Myocardial, Hematological, and Placental Disorders Caused by Targeted Disruption of gp130, A Common Signal Transducer for IL-6 Family of Cytokines

  • Kanji Yoshida
  • Tetsuya Taga
  • Mikiyoshi Saito
  • Atsushi Kumanogoh
  • Takashi Tanaka
  • Keiichi Ozono
  • Masahiro Nakayama
  • Tatsutoshi Nakahata
  • Nobuaki Yoshida
  • Tadamitsu Kishimoto
Part of the Contemporary Immunology book series (CONTIM)


Growth and differentiation of cells during development of organs are precisely coordinated by various membrane-anchored and soluble factors, the latter of which include so-called cytokines. Cytokine signals are mediated through specific receptor complexes expressed on target cells. Most of the cytokine receptor components, in particular those involved in hernatopoietic cell regulation, belong to a large group of proteins called the cytokine receptor family (1). A notable finding is that receptor complexes from this family are usually composed of a ligand-specific receptor chain and a signal transducer common to multiple cytokines (2,3). gp130 was initially identified as a signal transducing receptor component that associates with the interleukin-6 receptor (IL-6R) when the receptor binds with IL-6 (4,5). It has been shown that gp130 is also utilized as a critical signal transducing component in the receptor complexes for IL-11, leukemia inhibitory factor (LIF), oncostatin M (OSM), ciliary neurotrophic factor (CNTF), and cardiotrophin-1 (CT-1) (6–10). The discovery of this shared signal transducer, gp 130, helps to explain how these different cytokines can mediate overlapping biological functions (11). This system of utilizing multichain components with a shared signal transducer is not confined to the IL-6-family of cytokines, but is also applicable to two other families of cytokines: granulocyte-macrophage colony-stimulating factor (GM-CSF), IL-3, and IL-5, all of which share a common chain referred to as βc (12); and IL-2, IL-4, IL-7, IL-9, and IL-15 which share the IL-2Rγ chain, γc (13–15). A general first step in the process of signaling by members of the cytokine receptor family is believed to be the ligand-induced dimerization of receptor components. In the case of the IL-6-family of cytokines, IL-6-binding to IL-6R induces homodimerization of gp130 (16), whereas stimulation by LIF, OSM, CNTF, and CT-1 leads to heterodimerization of gp130 with a closely related protein, LIFR (7,10,17). OSM is suggested to signal also through a different type of heterodimer composed of OSM-specific receptor and gp130 (18,19). From the close structural similarity of IL-6R and IL-11R, the gp130 homodimer could be a candidate complex for IL-11 signaling (20). Homo- or heterodimerization of gp130 triggers the activation of JAK1, JAK2, and TYK2, all of which are in the JAK-family of cytoplasmic tyrosine kinases and are associated with gp130 (21–23). This leads to the subsequent tyrosine-phosphorylation and acquisition of DNA-binding capability of a latent cytoplasmic transcription factor, APRF/STAT3 (for acute phase response factor or signal transducer and activator of transcription 3) (24–26). It has recently been shown that phosphorylation of a serine residue in STAT3 is important for the full activation of STAT3 (27–29). The Ras/MAPK cascade has been revealed to be activated following gp130-stimulation (30–32). One of the targets of MAPK is NF-IL6, which was demonstrated to be activated on threonine phosphorylation by MAPK (33). A precise mechanism which links the gp130-dimerization and MAPK activation remains to be elucidated.


Atrial Natriuretic Peptide Fetal Liver Primordial Germ Cell Mutant Embryo Target Disruption 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bazan, J. F. (1990) Structural design and molecular evolution of a cytokine receptor superfamily. Proc. Natl. Acad. Sci. USA. 87, 6934–6938.PubMedCrossRefGoogle Scholar
  2. 2.
    Taga, T. and Kishimoto, T. (1992) Cytokine receptors and signal transduction. FASEB J. 6, 3387–3396.PubMedGoogle Scholar
  3. 3.
    Kishimoto, T., Taga, T., and Akira, S. (1994) Cytokine signal transduction. Cell 76, 253–262.PubMedCrossRefGoogle Scholar
  4. 4.
    Taga, T., Hibi, M., Hirata, Y., Yamasaki, K., Yasukawa, K., Matsuda, T., Hirano, T., and Kishimoto, T. (1989) Interleukin-6 triggers the association of its receptor with a possible signal transducer, gp130. Cell 58, 573–581.PubMedCrossRefGoogle Scholar
  5. 5.
    Hibi, M., Murakami, M., Saito, M., Hirano, T., Taga, T., and Kishimoto, T. (1990) Molecular cloning and expression of an IL-6 signal transducer, gp130. Cell 63, 1149–1157.PubMedCrossRefGoogle Scholar
  6. 6.
    Ip, N. Y., Nye, S. H., Boulton, T. G., Davis, S., Taga, T., Li, Y., Birren, S. J., Yasukawa, K., Kishimoto, T., Anderson, D. J., Stahl, N., and Yancopoulos, G. D. (1992) CNTF and LIF act on neuronal cells via shared signaling pathways that involve the IL-6 signal transducing receptor component gp130. Cell 69, 1121–1132.PubMedCrossRefGoogle Scholar
  7. 7.
    Gearing, D. P., Comeau, M. R., Friend, D. J., Gimpel, S. D., Thut, C. J., McGourty, J., Brasher, K. K., King, J. A., Gillis, S., Mosley, B., Ziegler, S. F., and Cosman, D. (1992) The IL-6 signal transducer, gp130: an oncostatin M receptor and affinity converter for the LIF receptor. Science 255, 1434–1437.PubMedCrossRefGoogle Scholar
  8. 8.
    Liu, J., Modrell, B., Aruffo, A., Marken, J. S., Taga, T., Yasukawa, K., Murakami, M., Kishimoto, T., and Shoyab, M. (1992) Interleukin-6 signal transducer gp130 mediates oncostatin M signaling. J. Biol. Chem. 267, 16,763–16, 766.Google Scholar
  9. 9.
    Yin, T., Taga, T., Tsang, M. L.-S., Yasukawa, K., Kishimoto, T., Yang, Y.-C. (1993) Involvement of interleukin-6 signal transducer gp130 in interleukin-ll-mediated signal transduction. J. Immunol. 151, 2555–2561.PubMedGoogle Scholar
  10. 10.
    Pennica, D., Shaw, K. J., Swanson, T. A., Moore, M. W., Sheliton, D. L., Zioncheck, K. A., Rosenthal, A., Taga, T., Paoni, N. F., and Wood, W. I. (1995) Cardiotrophin-1: biological activities and binding to the leukemia inhibitory factor receptor/gp130 signaling complex. J. Biol. Chem. 270, 10,915–10, 922.Google Scholar
  11. 11.
    Kishimoto, T., Akira, S., and Taga, T. (1992) Interleukin-6 and its receptor: a paradigm for cytokines. Science 258, 593–597.PubMedCrossRefGoogle Scholar
  12. 12.
    Miyajima, A., Kitamura, T., Harada, N., Yokota, T., and Arai K. (1992) Cytokine receptors and signal transduction. Annu. Rev. Immunol. 10, 295–331.PubMedCrossRefGoogle Scholar
  13. 13.
    Russell, S. M., Keegan, A. D., Harada, N., Nakamura, Y., Noguchi, M., Leland, P., Friedmann, M. C., Miyajima, A., Puri, R. K., Paul, W. E., and Leonard, W. J. (1993) Interleukin-2 receptor y chain: a functional component of the interleukin-4 receptor. Science 262, 1880–1883.PubMedCrossRefGoogle Scholar
  14. 14.
    Kondo, M., Takeshita, T., Higuchi, M., Nakamura, M., Sudo, T., Nishikawa, S., and Sugamura, K. (1994) Functional participation of the IL-2 receptor y chain in IL-7 receptor complexes. Science 263, 1453–1454.PubMedCrossRefGoogle Scholar
  15. 15.
    Giri, J. G., Ahdieh, M., Eisenman, J., Shanebeck, K., Grabstein, K., Kumaki, S., Namen, A., Park, L. S., Cosman, D., and Anderson, D. (1994) Utilization of the ß and y chains of the IL-2 receptor by the novel cytokine IL-15. EMBO J. 13, 2822–2830.PubMedGoogle Scholar
  16. 16.
    Murakami, M., Hibi, M., Nakagawa, N., Nakagawa, T., Yasukawa, K., Yamanishi, K., Taga, T., and Kishimoto, T. (1993) IL-6-induced homodimerization of gp130 and associated activation of a tyrosine kinase. Science 260, 1808–1810.PubMedCrossRefGoogle Scholar
  17. 17.
    Davis, S., Aldrich, T. H., Stahl, N., Pan, L., Taga, T., Kishimoto, T., Ip, N. Y., and Yancopoulos, G. D. (1993) LIFR(3 and gp130 as heterodimerizing signal transducers of the tripartite CNTF receptor. Science 260, 1805–1808.PubMedCrossRefGoogle Scholar
  18. 18.
    Thoma, B., Bird, T. A., Friend, D. J., Gearing, D. P., and Dower, S. K. (1994) Oncostatin M and leukemia inhibitory factor trigger overlapping and different signals through partially shared receptor complexes. J. Biol. Chem., 269, 6215–6222.PubMedGoogle Scholar
  19. 19.
    Murakami-Mori, K., Taga, T., Kishimoto, T., and Nakamura, S. (1995) AIDS-associated Kaposi’ s sarcoma (KS) cells express oncostatin M (OM)-specific receptor but not leukemia inhibitory facotr/OM receptor or interleukin-6 receptor. J. Clin. Invest. 96, 1319–1327.PubMedCrossRefGoogle Scholar
  20. 20.
    Hilton, D. J., Hilton, A. A., Raicevic, A., Rakar, S., Harrison-Smith, M., Gough, N. M., Begley, C. G., Metcalf, D., Nicola, N. A., and Willson, T. A. (1994) Cloning of a murine IL-11 receptor a chain: requirement for gp130 high affinity binding and signal transduction. EMBO J., 13, 4765–4775.PubMedGoogle Scholar
  21. 21.
    Narazaki, M., Witthuhn, B. A., Yoshida, K., Silvennoinen, 0., Yasukawa, K., Ihle, J. N., Kishimoto, T., and Taga, T. (1994) Activation of JAK2 kinase mediated by the interleukin 6 signal transducer gp130. Proc. Natl. Acad. Sci. USA 91, 2285–2289.CrossRefGoogle Scholar
  22. 22.
    Stahl, N., Boulton, T. G., Farruggella, T., Ip, N. Y., Davis, S., Witthuhn, B. A., Quelle, F. W., Silvennoinen, 0., Barbieri, G., Pellegrini, S., Ihle, J. N., Yancopoulos, G. D. (1994) Association and activation of Jak-Tyk kinases by CNTF-LIF-OSM-IL-6 ß receptor components. Science 263, 92–95.Google Scholar
  23. 23.
    Stahl, N., Farruggella, J., Boulton, T., G., Zhong, Z., Darnel, J. E., Yancopoulos, G. D. (1995) Choice of STATs and other substrates specified by modular tyrosine-based motifs in cytokine receptors. Science 267, 1349–1353.Google Scholar
  24. 24.
    Akira, S., Nishio, Y., Inoue, M., Wang, X.-J., Wei, S., Matsusaka, T., Yoshida, K., Sudo, T., Naruto, M., and Kishimoto, T. (1994) Molecular cloning of APRF, a novel IFN-stimulated gene factor 3 p91-related transcription factor involved in the gp 130-mediated signaling pathway. Cell 77, 63–71.PubMedCrossRefGoogle Scholar
  25. 25.
    Lütticken, C., Wegenka, U. M., Yuan, J., Buschmann, J., Schindler, C., Ziemiecki, A., Harpur, A. G., Wilks, A. F., Yasukawa, K., Taga, T., Kishimoto, T., Barbieri, G., Pellegrini, S., Sendtner, M., Heinrich, P. C., and Horn, F. (1994) Association of transcription factor APRF and protein kinase Jakl with the interleukin-6 signal transducer gp130. Science 263, 89–92.PubMedCrossRefGoogle Scholar
  26. 26.
    Wegenka, U. M., Lütticken, C., Buschmann, J., Yuan, J., Lottspeich, F., Müller-Esterl, W., Schindler, C., Roeb, E., Heinrich, P. C., Horn, F. (1994) The interleukin-6-activated acute-phase response factor is antigenically and functionally related to members of the signal transducer and activator of transcription (STAT) family. Mol. Cell Biol. 14, 3186–3196.PubMedGoogle Scholar
  27. 27.
    Zhang, X., Blenis, J., Li, H.-C., Schindler, C., and Chen-Kiang, S. (1995) Requirement of serine phosphorylation for formation of STAT-promoter complexes. Science 267, 1990–1994.PubMedCrossRefGoogle Scholar
  28. 28.
    Boulton, T. G., Zhong, Z., Wen, Z., Darnell, J. E., Jr., Stahl, N., and Yancopoulos, G. D. (1995) STAT3 activation by cytokines utilizing gp130 and related transducers involves a secondary modification requiring an H7-sensitive kinase. Proc. Natl. Acad. Sci. USA 92, 6915–6919.PubMedCrossRefGoogle Scholar
  29. 29.
    Wen, Z., Zhong, Z., and Darnell, J. E., Jr. (1995) Maximal activation of transcription by Stati and Stat3 requires both tyrosine and serine phosphorylation. Cell 82, 241–250.PubMedCrossRefGoogle Scholar
  30. 30.
    Satoh, T., Nakafuku, M., and Kajiro, Y. (1992) Function of Ras as a molecular switch in signal transduction. J. Biol. Chem. 267, 24,149–24, 153.Google Scholar
  31. 31.
    Boulton, T. G., Stahl, N., and Yancopoulos, G. D. (1994) Ciliary neurotrophic factor/leukemia inhibitory factor/interleukin 6/oncostatin M family of cytokines induces tyrosine phosphorylation of a common set of proteins overlapping those induced by other cytokines and growth factors. J. Biol. Chem. 269, 11,648–11, 655.Google Scholar
  32. 32.
    Daeipour, M., Kumar, G., and Amaral, M. C. (1993) Recombinant IL-6 activates p42 and p44 mitogen-activated protein kinases in the IL-6 responsive B cell line, AF-10. J. Immunol. 150, 4743–4753.PubMedGoogle Scholar
  33. 33.
    Nakajima, T., Kinoshita, S., Sasagawa, T., Sasaki, K., Naruto, M., Kishimoto, T., and Akira, S. (1993) Phosphorylation at threonine-235 by a ras-dependent mitogen-activated protein kinase cascade is essential for transcription factor NF-IL-6. Proc. Natl. Acad. Sci. USA 90, 2207–2211.PubMedCrossRefGoogle Scholar
  34. 34.
    Saito, M., Yoshida, K., Hibi, M., Taga, T., and Kishimoto, T. (1992) Molecular cloning of a murine IL-6 receptor-associated signal transducer, gp130, and its regulated expression in vivo. J. Immunol. 148, 4066–4071.PubMedGoogle Scholar
  35. 35.
    Yoshida, K., Taga, T., Saito, M., Suematsu, S., Kumanogoh, A., Tanaka, T., Fujiwara, H., Hirata, M., Yamagami, T., Nakahata, T., Hirabayashi, T., Yoneda, Y., Tanaka, K., Wang, W.-Z., Mori, C., Shiota, K., Yoshida, N., and Kishimoto, T. (1996) Targeted disruption of gp130, a common signal transducer for IL-6-family of cytokines, leads to myocardial and hematological disorders. Proc. Natl. Acad. Sci. USA 93, 407–411.PubMedCrossRefGoogle Scholar
  36. 36.
    Rumyantsev, P. P. (1977) Interaction of proliferation and differentiation processes during cardiac myogenesis and regulation. Int. Rev. Cytol. 91, 187–273.CrossRefGoogle Scholar
  37. 37.
    Chien, K. R., Knowlton, K. U., Zhu, H., and Chien, S. (1992) Regulation of cardiac gene expression during myocardial growth and hypertrophy: molecular studies of an adaptive physiologic response. FASB J. 5, 3037–3046.Google Scholar
  38. 38.
    Lee, K. J., Ross, R. S., Rockuran, H. A., Harris, A. N., O’Brien, T. X., van Bilsen, M., Shebeita, H. E., Kandolf, R., Brern, G., Price, J., Evans, S. M., Zhu, H., Franz, W. M., and Chien, K. R. (1992) Myosin light chain-2 luciferase transgenic mice reveal distinct regulatory programs for cardiac and skeletal muscle-specific expression of a single contractile protein gene. J. Biol. Chem. 267, 15,875–15, 885.Google Scholar
  39. 39.
    Chien, K. R., Zhu, H., Knowlton, K. U., Miller-Hans, W., van Wilson, M., O’Brien, T. X., and Evans, S. M. (1993) Transcriptional regulation during cardiac growth and development. Annu. Rev. Physiol. 55, 77–95.PubMedCrossRefGoogle Scholar
  40. 40.
    Lyons, G. E., Schiaffino, Stefano, Sasson, D., Barton, P., and Buckingham, B. (1990) Developmental regulation of myosin gene expression in mouse cardiac muscle. J. Cell Biol. 111, 2427–2436.PubMedCrossRefGoogle Scholar
  41. 41.
    Bloch, K. D., Seidman, J. G., Naftilan, J. D., Fallon, J. T., and Seidman, C. E. (1986) Neonatal atria and ventricles secrete atrial natriuretic factor via tissue-specific secretory pathways. Cell 47, 695–702.PubMedCrossRefGoogle Scholar
  42. 42.
    Wu, J., Deschepper, C. F., and Gardner, D. G. (1988) Peritoneal expression of the atrial natriuretic factor gene in rat cardiac tissue. Am. J. Physiol. 255, E388 - E396.PubMedGoogle Scholar
  43. 43.
    Lompré, A.-M., Nadal-Ginard, B., and Mandavi, V. (1984) Expression of the cardiac ventricular a-and [3-myosin heavy chain genes is developmentally and hormonally regulated. J. Biol. Chem. 259, 6437–6446.PubMedGoogle Scholar
  44. 44.
    Taga, T., Narazaki, M., Yasukawa, K., Saito, T., Miki, D., Hamaguchi, M., Davis, S., Shoyab, M., Yancopoulos, G. D., and Kishimoto, T. (1992) Functional inhibition of hematopoietic and neurotrophic cytokines by blocking the interleukin 6 signal transducer gp130. Proc. Natl. Acad. Sci. USA 89, 10,998–11, 001.Google Scholar
  45. 45.
    Yasukawa, K., Saito, T., Fukunaga, T., Sekimori, Y., Koishikawa, T., Fukui, H., Ohsugi, Y., Matsuda, T., Yawata, H., Hirano, T., Taga, T., and Kishimoto, T. (1990) Purification and characterization of soluble human IL-6 receptor expressed in CHO cell. J. Biochem. 108, 673–676.PubMedGoogle Scholar
  46. 46.
    Matsui, Y., Zsebo, K., and Hogan, B. L. M. (1992) Derivation of pluripotential embryonic stem cells from murine primordial germ cells in culture. Cell 70, 841–847.PubMedCrossRefGoogle Scholar
  47. 47.
    Resnick, J. L., Bixler, L. S., Cheng, L., Donovan, P. J. (1992) Long-term proliferation of mouse primordial germ cells in culture. Nature 359, 550, 551.Google Scholar
  48. 48.
    De Felici, M. and Dolci, S. (1991) Leukemia inhibitory factor sustains the survival of mouse primordial germ cells cultured on TM4 feeder layers. Dev. Biol. 147, 281–284.PubMedCrossRefGoogle Scholar
  49. 49.
    Matsui, Y., Toksoz, D., Nishikawa, S., Nishikawa, S., Williams, D., Zsebo, K., and Hogan, B. L. M. (1991) Effect of Steel factor and leukemia inhibitory factor on murine primordial germ cells in culture. Nature 353, 750–752.PubMedCrossRefGoogle Scholar
  50. 50.
    Yoshida, K., I. Chambers, J. Nichols, A. G. Smith, M. Saito, K. Yasukawa, M. Shoyab, T. Taga, and Kishimoto, T. (1994) Maintenance of the pluripotential phenotype of embryonic stem cells through direct activation of gp130 signalling pathways. Mech. Dev. 45, 163–171.PubMedCrossRefGoogle Scholar
  51. 51.
    Ginsburg, M., Snow, M. H. L., and Mclaren, A. (1990) Primordial germ cells in the mouse embryo during gastrulation. Development 110, 521–528.PubMedGoogle Scholar
  52. 52.
    Sucov, H., H. M., Dyson, E., Gumeringer, C. L., Price, J., Chien, K. R., and Evans, R. M. (1994) RXRa mutant mice establish a genetic basis for vitamin A signaling in heart morphogenesis. Genes Dev. 8, 1007–1018.Google Scholar
  53. 53.
    Kastner, P., Grondona, J. M., Mark, M., Gansmuller, A,. Lemeur, M., Decimo, D., Vonesch, J-L., Dollé, P., and Chambon, P. (1994) Genetic analysis of RXRa and RAR signalling pathways in heart and eye morphogenesis. Cell 78, 987–1003.PubMedCrossRefGoogle Scholar
  54. 54.
    Chen, Z., Friedrich, G. A., and Soriano, P. (1994) Transcriptional enhancer factor 1’ isruption by a retroviral gene trap leads to heart defects and embryonic lethality in mice. Genes Dev. 8, 2293–2301.PubMedCrossRefGoogle Scholar
  55. 55.
    Levéen, P.,eckny, M., Gebre-Medhin, S., Swolin, B., Larsson, E., and Betsholtz, C. (1994) Mice deficient for PDGF B show renal, cardiovascular, and hematopológical abnormalities. Genes Dev. 8, 1875–1887.CrossRefGoogle Scholar
  56. 56.
    Pennica, D., King., -K., Shaw, K. J., Luis, E., Rullamas, J., Luoh, S.-M., Darbonne, W. C., Knutzon, D. S., Yen, R., Chien K. R., Baker, J. B., and Wood, W. (1995) Expression cloning of cardiotrophin 1, a cytokine that induces cardiac myocyte hypertrophy. Proc. Natl. Acad. Sci. USA 92, 1142–1146.Google Scholar
  57. 57.
    Hirota, H., Yoshida, K., Kishimoto, T., and Taga, T. (1995) Continuous activation of gp130, a signal transducing receptor component for interleukin-6related cytokines, causes myocardial hypertrophy in mice. Proc. Natl. Acad. Sci. USA. 92, 4862–4866.PubMedCrossRefGoogle Scholar
  58. 58.
    Ware, C. B., Horowitz, M. C., Renshaw, B. R., Hunt, J. S., Liggitt, D., Koblar, S. A., Gliniak, B. C., Mckenna, H. J., Papayannopoulos, T., Thoma, B., Cheng, L., Donovan, P. J., Peschon, J. J., Bartlett, P. F., Willis, C. R., Wright, B. D., Carpenter, M. K., Davison, B. L., and Gearing, D. P. (1995) Targeted disruption of the low-affinity leukemia inhibitory factor receptor gene causes placental, skeletal, neural and metabolic defects and results in perinatal death. Development 121, 1283–1299.PubMedGoogle Scholar
  59. 59.
    Russell, E. S. (1979) Hereditary analysis of the mouse: A review for genetics. Adv. Genet. 20, 357–460.PubMedCrossRefGoogle Scholar
  60. 60.
    Scott, E. W., Simon, M. C., Anastasi, J., and Singh, H. (1994) Requirement of transcriptional factor PU.1 in the development of multiple hematopoietic lineages. Science 265, 1573–1577.PubMedCrossRefGoogle Scholar
  61. 61.
    Tam, P. P. L. and Snow, M. H. L. (1981) Proliferation and migration of primordial germ cells during compensatory growth in mouse embryos. J. Embryol. Exp. Morph. 64, 133–147.PubMedGoogle Scholar
  62. 62.
    Geissler, E. N., Ryan, M. A., and Housman, D. E. (1988) The dominant-white spotting (W) locus of mouse encodes the c-kit proto-oncogene. Cell 55, 185–192.PubMedCrossRefGoogle Scholar
  63. 63.
    Chabot, B., Stephenson, D. A., Chapman, V. M., Besmer, P., and Bernstein, A. (1988) The proto-oncogene c-kit encoding a transmembrane tyrosine kinase receptor maps to the mouse W locus. Nature 335, 88, 89.Google Scholar
  64. 64.
    Zsebo, K. M., Williams, D. A., Geissler, E. N., Broudy, V. C., Martin, F. H., Atkins, H. L., Hsu, R. Y., Birkett, N. C., Okino, K. H., Murdock, D. C., Jacobsen, F. W., Langley, K. E., Smith, K. A., Takeishi, T., Cattanach, K. E., Galli, S. J., and Suggs, S. V. (1990) Stem cell factor is encoded at the Si locus of the mouse and is the ligand for the c-kit tyrosine kinase reseptor. Cell 63, 213–224.PubMedCrossRefGoogle Scholar
  65. 65.
    Huang, E., Nocka, K., Beier, D. R., Chu, T. Y., Buck, J., Lahm, H. W., Wellner, D., Leder, P., and Besmer, P. (1990) The hematopoietic growth factor KL is encoded by the SI locus and is the ligand of the c-kit receptor, the gene product of the W locus. Cell 63, 225–233.PubMedCrossRefGoogle Scholar
  66. 66.
    Sui, X., Tsuji, K., Tanaka, R., Tajima, S., Muraoka, K., Ebihara, Y., Ikebuchi, K., Yasukawa, K., Taga, T., Kishimoto, T., Nakahata, T. (1995) gp130 and c-Kit signallings synergize for ex vivo expansion of human primitive hemopoietic progenitor cells. Proc. Natl. Acad. Sci. USA 92, 2859–2863.Google Scholar
  67. 67.
    Stewart, C. L., Kaspar, P., Brunet, L. J., Bhatt. H., Gadi, I., Köntgen F., and Abbondanzo, J. S. (1992) Blastocyst implantation depends on maternal expression of leukaemia inhibitory factor. Nature 359, 76–79.Google Scholar
  68. 68.
    Escary, J., Perreau, J., Duménil D., Ezine, S., and Brûlet, P. (1993) Leukaemia inhibitory factor is necessary for maintenance of haematopoietic stem cells and thymocyte stimulation. Nature 363, 361–364.PubMedCrossRefGoogle Scholar
  69. 69.
    Nishino, E., Matsuzaki, N., Masuhiro, K., Kameda, T., Taniguchi, T., Takagi, T., Sagi, F., and Tanizawa, O. (1989) Trophoblast-derived interleukin-6 (IL-6) regulates human chorionic gonadotropin release through IL-6 receptor on human trophoblasts. J. Clin. Endocrinol. Metabol. 71, 536–541.Google Scholar
  70. 70.
    Yamaguchi, M., Ogren, L., Endo, H., Thordarson, G., Kensinger, R., and Talamantes, F. (1993) Interleukin-6 inhibits mouse placental lactogen-II but not mouse placental lactogen-I secretion in vitro. Proc. Natl. Acad. Sci. USA 90, 11,905–11, 909.Google Scholar
  71. 71.
    Kopf, M., Baumann, H., Freer, G., Freudenberg, M., Lamers, M., Kishimoto, T., Zinkernagel, R., Bluethmann, H., and Köhler, G. (1994) Impaired immune and acute-phase responses in interleukin-6-deficient mice. Nature 368, 339–342.PubMedCrossRefGoogle Scholar
  72. 72.
    Poli, V., Balena, R., Fattori, E., Markatos, A., Yamamoto, M., Tanaka, H., Ciliberto, G., Rodan, G. A., and Costantini, F. (1994) Interleukin-6 deficient mice are protected from bone loss caused by estrogen depletion. EMBO J. 13, 1189–1196.PubMedGoogle Scholar
  73. 73.
    Masu, Y., Wolf, E., Holtmann, B., Sendtner, M., Brem, G., and Thoenen, H. (1993) Disruption of the CNTF gene results in motor neuron degeneration. Nature 365, 27–32.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • Kanji Yoshida
  • Tetsuya Taga
  • Mikiyoshi Saito
  • Atsushi Kumanogoh
  • Takashi Tanaka
  • Keiichi Ozono
  • Masahiro Nakayama
  • Tatsutoshi Nakahata
  • Nobuaki Yoshida
  • Tadamitsu Kishimoto

There are no affiliations available

Personalised recommendations