in 1983 (2) and the human and murine G-CSF cDNAs and genes were cloned in 1986–1987 (3–7). G-CSF was implicated as a major regulator of murine granulopoiesis in vivo by studies of the effects of administering pharmacological doses of recombinant protein (8, 9), and of the consequences of the reconstitution of lethally irradiated mice with marrow cells infected with a recombinant retrovirus expressing G-CSF (10).


Stem Cell Factor Congenital Neutropenia Severe Congenital Neutropenia Pulmonary Alveolar Proteinosis Neutrophil Production 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Demetri, G. D. and Griffin, J. D. (1991) Granulocyte colony-stimulating factor and its receptor. Blood 78, 2791–2808.PubMedGoogle Scholar
  2. 2.
    Nicola, N. A., Metcalf, D., Matsumoto, M., and Johnson, G. R. (1983) Purification of a factor inducing differentiation in murine myelomonocytic leukemia cells. Identification as granulocyte colony-stimulating factor. J. Biol. Chem. 258, 9017–9023.PubMedGoogle Scholar
  3. 3.
    Souza, L. M., Boone, T. C., Gabrilove, J., Lai, P. H., Zsebo, K. M., Murdock, D. C., Chazin, V. R., Bruzewski, J., Lu, H., Chen, K. K., Barendt, J., Platzer, E., Moore, M. A. S., Mertelsmann, R., and Welte, K. (1986) Recombinant human granulocyte colony-stimulating factor: effect on normal and leukemic myeloid cells. Science 232, 61–65.PubMedCrossRefGoogle Scholar
  4. 4.
    Nagata, S., Tsuchiya, M., Asano, S., Kaziro, Y., Yamazaki, T., Yamamoto, O., Hirata, Y., Kubota, N., Oheda, M., Nomura, H., and Ono, M. (1986) Molecular cloning and expression of cDNA for human granulocyte colony-stimulating factor. Nature 319, 415–418.PubMedCrossRefGoogle Scholar
  5. 5.
    Tsuchiya, M., Asano, S., Kaziro, Y., and Nagata, S. (1986) Isolation and characterization of the cDNA for murine granulocyte colony-stimulating factor. Proc. Natl. Acad. Sci. USA 83, 7633–7637.PubMedCrossRefGoogle Scholar
  6. 6.
    Nagata, S., Tsuchiya, M., Asano, S., Yamamoto, O., Hirata, Y., Kubota, N., Oheda, M., Nomura, H., and Yamazaki, T. (1986) The chromosomal gene structure and two mRNAs for human granulocyte colony-stimulating factor. EMBO J. 5, 575–581.PubMedGoogle Scholar
  7. 7.
    Tsuchiya, M., Kaziro, Y., and Nagata, S. (1987) The chromosomal gene structure for murine granulocyte colony-stimulating factor. Eur. J. Biochem. 165, 7–12.PubMedCrossRefGoogle Scholar
  8. 8.
    Moore, M. A. S., Welte, K., Gabrilove, J., and Souza, L. M. (1987) Biological activities of recombinant human granulocyte colony stimulating factor (rhG-CSF) and tumor necrosis factor: in vivo and in vitro analysis, in Haematology and Blood Transfusion (Vol 31). Modern Trends in Human Leukemia. 8 ( Neth, R., Gallo, R. C., Greaves, M. F., and Kabish, H., eds.), Springer-Verlag, Berlin, pp. 210–220.Google Scholar
  9. 9.
    Tamura, M. K., Hattori, H., Nomura, H., Oheda, M., Kubota, N., Imazeki, I., Ono, M., Ueyama, Y., Nagata, S., Shirafuji, N., and Asano, S. (1987) Induction of neutrophilic granulocytosis in mice by administration of purified human native granulocyte colony-stimulating factor (G-CSF). Biochem. Biophys. Res. Commun. 142, 454–460.PubMedCrossRefGoogle Scholar
  10. 10.
    Chang, J. M., Metcalf, D., Gonda, T. J., and Johnson, G. R. (1989) Long term exposure to retrovirally expressed granulocyte-colony-stimulating factor induces a nonneoplastic granulocytic and progenitor cell hyperplasia without tissue damage in mice. J. Clin. Invest. 84, 1488–1496.PubMedCrossRefGoogle Scholar
  11. 11.
    Watari, K., Asano, S., Shirafuji, N., Kodo, H., Ozawa, K., Takaku, F., and Kamachi, S-I. (1989) Serum granulocyte colony-stimulating factor levels in healthy volunteers and patients with various disorders estimated by enzyme immunoassay. Blood 73, 117–122.PubMedGoogle Scholar
  12. 12.
    Mempel, K., Pietsch, T., Menzel, T., Zeidler, C., and Welte, K. (1991) Increased serum levels of granulocyte colony-stimulating factor in patients with severe congenital neutropenia. Blood 77, 1919–1922.PubMedGoogle Scholar
  13. 13.
    Kawakami, M., Tsutsumi, H., Kumakawa, T., Abe, H., Hirari, M., Kurosawa, S., Mori, M., and Fukushima, M. (1990) Levels of serum granulocyte colony-stimulating factor in patients with infections. Blood 76, 1962–1964.PubMedGoogle Scholar
  14. 14.
    Layton, J. E., Hockman, H., Sheridan, W. P., and Morstyn, G. (1989) Evidence for a novel in vivo control mechanism of granulopoiesis: mature cell-related control of a regulatory growth factor. Blood 74, 1303–1307.PubMedGoogle Scholar
  15. 15.
    Hammond, W. P., Csiba, E., Canin, A., Hockman, H., Souza, L. M., Layton, J. E., and Dale, D. C. (1991) Chronic neutropenia: a new canine model induced by human granulocyte colony-stimulating factor. J. Clin. Invest. 87, 704–710.PubMedCrossRefGoogle Scholar
  16. 16.
    Gough, N. M., Gough, J., Metcalf, D., Kelso, A., Grail, D., Nicola, N. A., Burgess, A. W., and Dunn, A. R. (1984) Molecular cloning of cDNA encoding a murine haematopoietic growth regulator, granulocyte-macrophage colony stimulating factor. Nature 309, 763–767.PubMedCrossRefGoogle Scholar
  17. 17.
    Metcalf, D. and Nicola, N. A. (1991) Direct proliferative actions of stem cell factor on murine bone marrow cells in vitro: effects of combination with colony-stimulating factors. Proc. Natl. Acad. Sci. USA 88, 6239–6243.PubMedCrossRefGoogle Scholar
  18. 18.
    Hapel, A. J., Fung, M. C., Johnson, R. M.. Young, I. G., Johnson, G., and Metcalf, D. (1985) Biologic properties of molecularly cloned and expressed murine interleukin-3. Blood 65, 1453–1459.Google Scholar
  19. 19.
    McKinstry, W. and Metcalf, D. (1994) Distribution of IL-6 receptors on murine hemopoietic and lymphoid cells and the anomalous action of IL-6 in stimulating granulocytic proliferation. Leukemia 8, 1726–1733.PubMedGoogle Scholar
  20. 20.
    Musashi, M., Yang, Y-C., Paul, S. R., Clark, S. C., Sudo, T., Ogawa, M. (1991) Direct and synergistic effects of interleukin 11 on murine hemopoiesis in culture. Proc. Natl. Acad. Sci. USA 88, 765–769.PubMedCrossRefGoogle Scholar
  21. 21.
    Lyman, S. D., James, L., Vanden, B. T., de Vries, P., Brasel, K., Gliniak, B., Hollingsworth, L. T., Picha, K. S., McKenna, H. J., Splett, R. R., Fletcher, F. A., Maraskovsky, E., Farrah, T., Foxworthe, D., Williams, D. E., and Beckmann, M. P. (1993) Molecular cloning of a ligand for the flt3/flk-2 tyrosine kinase receptor: a proliferative factor for primitive hematopoietic cells. Cell 75, 1157–1167.PubMedCrossRefGoogle Scholar
  22. 22.
    Hirayama, F., Lyman, S. D., Clark, S. C., and Ogawa, M. (1995) The flt3 ligand supports proliferation of lymphohematopoietic progenitors and early B-lymphoid progenitors. Blood 85, 1762–1768.PubMedGoogle Scholar
  23. 23.
    Hudak, S., Hume, B., Culpepper, J., Menon, S., Hannum, C., Thompson-Snipes, L., and Rennick, D. (1995) FLT3/FLK2 ligand promotes the growth of murine stem cells and the expansion of colony-forming cells and spleen colony-forming units. Blood 85, 2747–2755.PubMedGoogle Scholar
  24. 24.
    Lieschke, G. J. and Dunn, A. R. (1992) Physiologic role of granulocyte colony stimulating factor: insights from in vivo studies, in Molecular Biology of Haematopoiesis Vol. 2 ( Abraham, N. G., Konwalinka, G., Marks, P., Sachs, L., and Tavassoli, M., eds.), Intercept, Andover, Hants, UK, pp. 201–216.Google Scholar
  25. 25.
    Wiktor-Jedrzejczak, W., Bartocci, A., Ferrante, A. W., Ahmed-Ansari, A., Sell, K. W., Pollard, J. W., and Stanley, E. R. (1990) Total absence of colony-stimulating factor 1 in the macrophage-deficient osteopetrotic (op/op) mouse. Proc. Natl. Acad. Sci. USA 87, 4828–4832 (erratum 88, 5978 ).Google Scholar
  26. 26.
    Yoshida, H., Hayashi, S-I., Kunisada, T., Ogawa, M., Nishikawa, S., Okamura, H., Sudo, T., Shultz, L. D., and Nishikawa, S-I. (1990) The murine mutation osteopetrosis is in the coding region of the macrophage colony stimulating factor gene. Nature 345, 442–444.PubMedCrossRefGoogle Scholar
  27. 27.
    Huang, E., Nocka, K., Beier, D. R., Chu, T-Y., Buck, J., Lahm, H-W., Wellner, D., Leder, P., and Besmer, P. (1990) The hematopoietic growth factor KL is encoded by the Sl locus and is the ligand of the c-kit receptor, the gene product of the W locus. Cell 63, 225–233.PubMedCrossRefGoogle Scholar
  28. 28.
    Zsebo, K. M., Williams, D. A., Geissler, E. N., Broudy, V. C., Martin, F. H., Atkins, H. L., Hsu, R-Y., Birkett, N. C., Okino, K. H., Murdock, D. C., Jacobsen, F. W., Langley, K. E., Smith, K. A., Takeishi, T., Cattanach, B. M., Galli, S. J., and Suggs, S. V. (1990) Stem cell factor is encoded at the Si locus of the mouse and is the ligand for the c-kit tyrosine kinase receptor. Cell 63, 213–224.PubMedCrossRefGoogle Scholar
  29. 29.
    Copeland, N. G., Gilbert, D. J., Cho, B. C., Donovan, P. J., Jenkins, N. A., Cosman, D., Anderson, D., Lyman, S. D., and Hishikawa, S-I. (1990) Mast cell growth factor maps near the steel locus on mouse chromosome 10 and is deleted in a number of steel alleles. Cell 63, 175–183.PubMedCrossRefGoogle Scholar
  30. 30.
    Brannan, C. I., Bedell, M. A., Resnick, J. L., Eppig, J. J., Handel, M. A., Williams, D. E., Lyman, S. D., Donovan, P. J., Jenkins, N. A., and Copeland, N. G. (1992) Developmental abnormalities in Steel’ mice result from a splicing defect in the steel factor cytoplasmic tail. Genes Dev. 6, 1832–1842.PubMedCrossRefGoogle Scholar
  31. 31.
    Flanagan, J. G., Chan, D. C., and Leder, P. (1991) Transmembrane form of the kit ligand growth factor is determined by alternative splicing and is missing in the Sld mutant. Cell 64, 1025–1035.PubMedCrossRefGoogle Scholar
  32. 32.
    Lieschke, G. J. and Burgess, A. W. (1992) Granulocyte colony-stimulating factor and granulocyte-macrophage colony stimulating factor. N. Engl. J. Med. 327, 28–35, 99–106.Google Scholar
  33. 33.
    Buchberg, A. M., Bedigian, H. G., Taylor, B. A., Brownell, E., Ihle, J. N., Nagata, S., Jenkins, N. A., and Copeland, N. G. (1988) Localization of Evi-2 to chromosome 11: linkage to other proto-oncogene and growth factor loci using interspecific backcross mice. Oncogene Res. 2, 149–165.PubMedGoogle Scholar
  34. 34.
    Barlow, D. P., Bucan, M., Lehrach, H., Hogan, B. L., and Gough, N. M. (1987) Close physical and genetic linkage between the murine hematopoietic growth factor genes GM-CSF and multi-CSF (IL-3). EMBO J. 6, 617–623.PubMedGoogle Scholar
  35. 35.
    Buchberg, A. M., Brownell, E., Nagata, S., Jenkins, N. A., and Copeland, N. G. (1989) A comprehensive genetic map of murine chromosome 11 reveals extensive linkage conservation between mouse and human. Genetics 122, 153–161.PubMedGoogle Scholar
  36. 36.
    Lieschke, G. J., Grail, D., Metcalf, D., Hodgson, G., Stanley, E., Sinickas, V., Fowler, K. J., and Dunn, A. R. (1994) Mice lacking granulocyte colony-stimulating factor have chronic neutropenia, granulocyte and macrophage progenitor cell deficiency, and impaired neutrophil mobilization. Blood 84, 1737–1746.PubMedGoogle Scholar
  37. 37.
    Metcalf, D., Willson, T., Rossner, M., and Lock, P. (1994) Receptor insertion into factor-dependent murine cell lines to develop specific bioassays for murine G-CSF and M-CSF and human GM-CSF. Growth Factors 11, 145–152.PubMedCrossRefGoogle Scholar
  38. 38.
    Metcalf, D., Lindeman, G. J., and Nicola, N. (1995) Analysis of hematopoiesis in max 41 transgenic mice that exhibit sustained elevations of blood granulocytes and monocytes. Blood 85, 2364–2370.PubMedGoogle Scholar
  39. 39.
    Lord, B. I., Molineux, G., Pojda, Z., Souza, L. M., Mermod, J-J., and Dexter, T. M. (1991) Myeloid cell kinetics in mice treated with recombinant interleukin-3, granulocyte colony-stimulating factor (CSF), or granulocyte-macrophage CSF in vivo. Blood 77, 2154–2159.PubMedGoogle Scholar
  40. 40.
    Cebon, J., Layton, J. E., Maher, D., and Morstyn, G. (1994) Endogenous haemopoietic growth factors in neutropenia and infection. Br. J. Haematol. 86, 265–274.PubMedCrossRefGoogle Scholar
  41. 41.
    Dannenberg, A. M., and Suga, M. (1981) Histochemical stains for macrophages in cell smears and tissue sections: (3-galactosidase, acid phosphatase, nonspecific esterase, succinic dehydrogenase, and cytochrome oxidase, in Methods for Studying Mononuclear Phagocytes ( Adams, D. O., Edelson, P. J., and Koren, M. S., eds.), Academic, New York, pp. 375–396.CrossRefGoogle Scholar
  42. 42.
    Lake, B. D. (1974) An improved method for the detection of 13-galactosidase activity, and its application to GM1-gangliosides and. Histochem. J. 6, 211–218.PubMedCrossRefGoogle Scholar
  43. 43.
    Nakano, T., Kodama, H., and Honjo, T. (1994) Generation of lymphohematopoietic cells from embryonic stem cells in culture. Science 265, 1098–1101.PubMedCrossRefGoogle Scholar
  44. 44.
    Stanley, E., Lieschke, G. J., Grail, D., Metcalf, D., Hodgson, G., Gall, J. A. M., Maher, D. W., Cebon, J., Sinickas, V., and Dunn, A. R. (1994) Granulocyte-macrophage colony-stimulating factor-deficient mice show no major perturbation of hematopoiesis but develop a characteristic pulmonary pathology. Proc. Natl. Acad. Sci. USA 91, 5592–5596.PubMedCrossRefGoogle Scholar
  45. 45.
    Seymour, J. F., Lieschke, G. J., Stanley, E., Grail, D., Quilici, C., Hodgson, G., and Dunn, A. R. (1995) Amyloidosis, hematopoietic and pulmonary abnormalities in mice deficient in both G-CSF and GM-CSF. Blood 86 (Suppl. 1), 593a (abstract #2359).Google Scholar
  46. 46.
    Lee, M. Y., Fevold, K. L., Dorshkind, K., Fukunaga, R., Nagata, S., and Rosse, C. (1993) In vivo and in vitro suppression of primary B-lymphocytopoiesis by tumor-derived and recombinant granulocyte colony-stimulating factor. Blood 82, 2062–2068.PubMedGoogle Scholar
  47. 47.
    Nelson, S. (1994) Role of granulocyte colony-stimulating factor in the immune response to acute bacterial infection in the non-neutropenic host: an overview. Clin. Infect. Dis. 18 (Suppl. 2), S 197–5204.CrossRefGoogle Scholar
  48. 48.
    Metcalf, D. (1993) Hematopoietic regulators: redundancy or subtlety? Blood 82, 3513–3523.Google Scholar
  49. 49.
    Boggs, D. R., Chervenick, P. A., Marsh, J. C., Pilgrim, H. I., Cartwright, G. E., and Wintrobe, M. M. (1967) Granulopoiesis in germfree mice. Proc. Soc. Exp. Biol. Med. 125, 325–330.PubMedGoogle Scholar
  50. 50.
    Nicola, N. A., Metcalf, D., Johnson, G. R., and Burgess, A. W. (1979) Preparation of colony stimulating factors from human placental conditioned medium. Leukemia Res. 2, 313–320.CrossRefGoogle Scholar
  51. 51.
    Saito, S., Fukunaga, R., Ichijo, M., and Nagata, S. (1994) Expression of granulocyte colony-stimulating factor and its receptor at the fetomaternal interface in murine and human pregnancy. Growth Factors 10, 135–143.PubMedCrossRefGoogle Scholar
  52. 52.
    Ito, Y., Seto, Y., Brannan, C. I., Copeland, N. G., Jenkins, N. A., Fukunaga, R., and Nagata, S. (1994) Structural analysis of the functional gene and pseudogene encoding the murine granulocyte colony-stimulating factor receptor. Eur. J. Biochem. 220, 881v891.Google Scholar
  53. 53.
    Chai, C. K. (1966) Selection for leukocyte counts in mice. Genet. Res. 8, 125–142.PubMedCrossRefGoogle Scholar
  54. 54.
    Chai, C. K. (1975) Genes associated with leukocyte production in mice. J. Hered. 66, 301 - 308.PubMedGoogle Scholar
  55. 55.
    Ruscetti, F. W., Boggs, D. R., Torok, B. J., and Boggs, S. S. (1976) Reduced blood and morrow neutrophils and granulocytic colony-forming cells in Sl/Sld mice. Proc. Soc. Exp. Biol. Med. 152, 398–402.PubMedGoogle Scholar
  56. 56.
    Chervenick, P. A. and Boggs, D. R. (1969) Decreased neutrophils and megakaryocytes in anemic mice of genotype W/W. J. Cell. Physiol. 73, 25–30.PubMedCrossRefGoogle Scholar
  57. 57.
    Russell, E. S. (1979) Hereditary anemias of the mouse: a review for geneticists. Adv. Genet. 20, 357–459.PubMedCrossRefGoogle Scholar
  58. 58.
    Marks, S. C. and Lane, P. W. (1976) Osteopetrosis, a new recessive skeletal mutation on chromosome 12 of the mouse. J. Hered. 67, 11–18.PubMedGoogle Scholar
  59. 59.
    Pollard, J. W., Hunt, J. S., Wiktor-Jedrzejczak, W., and Stanley, E. R. (1991) A pregnancy defect in the osteopetrotic (op/op) mouse demonstrates the requirement for CSF-1 in female fertility. Dev. Biol. 148, 237–283.CrossRefGoogle Scholar
  60. 60.
    Pollard, J. W. and Hennighausen, L. (1994) Colony stimulating factor 1 is required for mammary gland development during pregnancy. Proc. Natl. Acad. Sci. USA 91, 9312–9316.PubMedCrossRefGoogle Scholar
  61. 61.
    Wu, H., Liu, X., Jaenisch, R., and Lodish, H. F. (1995) Generation of committed erythroid BFU-E and CFU-E progenitors does not require erythropoietin or the erythropoietin receptor. Cell 83, 59–67.PubMedCrossRefGoogle Scholar
  62. 62.
    Nishinakamura, R., Nakayama, N., Hirabayashi, Y., Inoue, T., Aud, D., McNeil, T., Azuma, S., Yoshida, S., Toyoda, Y., Arai, K-I., Miyajima, A., and Murray, R. (1995) Mice deficient for the IL-3/GM-CSF/IL-5 13, receptor exhibit lung pathology and impaired immune response, while 131L3 receptor-deficient mice are normal. Immunity 2, 211–222.PubMedCrossRefGoogle Scholar
  63. 63.
    Robb, L., Drinkwater, C. C., Metcalf, D., Li, R., Köntgen, F., Nicola, N. A., and Begley, C. G. (1995) Hematopoietic and lung abnormalities in mice with a null mutation of the common ß subunit of the receptors for granulocyte-macrophage colony-stimulating factor and interleukins 3 and 5. Proc. Natl. Acad. Sci. USA 92, 9565–9569.PubMedCrossRefGoogle Scholar
  64. 64.
    Dale, D. C. (1995) Neutropenia, in Williams Hematology 5th ed. ( Beutler, E., Lichtman, M. A., Coller, B. S., and Kipps, T. J., eds.), McGraw-Hill, New York, pp. 815–824.Google Scholar
  65. 65.
    Simmers, R. N., Webber, L. M., Shannon, M. F., Garson, O. M., Wong, G., Vadas, M. A., and Sutherland, G. R. (1987) Localization of the G-CSF gene on chromosome 17 proximal to the breakpoint in the t(15;17) in acute promyelocytic leukemia. Blood 70, 330–332.PubMedGoogle Scholar
  66. 66.
    Kanda, N., Fukushige, S-I., Murotsu, T., Yoshida, M. C., Tsuchiya, M., Asano, S., Kaziro, Y., and Nagata, S. (1987) Human gene coding for granulocyte-colony stimulating factor is assigned to the q21—q22 region of chromosome 17. Somat. Cell Mol. Genet. 13, 679–684.Google Scholar
  67. 67.
    Kostmann, R. (1956) Infantile genetic agranulocytosis (agranulocytosis infantilis hereditaria): a new recessive lethal disease in man. Acta. Paediatr. Scand. 45 (Suppl. 105), 1–78.Google Scholar
  68. 68.
    Guba, S. C., Sartor, C. A., Hutchinson, R., Boxer, L. A., and Emerson, S. G. (1994) Granulocyte colony-stimulating factor (G-CSF) production and G-CSF receptor structure in patients with congenital neutropenia. Blood 83, 1486–1492.PubMedGoogle Scholar
  69. 69.
    Dale, D. C., Bonilla, M. A., Davis, M. W., Nakanishi, A. M., Hammond, W. P., Kurtzberg, Wang, W., Jakubowski, A., Winton, E., Lalezari, P., Robinson, W., Glaspy, J. A., Emerson, S., Gabrilove, J., Vincent, M., and Boxer, L. A. (1993) A randomized controlled phase III trial of recombinant human G-CSF for treatment of severe chronic neutropenia. Blood 81, 2496–2502.PubMedGoogle Scholar
  70. 70.
    Dong, F., Hoefsloot, L. H., Schelen, A. M., Broeders, L. C. A. M., Meijer, Y., Veerman, A. J. P., Touw, I. P., and Löwenberg, B. (1994) Identification of a nonsense mutation in the granulocyte-colony-stimulating factor receptor gene in severe congenital neutropenia. Proc. Natl. Acad. Sci. USA 91, 4480–4484.PubMedCrossRefGoogle Scholar
  71. 71.
    Dong, F., Brynes, R. K., Tidow, N., Welte, K., Löwenberg, B., and Touw, I. P. (1995) Mutations in the gene for the granulocyte colony-stimulatingfactor receptor in patients with acute myeloid leukemia preceded by severe congenital neutropenia. N. Engl. J. Med. 333, 487–493.PubMedCrossRefGoogle Scholar
  72. 72.
    Fukunaga, R., Ishizaka-Ikeda, E., and Nagata, S. (1993) Growth and differentiation signals mediated by different regions in the cytoplasmic domain of granulocyte colony-stimulating factor receptor. Cell 74, 1079–1087.PubMedCrossRefGoogle Scholar
  73. 73.
    Dong, F., van Buitenen, C., Pouwels, K., Hoefsloot, L. H., Löwenberg, B., and Touw, I. P. (1993) Distinct cytoplasmic regions of the human granulocyte colony-stimulating factor receptor involved in induction of proliferation and maturation. Mol. Cell. Biol. 13, 7774–7781.PubMedGoogle Scholar
  74. 74.
    Ziegler, S. F., Bird, T. A., Morella, K. K., Mosley, B., Gearing, D. P., and Baumann, H. (1993) Distinct regions of the human granulocyte colony-stimulating factor receptor cytoplasmic domain are required for proliferation and gene induction. Mol. Cell. Biol. 13, 2384–2390.PubMedGoogle Scholar
  75. 75.
    Kyas, U., Pietsch, T., and Welte, K. (1992) Expression of receptors for granulocyte colony-stimulating factor on neutrophils from patients with severe congenital neutropenia and cyclic neutropenia. Blood 79, 1144–1147.PubMedGoogle Scholar
  76. 76.
    Metcalf, D. (1995) The granulocyte-macrophage regulators: reappraisal by gene inactivation. Exp. Hematol. 23, 569–572.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • Graham J. Lieschke
  • Ashley R. Dunn

There are no affiliations available

Personalised recommendations