NF-IL6 Knockout Mice

  • Shizuo Akira
  • Takashi Tanaka
  • Tadamitsu Kishimoto
Part of the Contemporary Immunology book series (CONTIM)


Nuclear factor for IL-6 expression (NF-IL6) was originally identified as a nuclear factor binding to a 14-bp palindromic sequence (ACATTGCACAATCT) within an interleukin (IL)-1 responsive element in the human IL-6 gene (1). The cloning of the cDNA encoding human NF-IL6 revealed that it shows a high degree of homology with C/EBP in the carboxy-terminal basic and leucine zipper domains, responsible for DNA binding and dimerization, respectively (2). NF-IL6 recognizes the same nucleotide sequences as C/EBP. Both proteins bind to a variety of the divergent nucleotide sequences with different affinity, the consensus sequence is T(T/G)NNGNNAA(T/G). The NF-IL6 gene is intronless, and produces two proteins, liver-enriched transcriptional activator protein (LAP, equivalent to NF-IL6) and liver inhibitory protein (LIP) by alternative usage of two AUG initiation codons within the same open reading frame (3). LIP contains the DNA binding and dimerization domains but is devoid of the N terminal transcriptional activation domain, and therefore behaves as an antagonist of LAP-induced transcription.


Peritoneal Macrophage Peritoneal Exudate Cell Listeria Infection Listeria Monocytogenes Infection Bone Marrow Fibroblast 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Isshiki, H., Akira, S., Tanabe, O., Nakajima, T., Shimamoto, T., Hirano, T., and Kishimoto, T. (1990) Constitutive and IL-1 inducible factors interact with the IL-1 responsive element in the IL-6 gene. Mol. Cell. Biol. 10, 2757–2764.PubMedGoogle Scholar
  2. 2.
    Akira, S., Isshiki, H., Sugita, T., Tanabe, O., Kinoshita, S., Nishio, Y., Nakajima, T., Hirano, T., and Kishimoto, T. (1990) A nuclear factor for IL-6 expression (NF-1L6) is a member of a C/EBP family. EMBO J. 9, 1897–1906.PubMedGoogle Scholar
  3. 3.
    Descombes, P. and Schibler, U. (1991) A liver-enriched transcriptional activator protein, LAP, and a transcriptional inhibitory protein, LIP, are translated from the same mRNA. Cell 67, 569–579.PubMedCrossRefGoogle Scholar
  4. 4.
    Akira, S. and Kishimoto, T. (1992) IL-6 and NF-IL6 in acute-phase response and viral infection. Immunol. Rev. 127, 25–50.PubMedCrossRefGoogle Scholar
  5. 5.
    Descombes, P., Chojkier, M., Lichtsteiner, S., Falvey, E., and Schibler, U. (1990) LAP, a novel member of the C/EBP gene family, encodes a liver-enriched transcriptional activator protein. Genes Dey. 4, 1541–1551.CrossRefGoogle Scholar
  6. 6.
    Chang, C. J., Chen, T. T., Lei, H. Y., Chen, D. S., and Lee, S. C. (1990) Molecular cloning of a transcription factor, AGP/EBP, that belongs to members of the C/EBP family Mol. Cell. Biol. 10, 6642–6653.PubMedGoogle Scholar
  7. 7.
    Poli, V., Mancini, F. P., and Cortese, R. (1990) IL-6DBP, a nuclear protein involved in interleukin-6 signal transduction, defines a new family of leucine zipper proteins related to C/EBP. Cell 63, 643–653.PubMedCrossRefGoogle Scholar
  8. 8.
    Cao, Z., Umek, R. M., and McKnight, S. L. (1991) Regulated expression of three C/EBP isoforms during adipose conversion of 3T3–L1 cells. Genes Dey. 5, 1538–1552.CrossRefGoogle Scholar
  9. 9.
    Ness, S. A., Kowenz-Leutz, E., Casini, T., Graf, T., and Leutz, A. (1993) Myb and NF-M: combinatorial activators of myeloid genes in heterologous cell types. Genes Dey. 7, 749–759.CrossRefGoogle Scholar
  10. 10.
    Katz, S., Kowenz-Leutz, E., Müller, C., Meese, K., Ness, S. A., and Leutz, A. (1993) The NF-M transcription factor is related to C/EBP13 and plays a role in signal transduction, differentiation and leukemogenesis of avian myelomonocytic cells. EMBO J. 12, 1321–1332.PubMedGoogle Scholar
  11. 11.
    Natsuka, S., Akira, S., Nishio, Y., Hashimoto, S., Sugita, T., Isshiki, H., and Kishimoto, T. (1992) Macrophage differentiation specific expression of NFIL6, a transcription factor for IL-6. Blood, 79, 460–466.PubMedGoogle Scholar
  12. 12.
    Scott, L. M., Civin, C. I., Rorth, P., and Friedman, A. D. (1992) A novel temporal expression pattern of three C/EBP family members in differentiating myelomonocytic cells. Blood 80, 1725–1735.PubMedGoogle Scholar
  13. 13.
    Zhang, Y. and Ron, W. N. (1993) Regulation of the interleukin-1(3 (IL-10) gene by mycobacterial components and lipopolysaccharide is mediated by two nuclear factor-IL6 motifs. Mol. Cel. Biol. 13, 3831–3837.Google Scholar
  14. 14.
    Mukaida, N., Mahe, Y., and Matsushima, K. (1990) Cooperative interaction of NF-KB- and C/EBP-like factor binding elements in activating the interleukin8 gene by proinflammatory cytokines. J. Biol. Chem. 265, 21,128–21, 133.Google Scholar
  15. 15.
    Lowenstein, C. J., Alley, E. W., Raval, P., Snowman, A. M., Snyder, S. M., Russell, S. W., and Murphy, W. J. (1993) Macrophage nitric oxide synthase gene: two upstream regions mediates induction by interferon gamma and lipopolysaccharide. Proc. Natl. Acad. Sci. USA 90, 9730–9734.PubMedCrossRefGoogle Scholar
  16. 16.
    Nakajima, T., Kinoshita, S., Sasagawa, T., Sasaki, K., Naruto, M., Kishimoto, T., and Akira, S. (1993) Phosphorylation at threonine-235 by a ras-dependent mitogen-activated protein kinase cascade is essential for transcription factor NF-IL6. Proc. Natl. Acad. Sci. USA 90, 2207–2211.PubMedCrossRefGoogle Scholar
  17. 17.
    Kowenz-Leutz, E., Twamley, G., Ansieau, S., and Leutz, A. (1994) Novel mechanism of C/EBP13(NF-M) transcriptional control: activation through derepression. Genes Del). 8, 2781–2791.CrossRefGoogle Scholar
  18. 18.
    Wegner, M., Cao, Z., and Rosenfeld, M. (1992) Calcium-regulated phosphorylation within the leucine zipper of C/EBP13. Science, 256, 370–373.PubMedCrossRefGoogle Scholar
  19. 19.
    Metz, R. and Ziff, E. (1991) cAMP stimulates the C/EBP-related transcription factor rNF-IL6 to trans-locate to the nucleus and induce c-fos transcription. Genes Del). 10, 1754–1766.Google Scholar
  20. 20.
    Trautwein, C., Caelles, C., Van der Geer, P., Hunter, T., Karin, M., and Chojkler, M. (1993) Transactivation by NF-IL6/LAP is enhanced by phosphorylation of its activation domain. Nature 364, 544–547.PubMedCrossRefGoogle Scholar
  21. 21.
    Roman, C., Platero, J. S., Shuman, J., and Calame, K. (1990) Ig/EBP-1: a ubiquitously expressed immunoglobulin enhancer binding protein that is similar to C/EBP and heterodimerizes with C/EBP. Genes Dey. 4, 1414–1415.CrossRefGoogle Scholar
  22. 22.
    Nishizawa, M., Wakabayashi-Ito, N., and Nagata, S. (1991) Molecular cloning of cDNA and a chromosomal gene encoding GPE-1-BP, a nuclear protein which binds to granulocyte colony-stimulating factor promoter element 1. FEBS Lett. 282, 95–97.PubMedCrossRefGoogle Scholar
  23. 23.
    Kinoshita, S., Akira, S., and Kishimoto, T. (1992) A member of the C/EBP family, NF-1L6ß, forms a heterodimer and transcriptionally synergizes with NF-IL6. Proc. Natl. Acad. Sci. USA 87, 1473–1476.CrossRefGoogle Scholar
  24. 24.
    Williams, S. C., Cantwell, C. A., and Johnson, P. F. (1991) A family of C/EBP-related proteins capable of forming covalently linked leucine zipper dimers in vitro. Genes Dev. 5, 1553–1567.PubMedCrossRefGoogle Scholar
  25. 25.
    Ron, D., and Habener, J. F. (1992) CHOP, a novel developmentally regulated nuclear protein that dimerizes with transcription factors C/EBP and LAP and functions as a dominant-negative inhibitor of gene transcription. Genes Dey. 6, 439–453.CrossRefGoogle Scholar
  26. 26.
    Birkenmeier, E. H., Gwynn, B., Howard, S., Jerry, J., Gordon J. I., Landoschulz, and McKnight, S. L. (1989) Tissue-specific expression, developmental regulation, and genetic mapping of the gene encoding CCAAT/enhancer binding protein. Genes Del). 3, 11–46.Google Scholar
  27. 27.
    Christy, R. J., Yang, V. W., Ntambi, J. M., Geiman, D. E., Landschulz, W. M., Friedman, A. D., Nakabeppu, Y., Kelly, T. J., and Lane, M. D. (1989) Differentiation-induced gene expression in 3T3–L1 preadipocytes: CCAAT/ enhancer binding protein interacts with and activates the promoters of two adipocyte-specific genes. Genes Dey. 3, 1323–1335.CrossRefGoogle Scholar
  28. 28.
    Samuelsson, L., Stromberg, K., Vikman, K., Bjursell, G., and Enerback, S. (1991) The CAAT/enhancer binding protein and its role in adipocyte differentiation: evidence for direct involvement in terminal adipocyte differentiation. EMBO J. 10, 9590–9594.Google Scholar
  29. 29.
    Lin, F.-T., and Lane, M. D. (1992) Antisense CCAAT/enhancer-binding protein RNA suppresses coordinate gene expression and triglyceride accumulation during differentiation of 3T3–L1 preadipocytes. Genes Dey. 6, 533–544.CrossRefGoogle Scholar
  30. 30.
    Umek, E. M., Friedman, A. D., and McKnight, S. L. (1991) CCAAT-enhancer binding protein: a component of a differentiation switch. Science 251, 288–292.PubMedCrossRefGoogle Scholar
  31. 31.
    Freytag, S. O., Faielli, D. L., and Gilbert, J. D. (1994) Ectopic expression of the CCAAT/enhancer-binding protein a promotes the adipogenic program in a variety of mouse fibroblastic cells. Genes Dey. 8, 1654–1663.CrossRefGoogle Scholar
  32. 32.
    Lin, F.-T. and Lane, M. D. (1994) CCAAT/enhancer binding protein a is sufficient to initiate the 3T3–L1 adipocyte differentiation program. Proc. Natl. Acad. Sci. USA 91, 8757–8761.PubMedCrossRefGoogle Scholar
  33. 33.
    Wang, N.-D., Finegold, M. J., Bradley, A., Ou, C. N., Abdelsayed, S. V., Wilde, M. D., Taylor, L. R., and Wilson, D. R., Darlington G. J. (1995) Impaired energy homeostasis in C/EBPa knockout mice. Science 269, 1108–1112.Google Scholar
  34. 34.
    Cooper, C. L., Berner, A. L., Roman, C., and Calame, K. L. (1994) Limited expression of C/EBP family proteins during B lymphocyte development: negative regulator Ig/EBP predominates early and activator NF-IL-6 is induced later. J. Immunol. 153, 5049.PubMedGoogle Scholar
  35. 35.
    Li, X. and Liao, W. S. L. (1992) Cooperative effects of C/EBP-like and NFKB-like binding sites on rat serum amyloid Al gene expression in liver cells. Nucleic Acids Res. 20, 4765–4772.PubMedCrossRefGoogle Scholar
  36. 36.
    Brasier, A. R., Ron, D., Tate, J. E., and Habener, J. F. (1990) A family of constitutiv C/EBP-like DNA binding proteins attenuate the IL-la induced NF-KB mediated transactivation of the angiotensinogen gene acute-phase response element. EMBO J. 9, 3933–3944.PubMedGoogle Scholar
  37. 37.
    Dunn, S. M., Coles, L. S., Lang, R. K., Gerondakis, S., Vadas, M. A., and Shannon, M. F. (1994) Requirement for NF-KB and NF-interleukin-6 binding elements in the tumor necrosis factor response region of the granulocyte colony-stimulation factor promoter. Blood 83, 2469–2479.PubMedGoogle Scholar
  38. 38.
    LeClair K. P., Blanar, M. A., and Sharp, P. A. (1992) The p50 subunit of NF-KB associates with the NF-IL6 transcription factor. Proc. Natl. Acad. Sci. USA 89, 8145–8149.PubMedCrossRefGoogle Scholar
  39. 39.
    Stein, B., Cogswell, P. C., and Baldwin, A. S., Jr. (1993) Functional and physical association between NF-kB and CIEBP family members: a Rel domain-bZip interaction. Mol. Cell Biol. 13, 3964–3974.PubMedGoogle Scholar
  40. 40.
    Matsusaka, T., Fujikawa, K., Nishio, Y., Mukaida, N., Matsushima, K., Kishimoto, T., and Akira, S. (1993) NF-1L6 and NF-KB synergistically activate transcription of the inflammatory cytokines, IL-6 and IL-8. Proc. Natl. Acad. Sci. USA 90, 10,193–10, 197.Google Scholar
  41. 41.
    Kunsch, C., Lang, R. K., Rosen, C. A., and Shannon, M. F. (1994) Synergistic transcriptional activation of the IL -8 gene by NF-KB p65(Re1A) and NF-IL-6. J. Immunol. 153, 153.PubMedGoogle Scholar
  42. 42.
    Tanaka, T., Akira, S., Yoshida, K., Umemoto, M., Yoneda, Y., Shirafuji, N., Fujiwara, H., Suematsu, S., Yoshida, N., and Kishimoto, T. (1995) Targeted disruption of the NF-IL6 gene discloses its essential role in bacteria killing and tumor cytotoxicity by macrophages. Cell 80, 353–361.PubMedCrossRefGoogle Scholar
  43. 43.
    Nacy, C. A., Meierovics, A. I., Belosevic, M., and Green, S. J. (1991) Tumor necrosis factor-alpha: central regulatory cytokine in the induction of macrophage antimicrobial activities. Pathobiology 59, 182–184.PubMedCrossRefGoogle Scholar
  44. 44.
    Liew, F. Y., Li, Y., and Millot, S. (1990) Tumor necrosis factor-a synergizes with IFN-7 in mediating killing of Leishmania major through the induction of nitric oxide. J. Immunol. 145, 4306.PubMedGoogle Scholar
  45. 45.
    Munoz Fernandez, M. A., Fernandez, M. A., and Fresno, M. (1992) Synergism between tumor necrosis factor-alpha and interferon-gamma on macrophage activtion for the killing of intracellular Trypanosoma cruzi through a nitric oxide-dependent mechanism. Eur. J. Immunol. 22, 301.PubMedCrossRefGoogle Scholar
  46. 46.
    Portnoy, D. A., Schreiber, R. D., Connelly, P., and Tilney, L. G. (1989) Gamma interferon limits access of Listeria monocytogenes to the macrophage cytoplasm. J. Exp. Med. 170, 2141–2147.Google Scholar
  47. 47.
    Kiderlen, A. F., Kaufmann, S. H. E., and Lohmann-Matthes, M. (1984) Protection of mice against the intracellular bacterium Listeria monocytogenes by recombinant immune interferon. Eur. J. Immunol. 14, 964–967.PubMedCrossRefGoogle Scholar
  48. 48.
    Buchmeier, N. A. and Schreiber, R. D. (1985) Requirement of endogenous interferon-y production for resolution of Listeria monocytogenes infection. Proc. Natl. Acad. Sci. USA 82, 7404–7408.PubMedCrossRefGoogle Scholar
  49. 49.
    Bancroft, G. J., Schreiber, R. D., Bosma, G. C., Bosma, M. J., and Unanue, E. R. (1987) A T cell-independent mechanism of macrophage activation by interferon-g. J. Immunol. 139, 1104–1107.PubMedGoogle Scholar
  50. 50.
    Havell, E. A. (1989) Evidence that tumor necrosis factor has an important role in antibacterial resistance. J. Immunol. 139, 4225–4231.Google Scholar
  51. 51.
    Nakane, A., Minagawa, T., and Kato, K. (1988) Endogenous tumor necrosis factor (cachectin) is essential to host resistance against Listeria monocytogens infection. Infect. Immunol. 56, 731–740.Google Scholar
  52. 52.
    Czuprynski, C. J. and Brown, J. F. (1987) Recombinant murine inter1eukin1a enhancement of nonspecific antibacterial resisitance. Infect. Immunol. 55, 2061–2065.Google Scholar
  53. 53.
    Rogers, H. W., Sheehan, K. C. F., Brunt, L. M., Dower, S. K., Unanue, E. R., and Schreiber, R. D. (1992) Interleukin 1 participates in the development of anti-Listeria responses in normal and SCID mice. Proc. Natl. Acad. Sci. USA 89, 1011–1018.PubMedCrossRefGoogle Scholar
  54. 54.
    Kiehntopf, M., Herrmann, F., and Brach, M. A. (1995) Functional NFIL6/CCAAT enhancer-binding protein is required for tumor necrosis factor a-inducible expression of the G-CSF, but not GM-CSF or IL-6 gene in human fibroblasts. J. Exp. Med. 181, 793–798.PubMedCrossRefGoogle Scholar
  55. 55.
    Nathan, C. F. and Hibbs, J. M. (1991) Role of nitric oxide synthesis in macrophage antimicrobial activity. Curr. Opin. Immunol. 3, 65–70.PubMedCrossRefGoogle Scholar
  56. 56.
    MacMicking, J. D., Nathan, C., Hom, G., Chartrain, N., Fletcher, D. S., Trumbauer, M., Stevens, K., Xie, Q.-W., Sokol, K., Hutchinson, N., Chen, H., and Mudgett, J. S. (1995) Altered response to bacterial infection and endotoxic shook in mice lacking inducible nitric oxide synthase. Cell 81, 641–650.Google Scholar
  57. 57.
    Rothe, J., Lesslauer, W., Lötsher, H., Lang, Y., Koebel, P., Köntgen, F., Althage, A., Zinkernagel, R., Steinmetz, M., and Bluethmann, H. (1993) Mice lacking the tumore necrosis factor receptor 1 are resistant to TNFmediated toxicity but hihgly susceptible to infection by Listeria monocytogenes. Nature 364, 798–802.PubMedCrossRefGoogle Scholar
  58. 58.
    Pfeffer, K., Matsuyama, T., Kiindig, T. M., Wakeham, A., Kishihara, K., Shahinian, A., Wiegmann, K., Ohashi, P. S., Krönke, M., and Mak, T. W. (1993) Mice deficient for the 55 kd tumor necrosis factor receptor are resistant to endotoxic shock, yet succumb to L. monocytogenes infection. Cell 73, 457–467.Google Scholar
  59. 59.
    Huang, S., Hendriks, W., Althage, A., Hemmi, S., Bluethamnn, H., Kamijo, R., Vilcek, J, Zinkernagel, R. M., and Aguet, M. (1993) Immune response in mice that lack the interferon y receptor. Science 259, 1742–1745.PubMedCrossRefGoogle Scholar
  60. 60.
    Lieshchke, G. J., Grail, D., Hodgson, G., Metcalf, D., Stanley, E., Cheers, C., Fowler, K. J., Basu, S., Zhan, Y. F., and Dunn, A. R. (1994) Mice lacking granulocyte colony-stimulating factor have chronic neutropenia, granulocyte and macrophage progenitor cell deficiency, and impaired neutrophil mobilization. Blood 84, 1737–1746.Google Scholar
  61. 61.
    Kopf, M., Baumann, H., Freer, G., Freudenberg, M., Lamers, M., Kishimoto, T., Zinkernagel, R., Bluethamnn, H., and Köhler, G. (1994) Impaired immune and acute-phase responses in interleukin-6-deficient mice. Nature 368, 339–342.PubMedCrossRefGoogle Scholar
  62. 62.
    Dalrymple, S. A., Lucian, L. A., Slattery, R., McNeil, T., Aud, D. M., Fuchino, S., Lee, F., and Murray, R. (1995) Interleukin-6-deficient mice are highly susceptible to Listeria monocytogenes infection: correlation with inefficient neutrophilia. Infect. Immunol. 63, 2262–2268.Google Scholar
  63. 63.
    Lenardo, M. and Baltimore, D. (1989) NF-KB: a pleiotropic mediator of inducible and tissue-specific gene control. Cell 58, 227.PubMedCrossRefGoogle Scholar
  64. 64.
    Sha, W. C., Liou, H.-C., Toumanen, E., and Baltimore, D. (1995) Targeted disruption of the p50 subunit of NF-KB leads to multifocal defects in immune responses. Cell 80, 321–330.PubMedCrossRefGoogle Scholar
  65. 65.
    Screpanti, I., Romani, L., Musiani, P., Modesti, A., Fattori, E., Lazzaro, D., Sellitto, C., Scarpa, S., Bellavia, D., Lattanzio, G., Bistoni, F., Frati, L., Cortese, R., Gulino, A., Ciliberto, G., Costantini, F., and Poli, V. (1995) Lymphoproliferative disorder and imbalanced T-helper response in C/EB113deficient mice. EMBO J. 14, 1932–1941.PubMedGoogle Scholar
  66. 66.
    Suematsu, S., Matsuda, T., Aozasa, K., Akira, S., Nakano, N., Ohno, S., Miyazaki, S. I., Yamamura, K. I., Hirano, T., and Kishimoto, T. (1989) IgG1 plasmacytosis in interleukin 6 transgenic mice. Proc. Natl. Acad. Sci. USA 86, 7547–7551.PubMedCrossRefGoogle Scholar
  67. 67.
    Yoshizaki, K., Matsuda, T., Nishimoto, N., Kuritani, T., Taeho, L., Aozasa, K., Nakahata, T., Kawai, K., Tagoh, H., Komori, T., Kishimoto, S., Hirano, T., and Kishimoto, T. (1989) Pathological significance of B cell stimulatory factor 2(BSF-2/IL-6) in Castleman’s disease. Blood 74, 1360–1367.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • Shizuo Akira
  • Takashi Tanaka
  • Tadamitsu Kishimoto

There are no affiliations available

Personalised recommendations