Skip to main content

Part of the book series: Statistics for Biology and Health ((SBH))

Abstract

Most statistical geneticists are frequentists, and fairly traditional ones at that. In testing statistical hypotheses, they prefer pure significance tests or likelihood ratio tests based on large sample theory. Although one could easily dismiss this conservatism as undue reverence for Karl Pearson and R. A. Fisher, it is grounded in the humble reality of geneticists’ inability to describe precise alternative hypotheses and to impose convincing priors. In the first part of this chapter, we will review by way of example the large sample methods summarized so admirably by Cavalli-Sforza and Bodmer [4] and Elandt-Johnson [8]. Then we will move on to modern elaborations of frequentist tests for contingency tables. The novelty here lies not in geneticists’ inference philosophy, but in designing tests sensitive to certain types of departures from randomness and in computing p-values. Good algorithms permit exact or nearly exact computation of p-values and consequently relieve our anxieties about large sample approximations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agresti A (1992) A survey of exact inference for contingency tables. Stat Sei 7:131–177.

    Article  MATH  MathSciNet  Google Scholar 

  2. Badner JA, Chakravarti A, Wagener DK (1984) A test of nonrandom segregation. Genetic Epidemiology 1:329–340

    Article  Google Scholar 

  3. Barbour AD, Holst L, Janson S (1992) Poisson Approximation. Oxford University Press, Oxford

    MATH  Google Scholar 

  4. Cavalli-Sforza LL, Bodmer WF (1971) The Genetics of Human Populations. Freeman, San Francisco

    Google Scholar 

  5. Clarke CA, Price Evans DA, McConnell RB, Sheppard PM (1959) Secretion of blood group antigens and peptic ulcers. Brit Med J 1:603–607

    Article  Google Scholar 

  6. De Braekeleer M, Smith B (1988) Two methods for measuring the non-randomness of chromosome abnormalities. Ann Hum Genet 52:63–67

    Article  Google Scholar 

  7. de Vries RRP, Lai A, Fat RFM, Nijenhuis LE, van Rood JJ (1976) HLA-linked genetic control of host response to Mycobacterium leprae. Lancet 2:1328–1330

    Article  Google Scholar 

  8. Elandt-Johnson RC (1971) Probability Models and Statistical Methods in Genetics. Wiley, New York

    MATH  Google Scholar 

  9. Ewens WJ, Griffiths RC, Ethier SN, Wilcox SA, Graves JAM (1992) Statistical analysis of in situ hybridization data: Derivation and use of the z max test. Genomics 12:675–682

    Article  Google Scholar 

  10. Fuchs C, Kenett R (1980) A test for detecting outlying cells in the multinomial distribution and two-way contingency tables. J Amer Stat Assoc 75:395–398

    Article  MATH  MathSciNet  Google Scholar 

  11. Guo S-W, Thompson E (1992) Performing the exact test of Hardy-Weinberg proportion for multiple alleles. Biometrics 48:361–372.

    Article  MATH  Google Scholar 

  12. Hanash SM, Boehnke M, Chu EHY, Neel JV, Kuick RD (1988) Nonrandom distribution of structural mutants in ethylnitrosourea-treated cultured human lymphoblastoid cells. Proc Natl Acad Sci USA 85:165–169

    Article  Google Scholar 

  13. Joag-Dev K, Proschan F (1983) Negative association of random variables with applications. Ann Stat 11:286–295

    Article  MATH  MathSciNet  Google Scholar 

  14. Kolchin VF, Sevast’yanov BA, Chistyakov VP (1978) Random Allocations. Winston, Washington DC

    Google Scholar 

  15. Lange, K (1993) A stochastic model for genetic linkage equilibrium. Theor Pop Biol 44:129–148

    Article  MATH  Google Scholar 

  16. Lazzeroni LC, Lange K (1997) Markov chains for Monte Carlo tests of genetic equilibrium in multidimensional contingency tables. Ann Stat (in press)

    Google Scholar 

  17. Mallows CL (1968). An inequality involving multinomial probabilities. Biometrika 55:422–424

    Article  MATH  Google Scholar 

  18. Nijenhuis A, Wilf HS (1978) Combinatorial Algorithms for Computers and Calculators, 2nd ed. Academic Press, New York

    MATH  Google Scholar 

  19. Sandell D (1991) Computing probabilities in a generalized birthday problem. Math Scientist 16:78–82

    MATH  MathSciNet  Google Scholar 

  20. Searle AG (1959) A study of variation in Singapore cats. J Genet 56:111–127

    Article  Google Scholar 

  21. Spielman RS, McGinnis RE, Ewens WJ (1993) Transmission test for linkage disequilibrium: The insulin gene region and Insulin-Dependent Diabetes Mellitus (IDDM). Amer J Hum Genet 52:506–516

    Google Scholar 

  22. Terwilliger JD, Ott J (1992) A haplotype-based ‘haplotype relative risk’ approach to detecting allelic associations. Hum Hered 42:337–346

    Article  Google Scholar 

  23. Uhrhammer N, Lange E, Porras E, Naiem A, Chen X, Sheikhavandi S, Chiplunkar S, Yang L, Dandekar S, Liang T, Patel N, Teraoka S, Udar N, Calvo N, Concannon P, Lange K, Gatti RA (1995) Sublocalization of an ataxia-telangiectasia gene distal to D11S384 by ancestral haplotyping of Costa Rican families. Amer J Hum Genet 57:103–111

    Google Scholar 

  24. Vogel F, Motulsky AG (1986) Human Genetics: Problems and Approaches, 2nd ed. Springer-Verlag, Berlin

    Google Scholar 

  25. Weir BS, Brooks LD (1986) Disequilibrium on human chromosome lip. Genet Epidemiology Suppl 1:177–183.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Lange, K. (1997). Hypothesis Testing and Categorical Data. In: Mathematical and Statistical Methods for Genetic Analysis. Statistics for Biology and Health. Springer, New York, NY. https://doi.org/10.1007/978-1-4757-2739-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-2739-5_4

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4757-2741-8

  • Online ISBN: 978-1-4757-2739-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics