Changes and Diseases of the Aging Eye

  • J. Terry Ernest


Aging is accompanied by not only a decrease in visual function but also an increase in the incidence of ocular disease. The lens becomes yellow and increases in translucency, and the pupil becomes smaller. The decrease in vision with age, however, is due to more than just a decrease in the intensity of the light reaching the retina. Quantitative decreases in the various visual functions have been demonstrated, including dark adaptation and visual fields.


Diabetic Retinopathy Intraocular Pressure Macular Edema Diabetic Macular Edema Visual Field Defect 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Drance S, Berry V, Hughes A. Studies on the effects of age on the central and peripheral isopters of the visual field in normal subjects. Am J Ophthalmol. 1967; 63: 1667–1672.PubMedGoogle Scholar
  2. 2.
    Sekuler R, Hutman L. Spatial vision and aging. I: Contrast sensitivity./Gerontol. 1980; 35: 692–699.Google Scholar
  3. 3.
    Millodot M. The influence of age on the sensitivity of the cornea. Invest Ophthalmol Visual Sci. 1977; 16: 240–242.Google Scholar
  4. 4.
    Duane A. An attempt to determine the normal range of accommodation at various ages—being a revision of Donders’ experiments. Trans Am Ophthalmol Soc. 1908; 11: 634–639.PubMedGoogle Scholar
  5. 5.
    Vision Problems in the US. Schaumburg, IL: Prevent Blindness America; 1994.Google Scholar
  6. 6.
    Kuwabara T. The maturation of the lens cell: a morphologic study. Exp Eye Res. 1975; 20: 427–433.PubMedCrossRefGoogle Scholar
  7. 7.
    Goldmann H. Senile changes of the lens and the vitreous. Am J Ophthalmol. 1964; 57: 1–13.PubMedGoogle Scholar
  8. 8.
    Tripathi R, Tripathi B. Lens morphology, aging, and cataract./Gerontol. 1983; 38: 258–270.Google Scholar
  9. 9.
    Perkins E. Lens thickness in early cataract. Br J Ophthalmol. 1988; 72: 348–353.PubMedCrossRefGoogle Scholar
  10. 10.
    Duke-Elder W. The pathological action of light upon the eye. Lancet. 1926; 1: 1188–1191.CrossRefGoogle Scholar
  11. 11.
    Harding J, Crabbe J. The lens: development, protein, metabolism and cataract. In: Davson H, ed. Vegetative Physiology and Biochemistry: The Eye. 3rd eji, vol. 16. London: Academic Press; 1984: 207.Google Scholar
  12. 12.
    Guyton D. Preoperative visual acuity evaluation. Int Ophthalmol Clin. 1987; 27: 140–148.PubMedCrossRefGoogle Scholar
  13. 13.
    Duke-Elder W. Diseases of the inner eye. In: Textbook of Ophthalmology. Vol. 3. St. Louis: C. V. Mosby; 1945: 3183.Google Scholar
  14. 14.
    O’Malley P, et al. Paving-stone degeneration of the retina. Arch Ophthalmol. 1965; 73: 169–182.PubMedCrossRefGoogle Scholar
  15. 15.
    Ferris F. Senile macular degeneration: review of epidemiologic features. Am J Epidemiol. 1983; 118: 132–151.PubMedGoogle Scholar
  16. 16.
    Pizzarello L. The dimensions of the problem of eye disease among the elderly. Ophthalmology. 1987; 94: 1191–1195.PubMedGoogle Scholar
  17. 17.
    Kornzweig A, Feldstein M, Schneider J. The eye in old age. IV. Ocular survey of over one thousand aged persons with special reference to normal and disturbed visual function. Am J Ophthalmol. 1957; 44: 29–37.PubMedGoogle Scholar
  18. 18.
    Viggosson G, Bjornsson G, Ingvason J. The prevalence of open-angle glaucoma in Iceland. Acta Ophthalmol. 1986; 64: 138–141.Google Scholar
  19. 19.
    Fontana S, Brubaker R. Volume and depth of the anterior chamber in the normal aging human eye. Arch Ophthalmol. 1980; 98: 1803–1808.PubMedCrossRefGoogle Scholar
  20. 20.
    Hollows F, Graham P. Intra-ocular pressure, glaucoma, and glaucoma suspects in a defined population. Brit J Ophthalmol. 1966; 50: 570–586.CrossRefGoogle Scholar
  21. 21.
    Kahn H. The prevalence of chronic simple glaucoma in the United States. Am J Ophthalmol. 1972; 74: 355–359.PubMedGoogle Scholar
  22. 22.
    Bannister R. A treatise of one hundred and thirteen diseases of the eyes and eye-liddes. Felix Kyngston for Thomas Man, Paternoster-row, at the sign of the Talbot: 1922.Google Scholar
  23. 23.
    Graefe von A. Beitrage zur pathologie und therapie des glaucoms. Arch Ophthalmol. 1869; 15: 108–252.Google Scholar
  24. 24.
    Barkan O. Glaucoma: classification, causes, and surgical control. Results of microgonioscopic research. Am J Ophthalmol. 1938; 21: 1099–1117.Google Scholar
  25. 25.
    Colton T, Ederer F. The distribution of intraocular pressures in the general population. Surv Ophthalmol. 1980; 25: 123–129.PubMedCrossRefGoogle Scholar
  26. 26.
    Becker B. The decline in aqueous secretion and outflow facility with age. Am J Ophthalmol. 1958; 46: 731–736.PubMedGoogle Scholar
  27. 27.
    Armaly M. On the distribution of applanation pressure. I. Statistical features and the effect of age, sex, and family history of glaucoma. Arch Ophthalmol. 1965; 73: 11–18.PubMedCrossRefGoogle Scholar
  28. 28.
    Kass M, Sears M. Hormonal regulation of intraocular pressure. Surv Ophthalmol. 1977; 22: 153–176.PubMedCrossRefGoogle Scholar
  29. 29.
    Airaksinen P, Drance S, Schulzer M. Neuroretinal rim area in early glaucoma. Am J Ophthalmol. 1985; 99: 1–4.PubMedGoogle Scholar
  30. 30.
    Quigley H, et al. Blood vessels of the glaucomatous optic disc in experimental primate and human eyes. Invest Ophthalmol Vis Sci. 1984; 25: 918–931.PubMedGoogle Scholar
  31. 31.
    Drance S, Begg I. Sector haemorrhage—a probable acute ischemic disc change in chronic simple glaucoma. Can J Ophthalmol. 1970; 5: 137–141.PubMedGoogle Scholar
  32. 32.
    Quigley H, Miller N, George T. Clinical evaluation of nerve fiber layer atrophy as an indicator of glaucomatous optic nerve damage. Arch Ophthalmol. 1980; 98: 1564–1571.PubMedCrossRefGoogle Scholar
  33. 33.
    Tyler C. Specific deficits of flicker sensitivity in glaucoma and ocular hypertension. Invest Ophthalmol Vis Sci. 1981; 20: 204–212.PubMedGoogle Scholar
  34. 34.
    Quigley H, Addicks E, Green W. Optic nerve damage in human glaucoma. III. Quantitative correlation of nerve fiber loss and visual field defect in glaucoma, ischemic neuropathy, papilledema, and toxic neuropathy. Arch Ophthalmol. 1982; 100: 135–146.PubMedCrossRefGoogle Scholar
  35. 35.
    Hart W, Becker B. The onset and evolution of glaucomatous visual field defects. Ophthalmology. 1982; 89: 268–279.PubMedGoogle Scholar
  36. 36.
    Zimmerman T. Topical ophthalmic beta blockers: a comparative reviews. J Ocular Pharm. 1993; 9 (4): 373–384.CrossRefGoogle Scholar
  37. 37.
    Wise J, Witter S. Argon laser therapy for open-angle glaucoma. A pilot study. Arch Ophthalmol. 1979; 97: 319–322.PubMedCrossRefGoogle Scholar
  38. 38.
    Forbes M, Bansal R. Argon laser goniophotocoagulation of the trabecular meshwork in open-angle glaucoma. Trans Am Ophthalmol Soc. 1981; 79: 257–275.PubMedGoogle Scholar
  39. 39.
    Levene R. Glaucoma filtering surgery: factors that determine pressure control. Ophthalmic Surg. 1984; 15: 475–183.PubMedGoogle Scholar
  40. 40.
    Kahn H, Hiller R. Blindness caused by diabetic retinopathy. Am J Ophthalmol. 1974; 78: 58–67.PubMedGoogle Scholar
  41. 41.
    Klein R, et al. The Wisconsin epidemiologic study of diabetic retinopathy. II. Prevalence and risk of diabetic retinopathy when age at diagnosis is less than 30 years. Arch Ophthalmol. 1984; 102: 520–526.PubMedCrossRefGoogle Scholar
  42. 42.
    Klein R, et al. The Wisconsin epidemiologic study of diabetic retinopathy. III. Prevalence and risk of diabetic retinopathy when age at diagnosis is 30 or more years. Arch Ophthalmol. 1984; 102: 527–532.PubMedCrossRefGoogle Scholar
  43. 43.
    Ernest J, Goldstick T, Engerman R. Hyperglycemia impairs retinal oxygen autoregulation in normal and diabetic dogs. Invest Ophthalmol Vis Sci. 1983; 24: 985–989.PubMedGoogle Scholar
  44. 44.
    Aiello L, et al. Diabetic retinopathy in Joslin clinic patients with adult-onset diabetes. Ophthalmology. 1981; 88: 619–623.PubMedGoogle Scholar
  45. 45.
    Klein R, et al. The Wisconsin epidemiologic study of diabetic retinopathy. Ophthalmology. 1984; 91: 1464–1474.PubMedGoogle Scholar
  46. 46.
    Engerman R, Bloodworth Jr J, Nelson S. Relationship of microvascular disease in diabetes to metabolic control. Diabetes. 1977; 26: 760–769.PubMedCrossRefGoogle Scholar
  47. 47.
    Cogan D, Toussaint D, Kuwabara T. Retinal vascular patterns. IV. Diabetic retinopathy. Arch Ophthalmol. 1961; 66: 366–378.PubMedCrossRefGoogle Scholar
  48. 48.
    Cunha-Vaz J, et al. A follow-up study by vitreous fluorophotometry of early retinal involvement in diabetes. Am J Ophthalmol. 1978; 86: 467^73.Google Scholar
  49. 45.
    Changes and Diseases of the Aging EyeGoogle Scholar
  50. 49.
    Ashton N. Injection of the retinal vascular system in the enucleated eye in diabetic retinopathy. Br J Ophthalmol. 1950; 34: 38–41.PubMedCrossRefGoogle Scholar
  51. 50.
    Grunwald J, et al. Laser Doppler velocimetry study of retinal circulation in diabetes mellitus. Arch Ophthalmol. 1986; 104: 991–996.PubMedCrossRefGoogle Scholar
  52. 51.
    Muraoka K, Shimizu K. Intraretinal neovascularization in diabetic retinopathy. Ophthalmology. 1984; 91: 1440–1446.PubMedGoogle Scholar
  53. 52.
    Dobree J. Proliferative diabetic retinopathy. Evolution of the retinal lesions. Br J Ophthalmol. 1964; 48: 637–649.PubMedCrossRefGoogle Scholar
  54. 53.
    Davis M. Vitreous contraction in proliferative diabetic retinopathy. Arch Ophthalmol. 1965; 74: 741–751.PubMedCrossRefGoogle Scholar
  55. 54.
    Early Treatment Diabetic Retinopathy Study research group. Photocoagulation for diabetic macular edema. Early treatment diabetic retinopathy study report number 1. Arch Ophthalmol. 1985; 103: 1796–1806.CrossRefGoogle Scholar
  56. 55.
    Stevens T, Castrovinci R, de Venecia G. Aphakia-exacerbated exudative diabetic retinopathy. The Association for Research in Vision and Ophthalmology Spring Meeting, Sarasota, Florida, April 26–30, 1976; 6: 98.Google Scholar
  57. 56.
    Gutman F. Evaluation of a patient with central retinal vein occlusion. Ophthalmology. 1983; 90: 481–83.Google Scholar
  58. 57.
    Green W, et al. Central retinal vein occlusion: a prospective histopathologic study of 29 eyes in 28 cases. Retina. 1981; 1: 27–55.PubMedGoogle Scholar
  59. 58.
    Hayreh S, et al. Ocular neovascularization with retinal vascular occlusion. III. Incidence of ocular neovascularization with retinal vein occlusion. Ophthalmology. 1983; 90: 488–506.PubMedGoogle Scholar
  60. 59.
    Archer D, Ernest J, Newell F. Branch retinal vein obstruction. A classification. Trans Am Acad Ophthalmol Otolaryngol. 1974; 78: 148–165.Google Scholar
  61. 60.
    Orth D, Pätz A. Retinal branch vein occlusion. Surv Ophthalmol. 1978; 22: 357–376.PubMedCrossRefGoogle Scholar
  62. 61.
    Appen R, Wray S, Cogan D. Central retinal artery occlusion. Am J Ophthalmol. 1975; 79: 374–381.PubMedGoogle Scholar
  63. 62.
    Brown G, Shields J. Cilioretinal arteries and retinal arterial occlusion. Arch Ophthalmol. 1979; 97: 84–92.PubMedCrossRefGoogle Scholar
  64. 63.
    Hayreh S. Anterior Ischemic Optic Neuropathy. New York: Springer-Verlag; 1975.CrossRefGoogle Scholar


  1. Kwitko ML, Weinstock FJ, eds. Geriatric Ophthalmology. Orlando, FL: Grune & Stratton; 1985.Google Scholar
  2. Rosenbloom AA Jr, Morgan, MW. Vision and Aging, General and Clinical Perspectives. New York: Fairchild; 1986.Google Scholar
  3. Weale, RA. The Aging Eye. New York: Harper & Row; 1963.Google Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • J. Terry Ernest

There are no affiliations available

Personalised recommendations