Skip to main content

Molecular and Biologic Factors in Aging: The Origins, Causes, and Prevention of Senescence

  • Chapter
Geriatric Medicine

Abstract

Chronologic and biologic aging begin at conception, although senescent changes, defined here as functional declines, are usually apparent only after sexual maturation.1 With time, physiologic decrements become increasingly more common and increasingly compromise health and survival. Particularly notable is a reduced capacity with age to adjust to a variety of everyday stresses, probably due to defects in basic homeostatic mechanisms.2 The rates of aging and the life span for any species are governed by two general features: a genetic component that imparts a species-specific capability to carry out basic biologic processes necessary for life and reproduction and environmental, and lifestyle components that are superimposed on the intrinsic genetic design and can influence the overall rates of aging and susceptibility to disease processes.3

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Finch CE. Longevity, Senescence, and the Genome. Chicago: University of Chicago Press; 1990.

    Google Scholar 

  2. Shock NW. Physiological aspects of aging in man. Annu Rev Physiol. 1961; 23: 97–122.

    Article  CAS  Google Scholar 

  3. Baker GT III, Shock NW. Theoretical concepts governing gerontological research. In: Ingram DK, Baker GT III, Shock NW, eds. The Potential for Nutritional Modulation of Aging Processes. Trumbull, CT: Food and Nutrition Press; 1991; 3–15.

    Google Scholar 

  4. Gompertz B. On the nature of the function expressive of the law of human mortality, and on a new mode of determining the value of life contingencies. Philo Trans R Soc Lond. 1825; 115: 513–585.

    Article  Google Scholar 

  5. Baker GT III, Sprott RL. Biomarkers of aging. Exp Gerontol. 1988; 23: 223–239.

    Article  PubMed  Google Scholar 

  6. Hochschild R. Can an index of aging be constructed for evaluating treatments to retard aging rates? A 2,462-person study. J Gerontol. 1990; 45 (6): B187 - B214.

    Article  CAS  PubMed  Google Scholar 

  7. Balin AK, ed. Practical Handbook of Human Biologic Age Determination. Boca Raton, FL: CRC Press; 1994.

    Google Scholar 

  8. Ingram DK, Stoll S, Baker GT III. Is attempting to assess biological age worth the effort? Gerontologist. 1995; 35: 707–710.

    Article  Google Scholar 

  9. Shock NW, Greulich RC, Andres R, et al. Normal Human Aging: The Baltimore Longitudinal Study of Aging. Publ. No. 84–2450. Washington, DC: U.S. Dept. HHS, Public Health Service, National Institutes of Health, National Institute on Aging; 1984.

    Google Scholar 

  10. Fozard JL, Metter EJ, Brant LJ, et al. Physiology of aging. In: Grafman J, ed. Gerontechnology. Eindhoven University Press; 1993: 141–167.

    Google Scholar 

  11. Miller RA. Aging and immune function: cellular and biochemical analysis. Exp Gerontol. 1994;29:21–36.

    Google Scholar 

  12. Hearts and Arteries. NIH publication no. 94–3738. Washington, DC: U.S. Dept. HHS, PHS National Institute on Aging, National Institutes of Health; 1994.

    Google Scholar 

  13. Rodeheffer RJ, Gerstenblith G, Becker LC, et al. Exercise cardiac output is maintained with advancing age in healthy subjects: cardiac dilation and increased volume compensate for a diminished heart rate. Circulation. 1994; 69: 203–213.

    Article  Google Scholar 

  14. Rowe JW, Andres R, Tobin JD, et al. The effect of age on creatinine clearance in men: a cross-sectional and longitudinal study. J Gerontol. 1976; 31: 155–163.

    Article  CAS  PubMed  Google Scholar 

  15. Bergeman CS, Chipuer HM, Plomin R, et al. Genetic and environmental effects on openness to experience, agreeableness, and conscientiousness: an adoption/twin study. J Personality. 1993; 61: 159–179.

    Article  CAS  PubMed  Google Scholar 

  16. Pearson JD, Morrell CH, Gordan-Salant S, et al. Gender differences in a longitudinal study of age associated hearing loss. J Acoust Soc Am. 1995; 97: 1196–1205.

    Article  CAS  PubMed  Google Scholar 

  17. Ship JA, Weiffenbach JM. Age, gender, medical treatment, and medication effects on smell identification. J Gerontol. 1993; 48: M26–32.

    Article  CAS  PubMed  Google Scholar 

  18. Ship JA, Pearson JD, Cruise LJ, et al. Longitudinal changes in smell identification. J Gerontol. 1996.

    Google Scholar 

  19. Weiffenbach JM. Chemical sense in aging. In: Getchell, TC, et al., eds. Smell and Taste in Health and Disease. New York: Raven Press; 1991: 369–379.

    Google Scholar 

  20. West S, Vitale S, Halfrisch J, et al. Are antioxidant supplements protective of age related macular degeneration? Arch Ophthamol. 1994; 112: 227–237.

    Google Scholar 

  21. Brandt LJ, Gordon-Salant S, Pearson JD, et al. Risk factors related to age-associated hearing loss. J Am Acad Audio. 1996.

    Google Scholar 

  22. Ross R. Polypeptide growth factors and atherosclerosis. Trends Cardiovasc Med. 1991; 1: 277–282.

    Article  CAS  PubMed  Google Scholar 

  23. Olshansky SJ, Carnes BA, Cassel C. In search of Methuselah: estimating the upper limits to human longevity. Science. 1990; 250: 634.

    Article  CAS  PubMed  Google Scholar 

  24. Abbot MH, Murphy EA, Bolling DR, et al. The familial component in longevity. A study of offspring of nonagenarians. II. Preliminary analysis of the completed study. Johns Hopkins Med J. 1974; 134: 1–16.

    Google Scholar 

  25. Jalavisto E. Inheritance of longevity according to Finnish and Swedish genealogies. Ann Med Internae Fenniae. 1951; 40: 263–274.

    Google Scholar 

  26. Kallman FJ. Twin data on the genetics of aging. In: Wolstenholme GE, O’Connor CM, eds. Methodology of the Study of Aging. Boston: Little, Brown; 1957: 131–143.

    Google Scholar 

  27. Sacher GA. Relation of lifespan to brain weight and body weight in mammals. Ciba Found Colloq Aging. 1959; 5: 115–133.

    Google Scholar 

  28. Rubner M. Das Problem der Lebensdauer and seine Beziehungen zum Wachstum and Ernahrung. Munich: Oldenbourg; 1908.

    Google Scholar 

  29. Pearl R. The Rate of Living. New York and London: Knopf; 1928.

    Google Scholar 

  30. Hart RW, Setlow RB. Correlation between deoxyribonucleic acid excision repair and lifespan in a number of mammalian species. Proc Natl Acad Sci USA. 1974; 71: 2169–2173.

    Article  CAS  PubMed  Google Scholar 

  31. Harman D. Role of free radicals in mutation, cancer, aging, and maintenance of life. Radiat Res. 1962; 16: 752–763.

    Article  Google Scholar 

  32. Munkres KD. Genetic coregulation of longevity and antioxienzymes in Neurospora carssa. Free Radical Biol Med. 1990; 8: 355–361.

    Article  CAS  Google Scholar 

  33. Johnson TE. Age-1 mutants of Caenorhabditis elegans prolong life by modifying the Gompertz rate of aging. Science. 1990; 249: 908–912.

    CAS  Google Scholar 

  34. Arking R, Dukas SP, Baker GT III. Genetic and environmental factors regulating the expression of an extended longevity phenotype in a long lived strain of Drosophila. Genetics. 1993; 91: 127–142.

    CAS  Google Scholar 

  35. Orr WC, Sohal RS. Extension of life-span by over expression of super oxide dismutase and catalase in Drosophila melanogaster. Science. 1994; 263: 1128–1130.

    CAS  Google Scholar 

  36. Ames BN, Shigenaga MK. Oxidants are a major contributor to aging. Ann NY Acad Sci. 1992; 663: 85–96.

    Article  CAS  PubMed  Google Scholar 

  37. Cortopassi G, Liu Y. Genotypic selection of mitochondrial and oncogenic mutations in human tissue suggests mechanisms of age-related pathophysiology. Mutat Res. 1995; 338 (1–6): 151–159.

    CAS  PubMed  Google Scholar 

  38. Cortopassi GA, Shibata D, Soong N-W, et al. A pattern of accumulation of a somatic deletion of mitochondria[DNA in aging tissues. Proc Natl Acad Sci USA. 1992; 89: 73707374.

    Google Scholar 

  39. Effros RB, Boucher N, Porter V, et al. Decline in CD28+ T cells in centenarians and in long-term T cell cultures: a possible cause for both in vivo and in vitro immunosenescence. Exp Gerontol. 1994; 29 (6): 601–609.

    Article  CAS  PubMed  Google Scholar 

  40. Schächter F, Faure-Delanef L, Guénot R, et al. Genetic associations with human longevity at the APO-E and ACE loci. Nature Genet. 1994; 6: 29–32.

    Article  PubMed  Google Scholar 

  41. Schächter F, Cohen D, Kirkwood T. Prospects for the genetics of human longevity. Hum Genet. 1993; 91: 519526.

    Google Scholar 

  42. Turner TR, Weiss ML. The genetics of longevity in humans. In: Crews DE, Garruto RM, eds. Biological Anthropology and Aging. New York: Oxford University Press; 1994: 76–100.

    Google Scholar 

  43. McKusick VA. Mendelian Inheritance in Man: Catalogs of Autosomal Dominant, Automosomal Recessive, and X-Linked Phenotypes. 7th ed. Baltimore: Johns Hopkins University Press; 1986.

    Google Scholar 

  44. Martin GM, Ogburn CE, Sprague CA. Effects of age on cell division capacity. In: Danon D, Shock NW, Marois M, eds. Aging: A Challenge to Science and Society. New York: Oxford University Press; 1981: 124–135.

    Google Scholar 

  45. Robbins JH, Kraemer KH, Lutzner MA, et al. Xeroderma pigmentosum. An inherited disease with sun sensitivity, multiple cutaneous neoplasms, and abnormal DNA repair. Ann Intern Med. 1974; 80: 211–248.

    Google Scholar 

  46. Brown WT, Zebrower M, Kieras FJ. Progeria, a model disease for the study of accelerated aging. In: Woodhead AV, Blackett AD, Hollaender A, eds. Basic Life Sciences. 1984; 35: 375–396.

    Google Scholar 

  47. Strittmeyer WJ, Roses AD. Apolipoprotein E and Alzheimer disease. Proc Natl Acad Sci USA. 1995; 92:4725–4727.

    Google Scholar 

  48. Brousseau T, Legrain S, Berr C, et al. Confirmation of the E4 allele of the apolipoprotein E gene as a risk factor for late-onset Alzheimer’s disease. Neurology. 1994; 44: 342–344.

    CAS  Google Scholar 

  49. Schellenberg GD. Genetic dissection of Alzheimer disease, a heterogeneous disorder. Proc Natl Acad Sci USA. 1995; 92: 8852–8859.

    Article  Google Scholar 

  50. Morrison NA, Qi JC, Takita A, et al. Prediction of bone density from vitamin D receptor alleles. Nature. 1994; 367: 284–289.

    Article  CAS  PubMed  Google Scholar 

  51. Eisman JA, Morrison NA, Kelly PJ, et al. Genetics of osteoporosis and vitamin D receptor alleles. Calcif Tissue Int. 1995;56(1)S48–49.

    Google Scholar 

  52. Howard G, Nguyen T, Morrison N, et al. Genetic influences on bone density: physiological correlates of vitamin D receptor gene alleles in premenopausal women. J Clin Endocrinol Metab. 1995; 80 (9): 2800–2805.

    Article  CAS  PubMed  Google Scholar 

  53. Hustmyer FG, Peacock M, Huis S, et al. Bone mineral density in relation to polymorphism at the vitamin D receptor gene locus. J Clin Invest. 1994; 94: 2130–2134.

    Article  CAS  PubMed  Google Scholar 

  54. Medawar PB. Old age and natural death. Mod Q. 1946; 1: 30–56.

    Google Scholar 

  55. Williams GC. Pleiotropy, natural selection, and the evolution of senescence. Evolution. 1957; 11: 398–411.

    Article  Google Scholar 

  56. Hamilton WD. The molding of senescence by natural selection. J Theoret Biol. 1966; 12: 12–45.

    Article  CAS  Google Scholar 

  57. Rose MR. The Evolutionary Biology of Aging. Oxford: Oxford University Press; 1991.

    Google Scholar 

  58. Brooks A, Lithgow GJ, Johnson TE. Mortality rate in a genetically heterogeneous population of Caenorhabditis elegans. Science. 1994; 263: 668–671.

    CAS  Google Scholar 

  59. Buck S, Nicholoson M, Dudas S, et al. Larval regulation of adult longevity in a genetically-selected long-lived strain of Drosophila. Heredity. 1993; 71: 23–32.

    Article  Google Scholar 

  60. Diamond TB. Why do disused proteins become genetically lost or repressed? Nature. 1986; 321: 565–567.

    Article  CAS  PubMed  Google Scholar 

  61. Kirkwood TB. Comparative evolutionary aspects of longevity. In: Finch CE, Schneider EL, eds. Handbook of the Biology of Aging. 2nd ed. New York: Van Nostrand; 1985: 27–45.

    Google Scholar 

  62. Austad SH, Fisher KE. Mammalian aging, metabolism and ecology: evidence from the bats and marsupials. J Gerontol. 1991; 46: B47 - B53.

    Article  CAS  PubMed  Google Scholar 

  63. Olshansky SJ, Carnes BA, Cassel CK. The aging of the human species. Sci Am. 1993; 268: 46–52.

    CAS  Google Scholar 

  64. Lee AK, Cockburn A. Evolutionary Ecology of Marsupials. New York: Cambridge University Press; 1985.

    Book  Google Scholar 

  65. Robertson OH. Prolongation of the lifespan of kokanee salmon (O. nerka kennerlyi) by castration before beginning development. Proc Natl Acad Sci USA. 1961; 47: 609–621.

    Article  CAS  PubMed  Google Scholar 

  66. Moore GH. Aetiology of the Die-Off of Male Antechinus stuartii. Canberra: Australian National University, Thesis 1974.

    Google Scholar 

  67. Diamond JM. Big-bang reproduction and aging in male marsupial mice. Nature. 1982;298:115–116.

    Google Scholar 

  68. Wodinsky J. Hormonal inhibition of feeding of death in octopus. Control by optic gland secretion. Science. 1977; 198: 948–951.

    Article  CAS  PubMed  Google Scholar 

  69. Rowe JW, Kahn RL. Human aging: usual and successful. Science. 1987; 237: 143–149.

    Article  CAS  PubMed  Google Scholar 

  70. McGinnis JM, Foege WH. Actual causes of death in the United States. JA MA. 1993; 270: 2207–2211.

    CAS  Google Scholar 

  71. Reaven GM. Role of insulin resistance in human disease. Diabetes. 1988;37:1595–1607.

    Google Scholar 

  72. Broughton DL, Taylor R. Deterioration of glucose tolerance with age: the role of insulin resistance. Age Ageing. 1991; 20: 221–225.

    Article  CAS  PubMed  Google Scholar 

  73. Shimokata H, Muller DC, Fleg JL, et al. Age: an independent determinant of glucose tolerance. Diabetes. 1991; 40: 44–51.

    Article  CAS  PubMed  Google Scholar 

  74. Reaven GM. Pathophysiology of insulin resistance in human disease. Physiol Rev. 1995; 75: 473–486.

    CAS  PubMed  Google Scholar 

  75. Muller DC, Elahi D, Tobin JD, et al. Insulin response during the oral glucose tolerance test: the role of age, sex, body fat, and the pattern of fat distribution. 1996; Aging-Clin Exp. 8: 13–21.

    Google Scholar 

  76. Lakatta EG. Myocardial adaptations in advanced age. Basic Res Cardiol. 1993; 88 (2): 125–133.

    PubMed  Google Scholar 

  77. Vaitkevicius PV, Fleg JL, Engel JH, et al. Effects of age and aerobic capacity on arterial stiffness in healthy adults. Circulation. 1993; 88: 1456–1462.

    Article  CAS  PubMed  Google Scholar 

  78. Pauly RR, Passaniti A, Crow M, et al. Experimental models that mimic the differentiation and dedifferentiation of vascular cells. Circulation. 1992; 86 (suppl III): 68–73.

    Google Scholar 

  79. Smith DWE. Human Longevity. New York: Oxford University Press; 1993.

    Google Scholar 

  80. Samaan SA, Crawford MH. Estrogen and cardiovascular function after menopause. J Am Coll Cardiol. 1995; 26 (6): 1403–1410.

    Article  CAS  PubMed  Google Scholar 

  81. Baker GT III, Jacobson M, Mokrynski G. Aging in Drosophila. In: Cristofalo VJ, ed. Handbook of Cell Biology of Aging. Boca Raton, FL: CRC Press; 1985: 511–578.

    Google Scholar 

  82. Carey JR, Leido P, Orozco D, et al. Slowing of mortality rates at older ages in large medfly cohorts. Science. 1992; 258: 457–461.

    Article  CAS  PubMed  Google Scholar 

  83. Carey JR, Liedo P. Sex mortality differentials and selective survival in large medfly cohorts: implications for human sex mortality differentials. Gerontologist. 1995; 35 (5): 588–596.

    Article  CAS  PubMed  Google Scholar 

  84. Adelman RC, Roth GS, eds. Testing the Theories of Aging. Boca Raton, FL: CRC Press; 1982.

    Google Scholar 

  85. Medvedev ZA. An attempt at a rational classification of theories of aging. Biol Rev. 1990; 65: 375–398.

    Article  CAS  PubMed  Google Scholar 

  86. Ames BN. Endogenous DNA damage as related to nutrition and aging. In: Ingram DK, Baker GT III, Shock NW, eds. The Potential for Nutritional Modulation of Aging Processes. Trumbull, CT: Food and Nutrition Press; 1991: 251–261.

    Google Scholar 

  87. Stadtman ER. Protein oxidation and aging. Science. 1992; 257: 1220–1224.

    Article  CAS  PubMed  Google Scholar 

  88. Cerami A. Hypothesis: glucose as a mediator of aging. J Am Geriatr Soc. 1985; 33: 626–634.

    CAS  PubMed  Google Scholar 

  89. Martin GR, Danner DB, Holbrook NJ. Aging-causes and defense. Annu Rev Med. 1993; 44: 419–429.

    Article  CAS  PubMed  Google Scholar 

  90. Szilard L. On the nature of the aging process. Proc Natl Acad Sci USA. 1959; 45: 43–54.

    Article  Google Scholar 

  91. National Center for Health Statistics. Advance Report of Final Mortality Statistics-1990. Hyattsville, MD: HHS, Monthly Vital Statistics Report; 1993:41(7).

    Google Scholar 

  92. Liu Y, Hernandez AM, Shibata D, et al. BCL-2 translocation frequency rises with age in humans. Proc Natl Acad Sci USA. 1994; 91: 8910–8914.

    Article  CAS  PubMed  Google Scholar 

  93. Ames BN, Shigenaga MK, Hagen TM. Oxidants, antioxidants, and the degenerative disease of aging. Proc Natl Acad Sci USA. 1993; 90: 7951–7922.

    Article  Google Scholar 

  94. Tice RR, Setlow RB. DNA repair and replication in aging organisms and cells. In: Finch CE, Schneider EL, eds. Handbook of the Biology of Aging. New York: Von Nostrand Reinhold; 1985: 173.

    Google Scholar 

  95. Bohr VA, Anson RM. DNA damage, mutation and fine structure DNA repair in aging. Mutat Res. 1995; 338: 25–34.

    Article  CAS  PubMed  Google Scholar 

  96. Liebermann DA, Hoffman B, Steinman RA. Molecular controls of growth arrest and apoptosis: 53-dependent and independent pathways. Oncogene. 1995;11(1):199–210.

    Google Scholar 

  97. Canman CE, Chen CY, Lee MH, et al. DNA damage responses: p53 induction, cell cycle perturbations, and apoptosis. Cold Spring Harb Symp Quant Biol. 1994; 59: 277–286.

    Article  CAS  PubMed  Google Scholar 

  98. Wei Q, Matanoske GM, Farmer MA, et al. DNA repair and aging in basal cell carcinoma: a molecular epidemiology study. Proc Natl Acad Sci USA. 1993; 90: 1614–1618.

    Article  CAS  PubMed  Google Scholar 

  99. Yu BP. Oxidative damage by free radicals and lipid peroxidation in aging. In: Yu BP, ed. Free Radicals and Aging. Boca Raton, FL: CRC Press; 1993: 57–88.

    Google Scholar 

  100. Richter C, Park JW, Ames BN. Normal oxidative damages to mitochondrial and nuclear DNA is extensive. Proc Natl Acad Sci USA. 1998; 85: 6465.

    Article  Google Scholar 

  101. Linnane A, Marzuki S, Ozawa T, et al. Mitochondrial DNA mutation as an important contribution to aging and degenerative diseases. Lancet. 1989; 1: 642–645.

    Article  CAS  PubMed  Google Scholar 

  102. Wallace DC. Mitochondrial genetics: a paradigm for aging and degenerative disease? Science. 1992; 256: 628632.

    Google Scholar 

  103. Wallace DC. Mitochondrial diseases: genotype versus phenotype. Trends Genet. 1993; 9 (4): 128–133.

    Article  CAS  PubMed  Google Scholar 

  104. Schoffner JM, Wallace DC. Oxidative phosphorylation and mitrochondrial DNA mutations: diagnosis and treatment. Annu Rev Nutr. 1994; 14: 535–568.

    Article  Google Scholar 

  105. Beal MF. Aging, energy, and oxidative stress in neurodegenerative diseases. Ann Neurol. 1995; 38 (3): 357–366.

    Article  CAS  PubMed  Google Scholar 

  106. Morase CT, Ricci E, Petruzzella V, et al. Molecular analysis of the muscle pathology associated with mitochondrial DNA deletions. Nature Genet. 1992; 1: 359–367.

    Article  Google Scholar 

  107. LeDoux SP, Wilson GL, Beecham EJ, et al. Repair of mitrochondrial DNA after various types of DNA damage in Chinese hamster ovary cells. Carcinogenesis. 1992; 13: 1967–1973.

    Article  CAS  PubMed  Google Scholar 

  108. Mecocci P, MacGarvey U, Kaufman AF, et al. Oxidative damage to mitochondrial DNA shows marked age-dependent increases in human brain. Ann Neurol. 1993; 34: 609–616.

    Article  CAS  PubMed  Google Scholar 

  109. Hayakawa M, Hattori H, Sygiyama S, et al. Age-associated oxygen damage and mutations in mitochondrial DNA in human hearts. Biochem Biophys Res Commun. 1992; 189: 979–985.

    Article  CAS  PubMed  Google Scholar 

  110. Agarwal S, Sohal RJ. DNA oxidative damage and life expectancy in houseflies. Proc Natl Acad Sci USA. 1994; 91: 12332–12335.

    Article  CAS  PubMed  Google Scholar 

  111. Lee CM, Chung SS, Kaczkowski JM, et al. Multiple mitochondrial DNA deletions associated with age in skeletal muscle of rhesus monkeys. J Gerontol. 1993; 48 (6): B201–205.

    Article  CAS  PubMed  Google Scholar 

  112. Gadaleta MN, Rinaldi G, Lezza AMS, et al. Mitochondrial DNA copy number and mitrochondrial DNA deletion in adult and senescent rats. Mutat Res. 1992; 275: 181–193.

    Article  CAS  PubMed  Google Scholar 

  113. Chen X, Simonetti S, DiMauro S, et al. Accumulation of mitrochondrial DNA deletions in organisms with various lifespans. Bull Mol Biol Med. 1993; 18: 57–66.

    CAS  Google Scholar 

  114. Brossas JY, Barreau E, Courtois Y, et al. Multiple deletions in mitrochondrial DNA are present in senescent mouse brain. Biochem Biophys Res Commun. 1994; 202: 654–669.

    Article  CAS  PubMed  Google Scholar 

  115. Melov S, Lithgow GJ, Fischer DR, et al. Increased frequency of deletions in the mitochondrial genome with age of Caenorhabditis elegans. Nucleic Acids Res. 1995; 23 (8): 1419–1425.

    Article  CAS  PubMed  Google Scholar 

  116. Takasawa M, Hayakawa M, Sugiyama S, et al. Age-associated damage in mitochondrial function in rat hearts. Exp Gerontol. 1993; 28: 269–280.

    Article  CAS  PubMed  Google Scholar 

  117. Hattori K, Tanaka M, Sugiyama S, et al. Age-dependent increase in deleted mitochondrial DNA in the human heart: possible contributory factor to presbycardia. Am Heart J. 1991; 121: 1735–1742.

    Article  CAS  PubMed  Google Scholar 

  118. Corral-Debrinski M, Horton T, Lott MT, et al. Mitochondrial deletions in human brain: regional variability and increase with advancing age. Nature Genet. 1992; 2 (4): 324–329.

    Article  CAS  PubMed  Google Scholar 

  119. Randerath K, Randerath E, Filburn C. Genomic and mitochondrial DNA alterations with aging. In: Schneider EL, Rowe JW, eds. Handbook of the Biology of Aging, 4th ed. New York: Academic Press; 1996.

    Google Scholar 

  120. Yen T-C, King K-L, Lee HC, et al. Age-dependent increase of mitochondrial DNA deletions together with lipid peroxides and superoxide dismutase in human liver mitochondria. Free Radic Biol Med. 1994; 16: 207–214.

    Article  CAS  PubMed  Google Scholar 

  121. Higami Y, Shimokawa I, Okimoto T, et al. Vulnerability to oxygen radicals is more important than impaired repair in hepatocytic deoxyribonucleic acid damage in aging. Lab Invest. 1994; 71: 650–656.

    CAS  PubMed  Google Scholar 

  122. Brownlee M. Advanced protein glycosylation in diabetes and aging. Annu Rev Med. 1995; 48: 223–234.

    Article  Google Scholar 

  123. Masoro EJ, Katz MS, McMahan CA. Evidence for the glycation theory of aging from the food restricted rodent model. J Gerontol Biol Sci. 1989; 44: B20 - B22.

    Article  CAS  Google Scholar 

  124. Miyata S, Monnier V. Immunohistochemical detection of advanced glycosylation end products in diabetic tissues using monoclonal antibody to pyrroline. J Clin Invest. 1992; 89 (4): 1102–1112.

    Article  CAS  PubMed  Google Scholar 

  125. Monnier VM, Vishwanath V, Frank KE, et al. Accelerated age-related browning of human collagen in diabetes mellitus. Proc Natl Acad Sci USA. 1984; 81: 583–587.

    Article  CAS  PubMed  Google Scholar 

  126. Hasaegawa G, Hunter AJ, Charonis AS. Matrix nonenzymatic glycosylation leads to altered cellular phenotype and intracellular tyrosine phosphorylation. J Biol Chem. 1995; 270 (7): 3278–3283.

    Article  Google Scholar 

  127. Vlassara H, Bucala R, Striker L. Pathogenic effects of advanced glycoylation: biochemical, biologic, and clinical implications for diabetes and aging. Lab Invest. 1994; 70 (2): 138–151.

    CAS  PubMed  Google Scholar 

  128. Schmidt AM, Hori O, Brett J, et al. Cellular receptors for advanced glycation end product. Implication for induction of oxidant stress and cellular dysfunctions in the pathogenesis of vascular lesion. Arterio Thromb. 1994;14(10):15211528.

    Google Scholar 

  129. Sell RS, Lane MA, Johnson WA, et al. Longevity and the genetic determination of collagen glycoxidation kinetics in mammalian senescence. Proc Natl Acad Sci USA. 1996; 93: 485–490.

    Article  CAS  PubMed  Google Scholar 

  130. Baker GT III. Effects of various antioxidants on aging in Drosophila. Toxicol Industrial Health. 1993; 9 (1/2): 163–186.

    CAS  Google Scholar 

  131. Camhi SL, Lee P, Choi AM. The oxidative stress response. New Horiz. 1995; 3 (2): 170–182.

    CAS  PubMed  Google Scholar 

  132. Schenk H, Klein M, Erdbrugger W, et al. Distinct effects of thioredoxin and antioxidants on the activation of transcription factors NF-kB and AP-1. Proc Natl Acad Sci USA. 1994; 91: 1672–1676.

    Article  CAS  PubMed  Google Scholar 

  133. Pacifici RE, Davies KJA. Protein, lipid, and DNA repair systems in oxidative stress: the free-radical theory of aging revisited. Gerontology. 1991; 37: 166–180.

    Article  CAS  PubMed  Google Scholar 

  134. Azhar S, Cao L, Reaven E. Alteration of the adrenal antioxidant defense system during aging in rats. J Clin Invest. 1995; 96: 1414–1424.

    Article  CAS  PubMed  Google Scholar 

  135. Holbrook NJ, Liu Y, Fornace AJ. Signaling events controlling the molecular response to genotoxic stress. In: Feigen Y, Morimoto RI, Yahara I, Poila BS, eds. Stress Induced Cellular Responses. New York: Springer; 1996.

    Google Scholar 

  136. Sarge KD, Murphy SP, Morimoto RI. Activation of heat shock gene transcription by heat shock factor 1 involves oligomerization, acquisition of DNA-binding activity, and nuclear localization and can occur in the absence of stress. Mol Cell Biol. 1993; 13 (5): 3122–3133.

    CAS  Google Scholar 

  137. Fawcett TW, Sylvester SL, Sarge KD, et al. Effects of neurohormonal stress and aging on the activation of mammalian heat shock factor 1. J Biol Chem. 1994; 269 (51): 32272–32278.

    CAS  PubMed  Google Scholar 

  138. Blake MJ, Udelsman R, Feulner GJ, et al. Stress-induced HSP70 expression in adrenal cortex: a glucocorticoid sensitive, age-dependent response. Proc Natl Acad Sci USA. 1991; 88: 9873–9877.

    Article  CAS  PubMed  Google Scholar 

  139. Udelsman R, Blake MJ, Stagg CA, et al. Vascular heat shock protein expression in response to stress: endrocrine and autonomic regulation of this age-dependent response. J Clin Invest. 1993; 91: 465–473.

    Article  CAS  PubMed  Google Scholar 

  140. Liu AC, Lin Z, Choi HS, et al. Attenuated induction of heat shock gene expression in aging diploid fibroblast. J Biol Chem. 1989; 264: 12037–12045.

    CAS  PubMed  Google Scholar 

  141. Liu Y, Gorospe M, Yang C, Holbrook NJ. Role of mitogen-activated protein kinase phosphatase during the cellular response to genotoxic stress. Inhibition of c-jun N-terminal activity and AP-1-dependent gene activation. J Biol Chem. 1995; 270 (15): 8377–8380.

    Article  CAS  PubMed  Google Scholar 

  142. Mivechi NF, Giaccia AJ. Mitogen-activated protein kinase acts as a negative regulator of the heat shock response in NIH3T3 cells. Cancer Res. 1995;55(23):5512–5519.

    Google Scholar 

  143. Stein GH, Dulic V. Origins of G1 arrest in senescent human fibroblasts. Bioessays. 1995; 17 (6): 537–543.

    Article  CAS  PubMed  Google Scholar 

  144. Waldman T, Kinzler KW, Vogelstein B. P21 is necessary for the p53 mediated G1 arrest in human cancer cells. Cancer Res. 1995; 55: 5187–5190.

    CAS  PubMed  Google Scholar 

  145. Ling CC, Guo M, Chen CH, et al. Radiation-induced apoptosis: effects of cell age and dose fractionation. Cancer Res. 1995;55(22):5207–5212.

    Google Scholar 

  146. Hayflick L, Moorehead PS. The serial cultivation of human diploid cell strains. Exp Cell Res. 1961; 25: 585–621.

    Article  CAS  PubMed  Google Scholar 

  147. Hayflick L. Aging, longevity, and immortality in vitro. Exp Gerontol. 1992; 27: 363–374.

    Article  CAS  PubMed  Google Scholar 

  148. Cristofalo VJ. The destiny of cells: mechanisms and implications of senescence. Gerontologist. 1985; 25: 577–583.

    Article  CAS  PubMed  Google Scholar 

  149. Cristofalo VJ, Pingolo RJ. Replicative senescence of human fibroblast-like cells in culture. Physiol Rev. 1993; 72: 617–638.

    Google Scholar 

  150. Martin GM. Genetic and environmental modulations of chromosomal stability: their roles in aging and oncogenesis. Ann NY Acad Sci. 1991; 621: 401–417.

    Article  CAS  PubMed  Google Scholar 

  151. McCormick A, Campisi J. Cellular aging and senescence. Curr Opinion Cell Biol. 1991; 3: 230–234.

    Article  CAS  PubMed  Google Scholar 

  152. Ning Y, Pereira-Smith OM. Molecular genetic approaches to the study of cellular senescence. Mutat Res. 1991; 256: 303–310.

    Article  CAS  PubMed  Google Scholar 

  153. Harley CB, Futcher AB, Greider CW. Telomeres shorten during aging of human fibroblasts. Nature. 1990; 345: 458–460.

    Article  CAS  PubMed  Google Scholar 

  154. Greider CW. Mammalian telomere dynamics: healing, fragmentation shortening and stabilization. Curr Opinion Genet Dev. 1994; 4 (2): 203–211.

    Article  CAS  Google Scholar 

  155. Harley CB. Telomere loss: mitotic clock or genetic time bomb? Mutat Res. 1991; 256: 1271–1282.

    Google Scholar 

  156. Allsopp RC, Harley CB. Evidence for a critical telomere length in senescent human fibroblast. Exp Cell Res. 1995;219(4130–139.

    Google Scholar 

  157. Noda A, Ning Y, Venable SF, et al. Cloning of senescent cell-derived inhibitors of DNA synthesis. Exp Cell Res. 1994; 211 (1): 90–98.

    Article  CAS  PubMed  Google Scholar 

  158. el-Delry WS, Tokino T, Velculescu VE, et al. WAP1, a potential mediator of p53 tumor suppression. Cell. 1993; 75 (4): 816–825.

    Google Scholar 

  159. Harper JW, Adami GR, Wei N, Keyomarsi K, Elledge SJ. The p21 Cdk-interacting protein Clpl is a potent inhibitor of G1 cyclin-dependent kinases. Cell. 1993; 75 (4): 805–816.

    Article  CAS  PubMed  Google Scholar 

  160. Orrenius S. Apoptosis: molecular mechanisms and implications for human disease. J Intern Med. 1995; 237: 529–536.

    Article  CAS  PubMed  Google Scholar 

  161. Thompson CB. Apoptosis in the pathogenesis and treatment of disease. Science. 1995; 267: 1456–1462.

    Article  CAS  PubMed  Google Scholar 

  162. Slater AF, Nobel CS, Orrenius S. The role of intracellular oxidants in apoptosis. Biochim Biophys Acta. 1995; 271 (1): 59–62.

    Google Scholar 

  163. Martin DP, Schmidt RE, DeStefano PS, et al. Inhibitors of protein and RNA synthesis prevent neuronal death caused by nerve growth factor deprivation. J Cell Biol. 1991; 106: 829–844.

    Article  Google Scholar 

  164. English HF, Kyprianou N, Isaacs JT. Relationship between DNA fragmentation and apoptosis in the programmed cell death in the rat prostate following castration. Prostrate. 1989; 15: 233–250.

    Article  CAS  Google Scholar 

  165. Eastman A. Assays for DNA fragmentation, endonucleases, and intracellular pH and Cap’ associated with apoptosis. Methods Cell Biol. 1995; 48: 41–55.

    Article  Google Scholar 

  166. Nicholson DW, Ambereen A, Thornberry NA, et al. Identification and inhibition of the ICE/CED-3 protease necessary for mammalian apoptosis. Nature. 1995; 376: 37–43.

    Article  CAS  PubMed  Google Scholar 

  167. Xia Z, Dickens M, Raingeaud J, Davis RJ, et al. Opposing effects of ERK and JNK-p38 MAP kinases on apoptosis. Science. 1995; 270 (5240): 1326–1331.

    Article  CAS  PubMed  Google Scholar 

  168. Williams GT, Smith CA. Molecular regulation of apoptosis: genetic controls on cell death. Cell. 1993; 4: 777–779.

    Article  Google Scholar 

  169. Miyashita T, and Reed JC. Bel-2 gene transfer increases relative resistance of S49.1 and WEH17.2 lymphoid cells to cell death and DNA fragmentation induced by glucocorticoid and multiple chemotherapeutic drugs. Cancer Res. 1992;52:5407–5411.

    Google Scholar 

  170. Xin XM, Oltvai ZN, Korsmeyer SJ. BH1 and BH2 domains of Bd-2 are required for inhibition of apoptosis and heterodimerization with BAX. Nature. 1994; 369: 321–323.

    Article  Google Scholar 

  171. Monti D, Troiano L, Tropea R, et al. Autoimmunity, apoptosis defects and retroviruses. Adv Exp Med Biol. 1995; 374: 183–201.

    Article  Google Scholar 

  172. Warner HR, Fernandes G, Wang E. A unifying hypothesis to explain the retardation of aging and tumorigenesis by caloric restriction. J Gerontol. 1995; 50 (3): B107–109.

    CAS  Google Scholar 

  173. Cotman CW, Anderson AJ. A potential role for apoptosis in neurodegeneration and Alzheimer’s disease. Mol Neurobiol. 1995; 10 (1): 19–45.

    Article  CAS  PubMed  Google Scholar 

  174. Lo AC, Houenou LJ, Oppenhein RW. Apoptosis in the nervous system: morphological features, methods, pathology, and prevention. Arch Hist Cytol. 1995;58(2):139149.

    Google Scholar 

  175. Wood KA, Dipasquale B, Youle RJ. In situ labeling of granule cells for apoptosis-associated DNA fragmentation reveals different mechanisms of cell loss in developing cerebellum. Neuron. 1993; 11 (4): 621–632.

    Article  CAS  PubMed  Google Scholar 

  176. Patal T, Gores GJ. Apoptosis and hepatobililary disease. Hepatology. 1995; 21 (6): 1725–1741.

    Google Scholar 

  177. James SJ, Muskhelishvili L. Rates of apoptosis and proliferation vary with caloric intake and may influence the incidence of spontaneous hepatoma in C57BL/6 x c3H. Cancer Res. 1994; 54 (21): 5508–5510.

    CAS  PubMed  Google Scholar 

  178. Grasi-Karupp B, Bursch W, Ruttkay-Nedecky B, et al. Food restriction eliminates preneoplastic cells through apoptosis and antagonizes carciogenesis in rat liver. Proc Natl Acad Sci USA. 1994; 91 (21): 9995–9999.

    Article  Google Scholar 

  179. Baker GT III, Martin GR. Biological aging and longevity: underlying mechanisms and potential interventions. J Aging Physical Activity. 1994; 2: 304–328.

    Google Scholar 

  180. Powell HE, Caspersen CJ, Hoplan JP, Ford ES. Physical activity and chronic diseases. Am J Clin Nutr. 1989; 49: 999–1006.

    CAS  PubMed  Google Scholar 

  181. Goodrick CL, Ingram DK, Reynolds MA, et al. Effects of intermittent feeding upon growth, activity and longevity in rats allowed voluntary exercise. Exp Aging Res. 1983; 9: 203–209.

    Article  CAS  PubMed  Google Scholar 

  182. Holloszy JO. Exercise increased average longevity of female rats despite increased food intake and no growth retardation. J Gerontol. 1993; 48: B97 - B100.

    Article  CAS  PubMed  Google Scholar 

  183. Holloszy JO, Smith EK, Vining M, Adams SA. Effect of voluntary exercise on longevity of rats. J Appl Physiol. 1985; 59: 826–831.

    CAS  PubMed  Google Scholar 

  184. Lee I, Paffenbarger RS. Physical activity and the risk of developing colorectal cancer among college alumni. J Natl Cancer Inst. 1991; 83: 1324–1329.

    Article  CAS  PubMed  Google Scholar 

  185. Holloszy JO, ed. Sarcopenia: muscle atrophy in old age. J Gerontol Biol Med Sci. 1995; 50A.

    Google Scholar 

  186. Ingram DK, Reynolds MA. The relationship of body weight to longevity within laboratory rodent species. In: Woodhead AD, Thompson KH, eds. Evolution of Longevity in Animals. New York: Plenum Press; 1987: 247–282.

    Chapter  Google Scholar 

  187. Milgram NW, Racine RJ, Nellis P, et al. Maintenance on L-deprenyl prolongs life in aged male rats. Life Sci. 1990; 47: 415–420.

    Article  CAS  PubMed  Google Scholar 

  188. Thyagarajan S, Meites J, Quadri SK. Deprenyl reinitiates estrous cycles, reduces serum prolactin, and decreases the incidence of mammary and pituitary tumors in old acyclic rats. Endrocrinology. 1995; 136 (3): 1103–1110.

    Article  CAS  Google Scholar 

  189. Daynes RA, Araneo BA. Prevention and reversal of some age associated changes in immunological response by supplemental dihydroepiandosterone sulfate therapy. Aging Immunol Infect Dis. 1992; 13: 5–154.

    Google Scholar 

  190. Carney JM, Starke-Reed PE, Oliver CN, et al. Reversal of age-related increase in brain protein oxidation, decrease in enzyme activity and loss in temporal and spatial memory by chronic administration of the spin-trapping compound N-tert-buty-phenylnitrone. Proc Natl Acad Sci USA. 1991; 88: 3633–3636.

    Article  CAS  PubMed  Google Scholar 

  191. Floyd RA, Carney JM. The role of metal ions in oxidative processes and aging. Toxicol Industrial Health. 1993; 9 (1/2): 197–214.

    CAS  Google Scholar 

  192. Yu BP. Cellular defenses against damage from reactive oxygen species. Physiol Rev. 1994; 74 (1): 139–162.

    CAS  PubMed  Google Scholar 

  193. Mortel KF, Meyer JS. Lack of postmenopausal estrogen replacement therapy and the risk of dementia. J Neuropsychiatry Clin Neurosci. 1995;7(3):334–337.

    Google Scholar 

  194. Evans WJ, Campbell WW. Sarcopenia and age-related changes in body composition and functional capacity. J Nutr. 1993; 123: 465–468.

    CAS  PubMed  Google Scholar 

  195. Fiatarone MA, Evans WJ. The etiology and reversibility of muscle dysfunction in the aged. J Gerontol. 1993; 48: 7783.

    Article  Google Scholar 

  196. Fiatarone MA, Marks EC, Ryan ND, et al. High intensity strength training in nonagenarians: effects on skeletal muscle. JAMA. 1990; 263: 3029–3034.

    Article  CAS  PubMed  Google Scholar 

  197. Harris SS, Caspersen CJ, Defriese GH, Estes EH. Physical activity counseling for healthy adults as a primary preventive intervention in the clinical setting. JAMA. 1989; 261: 3590–3598.

    Google Scholar 

  198. Mittleman MA, MacClure M, Tofler GH, et al. Triggering of acute myocardial infarction by heavy physical exertion-protection against triggering by regular exertion. N Engl J Med. 1993; 329: 1684–1690.

    Article  Google Scholar 

  199. Weindruch R, Walford RL. The Retardation of Aging and Disease by Dietary Restriction. Springfield, IL: Charles C. Thomas, 1988.

    Google Scholar 

  200. Weindruch R, Warner HR, Starke-Reed PE. Future directions of free radical research in aging. In: Yu BP, ed. Free Radicals in Aging. Boca Raton, FL: CRC Press; 1993:269295.

    Google Scholar 

  201. Lane MA, Ball SS, Ingram DK, Cutler RG, Engel J, Read V, Roth GS. Diet restriction in rhesus monkeys lowers fasting and glucose-stimulated glucoregulatory end points. Am J Physiol. 1995; 268 (Endrocrinol Metab 31): E941 - E948.

    CAS  PubMed  Google Scholar 

  202. Lane MA, Baer DJ, Rumpler WV, et al. Caloric restriction lower body temperature in rhesus monkeys, consistent with a postulated anti-aging mechanism in rodents. Proc Natl Acad Sci USA. 1996; 93: 4519–4564.

    Article  Google Scholar 

  203. Masoro EJ. Food restriction in rodents. An evaluation of its role in the study of aging. J Gerontol. 1988; 43: B59 - B56.

    Article  CAS  PubMed  Google Scholar 

  204. Feuers RJ, Weindruch R, Hart RW. Caloric restriction, aging, and antioxidant enzymes. Mutat Res. 1993; 295 (4–6): 191–200.

    CAS  PubMed  Google Scholar 

  205. Hursting SD, Perkins SN, Phang JM. Caloric restriction delays spontaneous tumorigenesis in p53-knockout transgenic mice. Proc Natl Acad Sci USA. 1994; 91: 70367040.

    Google Scholar 

  206. Stampfer MJ, Hennekens CH, Manson J, et al. Vitamin E consumption and the risk of coronary heart disease in women. N Engl J Med. 1993; 328: 1444–1450.

    CAS  Google Scholar 

  207. Rimm EB, Stampfer MJ, Ascherio A, et al. Vitamin E consumption and the risk of coronary heart disease in men. N Engl J Med. 1993; 328: 1450–1456.

    CAS  Google Scholar 

  208. Fraga CG, Motchnik PA, Shiginaga MK, et al. Ascorbic acid protects against endogenous oxidative damage in human sperm. Proc Natl Acad Sci USA. 1991; 88: 110031 1006.

    Google Scholar 

  209. Alpha-Tocopherol, Beta Carotene Cancer Prevention Study Group. The effect of vitamin E and beta carotene on the incidence of lung cancer and other cancers in male smokers. N Engl J Med. 1994; 15: 1029–1035.

    Google Scholar 

  210. Meites J. Anti-aging interventions and their neuroendocrine aspects in mammals. J Reprod Fertility. 1993; 49: 1–9.

    Google Scholar 

  211. Blackman MR, Elahi D, Harman SM. Endrocrinology and aging. In: DeGroot LJ, eds. Endocrinology. Philadelphia: WB Saunders; 1994: 2702–2730.

    Google Scholar 

  212. Rudman D, Feller AG, Cohn L, et al. The effects of human growth hormone on body composition in elderly men. J Hormone Res. 1991; 36: 73–81.

    Article  Google Scholar 

  213. Corpas E, Harman SM, Blackman MR. Human growth hormone and human aging. Endocr Rev. 1993; 14 (1): 20–39.

    CAS  PubMed  Google Scholar 

  214. Ikari H, Zhang L, Mastrangeli A, et al. Adenovirus-mediated gene transfer of dopamine DZ receptor cDNA into rat striatum. Mol Brain Res. 1995; 34: 315–320.

    Article  CAS  PubMed  Google Scholar 

  215. Crystal RG. Transfer of genes to humans: early lessons and obstacles to success. Science. 1995; 270: 404–410.

    Article  CAS  PubMed  Google Scholar 

  216. Gittings NE, Fozard JL. Age changes in visual acuity. Exp Gerontol. 1986; 21: 423–434.

    Article  CAS  PubMed  Google Scholar 

  217. Shock NW, Norris AH. Neuromuscular coordination as a factor in age changes in muscular exercise. In: Brunner D, Jokl E, eds. Medicine and Sport, Vol. 4, Physical Activity and Aging. Basel/New York: S. Karger; 1970.

    Google Scholar 

  218. Freeman JT. Aging: Its History and Literature. New York: Humana Science Press; 1979.

    Google Scholar 

  219. Zeman FD. Life’s later years: studies in the medical history of old age. Parts 1 to 10. J Mt Sinai Hosp. 1945;11:45–51; 12:833–846.

    Google Scholar 

  220. Cowdry EV, ed. Problems of Ageing: Biological and Medical Aspects. Baltimore: Williams Wilkins; 1939.

    Google Scholar 

  221. Cowdry EV, ed. Problems of Ageing: Biological and Medical Aspects. 2nd ed. Baltimore: Williams Wilkins; 1942.

    Google Scholar 

  222. Lansing AI, ed. Cowdry’s Problems of Ageing. 3rd ed. Baltimore: Williams Wilkins; 1952.

    Google Scholar 

  223. Shock NW, Baker GT III. The International Association of Gerontology: A Chronicle-1950 to 1986. New York: Springer; 1988.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Baker, G.T., Martin, G.R. (1997). Molecular and Biologic Factors in Aging: The Origins, Causes, and Prevention of Senescence. In: Cassel, C.K., et al. Geriatric Medicine. Springer, New York, NY. https://doi.org/10.1007/978-1-4757-2705-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-2705-0_1

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4757-2707-4

  • Online ISBN: 978-1-4757-2705-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics