Biomechanics pp 446-513 | Cite as

Coronary Blood Flow

  • Y. C. Fung
Chapter

Abstract

While the heart pumps blood to serve the whole body, the heart muscle itself must be perfused. Yet the perfusion of the heart is unique. Most of the coronary blood vessels are embedded in the myocardium. In every cardiac cycle, the blood in these vessels are squeezed by the muscle cells. The interaction between the muscle cells and the blood vessels dominates the coronary blood flow. None of the individual coronary blood vessels functions as a free tube. The heart muscle cells and the interstitial connective tissues and fluid impose normal and shear stresses and physical constraints on the external surfaces of the coronary blood vessels. Since, however, there is no stress gauge to measure the forces of interaction directly, theoretical analysis plays a major role in assessing the boundary conditions at the external surface of the coronary blood vessel in vivo.

Keywords

Left Anterior Descend Right Coronary Artery Coronary Blood Flow Order Number Vessel Element 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson, W.D., Anderson, B.G., and Seguin, R.J. (1988). Microvasculature of the bear heart demonstrated by scanning electron microscopy. Acta Anat. 131: 305–313.PubMedCrossRefGoogle Scholar
  2. Anrep, G.V., Cruickshank, E.W.H., Downing, A.C., and Subba, R.A. (1927). The coronary circulation in relation to the cardiac cycle. Heart 14: 111–133.Google Scholar
  3. Anversa, P., and Capasso, J.M. (1991). Loss of intermediate-sized coronary arteries and capillary proliferation after left ventricular failure in rats. Am. J. Physiol. 260 (Heart Circ. Physiol. 29): H1552–H1560.PubMedGoogle Scholar
  4. Bassingthwaighte, J.B., King, R.B., and Roger, S.A. (1989). Fractal nature of regional myocardial blood flow heterogeneity. Circ. Res. 65: 578–590.PubMedCrossRefGoogle Scholar
  5. Bassingthwaighte, J.B., Yipintsoi, T., and Harvey, R.B. (1974). Microvasculature of the dog left ventricular myocardium. Microvasc. Res. 7: 229–249.PubMedCrossRefGoogle Scholar
  6. Bayliss, W.M. (1902). On the local reaction of the arterial wall to changes of internal pressure. J. Appl. Physiol. 28: 220–231.Google Scholar
  7. Bellamy, R.E. (1978). Diastolic coronary pressure-flow relations in the dog. Circ. Res. 43: 92–101.PubMedCrossRefGoogle Scholar
  8. Borg, T.K., and Caulfield, J.B. (1981). The collagen matrix of the heart. Fed. Proc. 40: 2037–2041.PubMedGoogle Scholar
  9. Bouskela, E., and Wiederhielm, C. (1979). Microvascular myogenic reaction in the wing of the intact unanesthetized bat. Am. J. Physiol. 239: H59–H65.Google Scholar
  10. Brown, R. (1965). The pattern of the microcirculatory bed in the ventricular myocardium of domestic mammals. Am. J. Anat. 116: 355–374.PubMedCrossRefGoogle Scholar
  11. Burton, A.C. (1965). Physiology and Biophysics of the Circulation. Year Book Medical Publishers, Chicago.Google Scholar
  12. Cábel, M, Smiesko, V., and Johnson, P.C. (1994). Attenuation of blood flow-induced dilation in arterioles after muscle contraction. Am. J. Physiol. 266: H2114–H2121.PubMedGoogle Scholar
  13. Chilian, W.M., and Marcus, M.L. (1982). Phasic coronary flow velocity in intramural and epicardial coronary arteries. Circ. Res. 50: 775–781.PubMedCrossRefGoogle Scholar
  14. Chilian, W.M., Eastham, C.L., and Marcus, M.L. (1986). Microvascular distribution of coronary vascular resistance in beating left ventricle. Am. J. Physiol. 251: H779–H788.PubMedGoogle Scholar
  15. Cox, R.H. (1982). Mechanical properties of the coronary vascular wall and the contractile process. In The Coronary Artery, (S. Kalsner, ed.), Oxford Univ. Press, New York, Ch. 2, pp. 59–90.Google Scholar
  16. Davis, M.J. (1993). Myogenic response gradient in an arteriolar network. Am. J. Physiol. 264: H2168–H2179.PubMedGoogle Scholar
  17. Dole, W.P., and Bishop, V.S. (1982). Influence of autoregulation and capacitance on diastolic coronary artery pressure-flow relationships in the dog. Circ. Res. 51: 261–270.PubMedCrossRefGoogle Scholar
  18. Eng, C., Jentzer, J.H., and Kirk, E.S. (1982). The effects of the coronary capacitance on the interpretation of diastolic pressure-flow relationships. Circ. Res. 50: 334–341.PubMedCrossRefGoogle Scholar
  19. Fibich, G., Lanir, Y, and Liron, N. (1993). Mathematical model of blood flow in a coronary capillary. Am. J. Physiol. 265: H1829–H1840.PubMedGoogle Scholar
  20. Folkow, B. (1949). Intravascular pressure as a factor regulating the tone of the small vessels. Acta Physiol. Scand. 17: 289–310.PubMedCrossRefGoogle Scholar
  21. Fung, Y.C. (1966). Theoretical considerations of the elasticity of red cells and small blood vessels. Fed. Proc. 25: 1761–1772.PubMedGoogle Scholar
  22. Fung, Y.C. (1993). Biomechanics: Mechanical Properties of Living Tissues. 2nd ed., Springer-Verlag, New York.Google Scholar
  23. Fung, Y.C., Zweifach, B.W., and Intaglietta, M. (1966). Elastic environment of the capillary bed. Circ. Res. 19: 441–461.PubMedCrossRefGoogle Scholar
  24. Goto, M., Flynn, A.E., Doucette, J.W., Jansen, C.M.A., Stork, M.M., Coggins, D.L., Muehrcke, D.D., Husseini, W.K., and Hoffman, J.I.E. (1991). Cardiac contraction affects deep myocardial vessels predominantly. Am. J. Physiol. 261: H1417–H1429.PubMedGoogle Scholar
  25. Grande, P-O., Lundvall, J., and Meilander, S. (1977). Evidence for a rate-sensitive regularory mechanism in myogenic microvascular control. Acta Physiol. Scand. 99: 432–447.PubMedCrossRefGoogle Scholar
  26. Guharay, F., and Sachs, F. (1984). Stretch-activated single ion channel currents in tissue-cultured embryonic chick skeletal muscle. J. Physiol. Lond. 352: 685–701.PubMedGoogle Scholar
  27. Hiramatsu, O., Goto, M., Yada, T., Kimura, A., Tachibane, H., Ogasawara, Y, Tsujioka, K., and Kajiya, F. (1994). Diameters of subendocardial arterioles and venules during prolonged diastole in canine left ventricles. Circ. Res. 75: 393–399.PubMedCrossRefGoogle Scholar
  28. Hoffman, J.I.E., and Spaan, J.A.E. (1990). Pressure-flow relations in coronary circulation. Physiol. Rev. 70: 331–390.PubMedGoogle Scholar
  29. Jiang, Z.L., and He, G.C. (1990). Microstructural components in canine coronary arteries and veins. Acta Anat. Sinica 21: 348–352.Google Scholar
  30. Jiang, Z.L., and He, G.C. (1991). Biomechanical properties of dog coronary arteries. I. Uniaxial loading. Chinese J. Biomed. Eng. 10: 9–18.Google Scholar
  31. Johnson, P.C. (ed.) (1978). Peripheral Circulation. John Wiley, New York.Google Scholar
  32. Johnson, P.C. (1991). The myogenic response. News in Physiol Sci. 6: 41–42.Google Scholar
  33. Judd, R.M., and Levy, B.L. (1991). Effects of barium-induced cardiac contraction on large-and small-vessel intramyocardial blood volume. Circ. Res. 68: 217–225.PubMedCrossRefGoogle Scholar
  34. Kanatsuka, H., Lamping, K.G., Eastham, C.L., Marcus, M.L., and Dellsperger, K.C. (1991). Coronary microvascular resistance in hypertensive cats. Circ. Res. 68: 726–733.PubMedCrossRefGoogle Scholar
  35. Kassab, G.S., and Fung, Y.C. (1994). Topology and dimensions of pig coronary capillary network. Am. J. Physiol. 267 (Heart Circ. Physiol 36): H319–H325.PubMedGoogle Scholar
  36. Kassab, G.S., and Fung, Y.C. (1995). The pattern of coronary arteriolar bifurcations and the uniform shear hypothesis. Anna. Biomed. Eng. 23: 13–20.CrossRefGoogle Scholar
  37. Kassab, G.S., Rider, C.A., Tang, N.A., and Fung, Y.C. (1993a). Morphometry of pig coronary arterial trees. Am. J. Physiol. 265 (Heart Circ. Physiol. 34): H350–H365.PubMedGoogle Scholar
  38. Kassab, G.S., Imoto, K., White, E.C., Rider, C.A., Fung, Y.C., and Bloor, C.M. (1993b). Coronary arterial tree remodeling in right ventricular hypertrophy. Am. J. Physiol. 265 (Heart Circ. Physiol.): H366–H377.PubMedGoogle Scholar
  39. Kassab, G.S., Lin, D.H., and Fung, Y.C. (1994a). Morphometry of pig coronary venous systems. Am. J. Physiol. 267 (Heart Circ. Physiol. 36): H2100–H2113.PubMedGoogle Scholar
  40. Kassab, G.S., Lin, D.H., and Fung, Y.C. (1994b). Consequences of pruning in morphometry of coronary vasculature. Ann. Biomed. Eng. 22: 398–403.PubMedCrossRefGoogle Scholar
  41. Kassab, G.S., Berkley, J., and Fung, Y.C. (1996). Analysis of pig’s coronary arterial blood flow with detailed anatomical data. Ann. Biomed. Eng. 25.Google Scholar
  42. Klocke, F.J., Mates, R.E., Canty, Jr., J.M., and Ellis, A.K. (1985). Coronary pressure-flow relationships. Controversial issues and probable implications. Circ. Res. 56: 310–333.PubMedCrossRefGoogle Scholar
  43. Klocke, F.J., Weinstein, I.R., Klocke, J.F., Ellis, A.K., Kraus, D.R., Mates, R.E., Canty, J.M., Anbar, R.D., Romanowski, P.R., Wallmeyer, K.W., and Echt, M.P. (1981). Zero-flow pressures and pressure-flow relationships during single long diastoles in the canine coronary bed before and during maximum vasodilatation. J. Clin. Invest. 68: 970–980.PubMedCrossRefGoogle Scholar
  44. Krams, R., Sipkema, P., and Westerhof, N. (1989). Can coronary systolic-diastolic flow difference be predicted by left ventricular pressure or time varying intramyocardial elastance? Basic Res. Cardiol. 84: 149–159.PubMedCrossRefGoogle Scholar
  45. Kuo, L., Davis, M.J., and Chilian, W.M. (1988). Myogenic activity in isolated subepicardial and subendocardial coronary arterioles. Am. J. Physiol. 255: H1558–H1562.PubMedGoogle Scholar
  46. Kuo, L., Chilian, W.M., and Davis, M.J. (1990a). Coronary arteriolar myogenic response is independent of endothelium. Circ. Res. 66: 860–866.PubMedCrossRefGoogle Scholar
  47. Kuo, L., Davis, M.J., and Chilian, W.M. (1990b). Endothelium-dependent, flow induced dilation of isolated coronary arteries. Am. J. Physiol. 259: H1063–H1070.PubMedGoogle Scholar
  48. Kuo, L., Chilian, W.M., and Davis, M.J. (1991a). Interaction of pressure-and flow-induced responses in porcine coronary resistance vessels. Am. J. Physiol. 261: H1706–H1715.PubMedGoogle Scholar
  49. Kuo, L., Davis, M.J., and Chilian, W.M. (1991b). Alteration of arteriolar responses during atherosclerosis. In Resistance Arteries, Structure and Function, (M.J. Mulvany, et al., eds.), Elsevier Sci. Pub.Google Scholar
  50. Kuo, L., Davis, M.J., Cannon, M.S., and Chilian, W.M. (1992). Pathophysiological consequences of atherosclerosis extend into the coronary microcirculation. Circ. Res. 70: 465–476.PubMedCrossRefGoogle Scholar
  51. Kuo, L., Davis, M.J., and Chilian, W.M. (1995). Longitudinal gradients for endothelium-dependent and-independent vascular responses in the coronary microcirculation. Circulation 92: 518–525.PubMedCrossRefGoogle Scholar
  52. Livingston, J.Z., Resar J.R., and Yin, F.C.P. (1993). Effect of tetanic myocardial contraction on coronary pressure-flow relationships. Am. J. Physiol. 265: H1215–H1226.PubMedGoogle Scholar
  53. Ludwig, G. (1971). Capillary pattern of the myocardium. Methods Achive. Exp. Pathol. 5: 238–271.Google Scholar
  54. Meininger, G.A., and Davis, M.J. (1992). Cellular mechanisms involved in the vascular myogenic response. Am. J. Physiol. 263: H647–H659.PubMedGoogle Scholar
  55. Meininger, G.A., Mack, C.A., Fehr, K.L., and Bohlen, H.G. (1987). Myogenic vasoregulation overrides local metabolic control in resting rat skeletal muscle. Circ. Res. 60: 861–870.PubMedCrossRefGoogle Scholar
  56. Mohl, W., Wolner, E., and Glogar, D. (eds.) (1984). The Coronary Sinus. Springer-Verlag, New York.Google Scholar
  57. Nellis, S.H., and Whitesell, L. (1989). Phasic pressures and diameters in small epicardial veins of the unrestrained heart. Am. J. Physiol. 257: H1056–H1061.PubMedGoogle Scholar
  58. Nussbaum, A. (1912). Über das Gefass-system des Herzens. Arch. Mikrobiol. Anat. 80: 450–477.CrossRefGoogle Scholar
  59. Osol, G, and Halpern, W. (1985). Myogenic properties of cerebral blood vessels from normotensive and hypertensive rats. Am. J. Physiol. 249: H914–H921.PubMedGoogle Scholar
  60. Ping, P., and Johnson, P.C. (1992). Role of myogenic response in enhancing auto-regulation of flow during sympathetic nerve stimulation. Am. J. Physiol. 263: H1177–H1184.PubMedGoogle Scholar
  61. Ping, P., and Johnson, P.C. (1992). Mechanism of enhanced myogenic response in arterioles during sympathetic nerve stimulation. Am. J. Physiol. 263: H1185–H1189.PubMedGoogle Scholar
  62. Ping, P., and Johnson, P.C. (1994). Arteriolar network response to pressure reduction during sympathetic nerve stimulation in cat skeletal muscle. Am. J. Physiol. 266: H1251–H1259.PubMedGoogle Scholar
  63. Porter, W.T. (1898). The influence of the heart beat on the flow of blood through the walls of the heart. Am. J. Physiol. 1: 145–163.Google Scholar
  64. Rabbany, S.Y., Funai, J.T., and Noordergraaf, A. (1994). Pressure generation in a contracting myocyte. Heart and Vessels 9: 169–174.PubMedCrossRefGoogle Scholar
  65. Rabbany, S.Y., Kresh, J.Y., and Noordergraaf, A. (1989). Intramyocardial pressure: interaction of myocardical fluid pressure and fiber stress. Am. J. Physiol. 257: H357–H364.PubMedGoogle Scholar
  66. Rakusan, K., and Wicker, P. (1990). Morphometry of the small arteries and arterioles in the rat heart: effects of chronic hypertension and exercise. Cardiovasc. Res. 24: 278–284.PubMedCrossRefGoogle Scholar
  67. Scaramucci, J. (1695). Theoremata familiaria viros eruditos consulentia de variis physico-medicis lucubrationibus juxta leges mecanicas. Apud. Joannem Baptistan Bustum, pp. 70-81.Google Scholar
  68. Schmid-Schönbein, G.W., Lee, S.Y., and Sutton, D. (1989). Dynamic viscous flow in distensible vessels of skeletal muscle microcirculation: Application to pressure and flow transients. Biorheology 26: 215–227.PubMedGoogle Scholar
  69. Spaan, J.A.E. (1985). Coronary diastolic pressure-flow relation and zero flow pressure explained on the basis of intramyocardial compliance. Circ. Res. 56: 293–309.PubMedCrossRefGoogle Scholar
  70. Spaan, J.A.E. (1991). Coronary Blood Flow. Kluwer Academic Pub., Dordrecht, The Netherlands.CrossRefGoogle Scholar
  71. Spaan, J.A.E., Breuls, N.P.W., and Laird, J.D. (1981). Diastolic-systolic flow differences are caused by intramyocardial pump action in the anesthetized dog. Circ. Res. 49: 584–593.PubMedCrossRefGoogle Scholar
  72. Spalteholz, W. (1907). Die Koronararterien des Herzens. Verh. Anat. Ges. 21: 141–153.Google Scholar
  73. Suga, H. (1979). Total mechanical energy of a ventricular model and cardiac oxygen consumption. Am. J. PhysioL. 236: H498–H505.PubMedGoogle Scholar
  74. Thurau, K. (1964). Autoregulation of renal blood flow and glomerular filtration rate, including data on peritubular capillary pressures and wall tension. Circ. Res. 14, Suppl. 1: 132–141.Google Scholar
  75. Tillmanns, H., Ikeda, S., Hansen, H., Sarma, J.S.M., Fauvel, J.-M., and Bing, R.J. (1974). Microcirculation in the ventricle of the dog and turtle. Circ. Res. 34: 561–569.PubMedCrossRefGoogle Scholar
  76. Tillmanns, H., Steinhausen, M., Leinberger, H., Thederan, H., and Kubler, W. (1981). Pressure measurements in the terminal vascular bed of the epimyocardium of rats and cats. Circ. Res. 49: 1202–1211.PubMedCrossRefGoogle Scholar
  77. Tomonaga, G., Tsujioka, K., Ogasawara, Y., Nakai, M, Mito, K., Hiramatsu, O., and Kajiya, F. (1984). Dynamic characteristics of diastolic pressure-flow relation in the canine coronary artery. In: The Coronary Sinus, (W. Mohl, E. Wolner, and D. Glogar, eds.), Springer-Verlag, New York, pp. 79–85.Google Scholar
  78. Van Bavel, E. (1989). Metabolic and myogenic control of blood flow studied on isolated small arteries. PhD Thesis. Univ. Amsterdam, The Netherlands.Google Scholar
  79. Wearn, J.T. (1928). The extent of the capillary bed of the heart. J. Exp. Med. 47: 273–292.PubMedCrossRefGoogle Scholar
  80. Wiggers, C.J. (1954). The interplay of coronary vascular resistance and myocardial compression in regulating coronary flow. Circ. Res. 2: 271–279.PubMedCrossRefGoogle Scholar
  81. Yada, T, Hiramatsu, O., Kimura, A., Goto, M., Ogasawaray, Y, Tsujioka, K., Yamamori, S., Ohno, K., Hosaka, H., and Kajiya, F. (1993). In vivo observation of subendocardial microvessels of the beating porcine heart using a needle-probe videomicroscope with a CCD camera. Circ. Res. 72: 939–946.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • Y. C. Fung
    • 1
  1. 1.Department of BioengineeringUniversity of California, San DiegoLa JollaUSA

Personalised recommendations