Skip to main content

Blood Flow in Skeletal Muscle

  • Chapter
Biomechanics

Abstract

Continuing the biomechanical analysis of specific organs in accordance with detailed anatomical data, we present in this chapter blood flow in skeletal muscles. A systematic approach should begin with the collection of geometric and materials data, determination of the constitutive equations of the materials, derivation of basic equations according to the laws of physics and chemistry, and formulation of meaningful boundary value problems, and then proceed to solve the equations, predict results, and validate the predictions with animal experiments. Such a program has been carried out by Schmid-Schönbein and his associates for blood flow in skeletal muscle. We present their main results here.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Braakmann, R. (1988). Pressure-flow relationships in skeletal muscle. Ph.D. Dissertation, University of Amsterdam.

    Google Scholar 

  • Burton, A.C. (1951). On the physical equilibrium of small blood vessels. Am. J. Physiol. 164: 319–329.

    PubMed  CAS  Google Scholar 

  • Casley-Smith, J.R. (1977). Lymph and lymphatics in: Microcirculation (G. Kaley and B.M. Altura, eds.), University Park Press. Baltimore, MD, pp. 423–502.

    Google Scholar 

  • Castenholz, A. (1984). Morphological characteristics of initial lymphatics in the tongue as shown by scanning electron microscopy. Scanning Electron Microsc. III: 1343–1352.

    Google Scholar 

  • Clough, G., and Smaje, L.H. (1978). Simultaneous measurement of pressure in the interstitium and the terminal lymphatics of the cat mesentery. J. Physiol. Lond. 283: 457–468.

    PubMed  CAS  Google Scholar 

  • Delashaw, J.B., and Duling, B.R. (1988). A study of the functional elements regulating capillary perfusion in striated muscle. Microvasc. Res. 36: 162–171.

    Article  PubMed  CAS  Google Scholar 

  • Eisenstat, S.C., Gursky, M.C., Schultz, M.H., and Sherman, A.H. (1982). Yale sparse matrix package. I. The symmetric codes. Int. J. Num. Meth. Eng. 18: 1145–1151.

    Article  Google Scholar 

  • Engelson, E.T., Schmid-Schönbein, G.W., and Zweifach, B.W. (1985b). The microvasculature in skeletal muscle. III. Venous network anatomy in normotensive and spontaneously hypertensive rats. Int. J. Microcir. Clin. Exp. 4: 229–248.

    CAS  Google Scholar 

  • Engelson, E.T., Schmid-Schönbein, G.W., and Zweifach, B.W. (1986). The microvasculature in skeletal muscle. II. Arteriolar network anatomy in normotensive and hypertensive rats. Microvasc. Res. 31: 356–374.

    Article  PubMed  CAS  Google Scholar 

  • Engelson, E.T., Skalak, T.C., and Schmid-Schönbein, G.W. (1985a). The microvasculature in skeletal muscle. I. Arteriolar network in rat spinotrapezius muscle. Microvasc. Res. 30: 29–44.

    Article  PubMed  CAS  Google Scholar 

  • Fung, Y.C. (1966). Theoretical considerations of the elasticity of red cells and small blood vessels. Fed. Proc. 25: 1761–1772.

    PubMed  CAS  Google Scholar 

  • Fung, Y.C. (1990). Biomechanics: Motion, Flow, Stress, and Growth. Springer-Verlag, New York.

    Google Scholar 

  • Fung, Y.C. (1993). Biomechanics: Mechanical Properties of Living Tissues. 2nd ed. Springer-Verlag, New York.

    Google Scholar 

  • Fung, Y.C., Zweifach, B.W., and Intaglietta, M. (1966). Elastic environment of the capillary bed. Circ. Res. 19: 441–461.

    Article  PubMed  CAS  Google Scholar 

  • Granger, H., Meininger, G.A., Borders, J.L., Morff, R.J., and Goodman, A.H. (1984). Microcirculation of skeletal muscle. Phys. Pharm. Microcirc. 2: 181–265.

    Google Scholar 

  • Kioller, A., Dawant, B., Liu, A., Popel, A.S., and Johnson, P.C. (1987). Quantitative analysis of arteriole network architecture in cat sartorius muscle. Am. I. Physiol. 253: H154–H164.

    Google Scholar 

  • Krogh, A. (1919). Number and distribution of capillaries in muscle with calculation of oxygen pressure head necessary for supplying the tissue. Am. J. Physiol. 52: 409–415.

    CAS  Google Scholar 

  • Langille, B.L. (1993). Remodeling of developing and mature arteries: endothelium, smooth muscle, and matrix. J. Cardiovasc. Pharmacol. 21: 511–517.

    Article  Google Scholar 

  • Lee, J., and Schmid-Schönbein, G.W. (1995). Biomechanics of skeletal muscle capillaries: hemodynamic resistance, endothelial distensibility, and pseudopod formulation. Ann. Biomed. Eng. 23: 226–246.

    Article  PubMed  CAS  Google Scholar 

  • Lee, I, Salathè, E.P., and Schmid-Schönbein, G.W (1987). Fluid exchange in skeletal muscle with viscoelastic blood vessels. Am. J. Physiol. 253: H1548–H1566.

    PubMed  CAS  Google Scholar 

  • Lindbom, L., and Arfors, K.E. (1985). Mechanism and site of control for variation in the number of perfused capillaries in skeletal muscle. Int. J. Microcirc. Clin. Exp. 4: 19–38.

    PubMed  CAS  Google Scholar 

  • Mazzoni, M.C., Skalak, T.C., and Schmid-Schönbein, G.W (1987). Structure of lymphatic valves in the spinotrapezius muscle of the rat. Blood Vessels, 24: 304–312.

    PubMed  CAS  Google Scholar 

  • Mazzoni, M.C., Skalak, T.C., and Schmid-Schönbein, G.W. (1990). Effects of skeletal muscle fiber deformation on lymphatic volumes. Am. J. Physiol. 259: H1860–H1868.

    PubMed  CAS  Google Scholar 

  • Pappenheimer, J.R., and Maes, J.P. (1942). A quantitative measure of the vasomotor tone in the hind limb muscle of the dog. Am. J. Physiol. 137: 187–199.

    Google Scholar 

  • Popel, A.S. (1987). Network Models of Peripheral Circulation. In Handbook of Bioengineering (R. Skalak and S Chien, eds.), McGraw-Hill, New York, pp. 20.1–20.24.

    Google Scholar 

  • Popel, A.S., Torres-Filho, I.P., Johnson, P.C., and Bouskela, E. (1988). A new scheme for hierarchical classification of anastomosing vessels. Int. J. Microcirc. Clin. Exp. 7: 131–138.

    PubMed  CAS  Google Scholar 

  • Price, R.J., and Skalak, T.C. (1994). Circumferential wall stress as a mechanism for arteriolar rarefaction and proliferation in a network model. Microvasc. Res. 47: 188–202.

    Article  PubMed  CAS  Google Scholar 

  • Price, R.J., and Skalak, T.C. (1995). A circumferential stress-growth rule predicts arcade arteriole formation in a network model. Microcirculation 2: 41–51.

    Article  PubMed  CAS  Google Scholar 

  • Price, R.J., Owens, G.K., and Skalak, T.C. (1994). Immunohistochemical identification of arteriolar development using markers of smooth muscle differentiation: Evidence that capillary arterialization proceeds from terminal arterioles. Circ. Res. 75: 520–527.

    Article  PubMed  CAS  Google Scholar 

  • Schmid-Schönbein, G.W. (1988). A theory of blood flow in skeletal muscle. J. Biomech. Eng. 110: 20–26.

    Article  PubMed  Google Scholar 

  • Schmid-Schönbein G.W., and Murakami, H. (1985). Blood flow in contracting arterioles. Int. J. Microcirc. Clin. Exp. 4: 311–328.

    PubMed  Google Scholar 

  • Schmid-Schönbein, G.W., and Zweifach, B.W. (1994). Fluid pump mechanisms in initial lymphatics. News Physiol. Sci. 9: 67–71.

    Google Scholar 

  • Schmid-Schönbein, G.W., Skalak, R., Usami, S., and Chien, S. (1980). Cell distribution in capillary networks. Microvasc. Res. 19: 18–44.

    Article  PubMed  Google Scholar 

  • Schmid-Schönbein, G.W., Skalak, T.C., Engelson, E.T., and Zweifach, B.W. (1986a). Microvascular Network Anatomy in Rat. In Microvascular Network: Experimental and Theoretical Studies (A.S. Popel and P.C. Johnson, eds.), Karger, Basel, pp. 38–51.

    Google Scholar 

  • Schmid-Schönbein, G.W, Firestone, G., and Zweifach, B.W. (1986b). Network anatomy of arteries feeding the spinotrapezius muscle in normotensive and hypertensive rats. Blood Vessels 23: 34–49.

    PubMed  Google Scholar 

  • Schmid-Schönbein, G.W, Skalak, T.C., and Firestone, G. (1987a). The microvasculature in skeletal muscle. V. The arteriolar and venular arcades in normotensive and hypertensive rats. Microvasc. Res. 34: 385–393.

    Article  PubMed  Google Scholar 

  • Schmid-Schönbein, G.W., Zweifach, B.W., DeLano, F.A., and Chen, P. (1987b). Microvascular tone in a skeletal muscle of spontaneously hypertensive rats. Hypertension 9: H1548–H1566.

    Article  Google Scholar 

  • Schmid-Schönbein, G.W, Skalak, T.C., and Sutton, D.W. (1989a). Bioengineering analysis of blood flow in resting skeletal muscle. In Microvascular Mechanics (J.-S. Lee and T.C. Skalak, eds.), Springer Verlag, New York. pp. 65–99.

    Chapter  Google Scholar 

  • Schmid-Schönbein, G.W., Lee, S.Y., and Sutton, D. (1989b). Dynamic viscous flow in distensible vessels of skeletal muscle microcirculation: Application to pressure and flow transients. Biorheology. 26: 215–227.

    PubMed  Google Scholar 

  • Skalak, T.C., Schmid-Schönbein, G.W, and Zweifach, B.W. (1984). New morphological evidence for a mechanism of lymph formation in skeletal muscle. Microvasc. Res. 28: 95–112.

    Article  PubMed  CAS  Google Scholar 

  • Skalak, T.C., and Schmid-Schönbein, G.W (1986a). The microvasculature in skeletal muscle. IV. A model of the capillary network. Microvasc. Res. 32: 333–347.

    Article  PubMed  CAS  Google Scholar 

  • Skalak, T.C., and Schmid-Schönbein, G.W. (1986b). Viscoelastic properties of microvessels in rat spinotrapezius muscle. J. Biomech. Eng. 108: 193–200.

    Article  PubMed  CAS  Google Scholar 

  • Spalteholz, W. (1888). Die Vertheilung der Blutgefässe im Muskel. Abh. Sachs. Ges. Wiss. Math. Phys. 14: 509–528.

    Google Scholar 

  • Sutton, D.W., and Schmid-Schönbein, G.W. (1989). Hemodynamics at low flow in the resting, vasodilated rat skeletal muscle. Am. J. Physiol. 257: H1419–H1427.

    PubMed  CAS  Google Scholar 

  • Sutton, D.W., and Schmid-Schönbein, G.W. (1991). The pressure-flow relation of plasma in whole organ skeletal muscle and its experimental verification. J. Biomech. Eng. 113: 452–457.

    Article  PubMed  CAS  Google Scholar 

  • Sutton, D.W., and Schmid-Schönbein, G.W. (1992). Elevation of organ resistance due to leukocyte perfusion. Am. J. Physiol. 262: H1646–H1650.

    PubMed  CAS  Google Scholar 

  • Sutton, D.W., and Schmid-Schönbein, G.W. (1995). The pressure-flow relation in resting rat skeletal muscle perfused with pure erythrocyte suspensions. Biorheology 32: 29–42.

    PubMed  CAS  Google Scholar 

  • Sutton, D.W., Mead, E.H., and Schmid-Schönbein, G.W. (1989). A high precision dual feedback pump for unsteady perfusion of small organs. Ann. Biomed. Eng. 17: 269–278.

    Article  PubMed  CAS  Google Scholar 

  • Vlach, J., and Singhai, K. (1983). Computer Methods for Circuit Analysis and Design. Van Nostrand Reinhold, New York.

    Google Scholar 

  • Zweifach, B.W., Kovalcheck, S., DeLano, F.A., and Chen, P. (1981). Micropressure-flow relationships in a skeletal muscle of spontaneously hypertensive rats. Hypertension 3: 601–614.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Fung, Y.C. (1997). Blood Flow in Skeletal Muscle. In: Biomechanics. Springer, New York, NY. https://doi.org/10.1007/978-1-4757-2696-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-2696-1_8

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-2842-9

  • Online ISBN: 978-1-4757-2696-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics