We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Skip to main content

The Veins

  • Chapter
Biomechanics

Abstract

Veins normally contain about 80% of the total volume of blood in the systemic vascular system. Any change in the blood volume in the veins will affect blood flow through the heart. The most important feature of the systemic veins is, therefore, their compliance. A compliant structure runs the danger of collapsing; the problem with the vein is that it is often collapsed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anliker, M., and Raman, K.R. (1966). Korotkoff sounds at diastole—a phenomenon of dynamic instability of fluid-filled shells. Int. J. Solids Struct. 2: 467–491.

    Article  Google Scholar 

  • Anliker, M., Wells, M.K., and Ogden, E. (1969). The transmission characteristics of large and small pressure waves in the abdominal vena cava. IEEE Trans. Biomed. Eng. BME-16: 262–273.

    Article  Google Scholar 

  • Attinger, E.O. (1969). Wall properties of veins. IEEE Trans. Biomedical Eng. BME-16: 253–261.

    Article  Google Scholar 

  • Bertram, C.D., Raymond, C.J., and Pedley, T.J. (1990, 1991, 1992). Mapping of instabilities for flow through collapsed tubes of differing length; and Application of nonlinear dynamics concepts. J. Fluids Struct. 3: 125–153; 4: 3-36; 5: 391-426.

    Google Scholar 

  • Cancelli, C., and Pedley, T.J. (1985). A separated-flow model for collapsible-tube oscillations. J. Fluid Mech. 157: 375–404.

    Article  Google Scholar 

  • Caro, C.G., Pedley, T.J., Schroter, R.C., and Seed, W.A. (1978). The Mechanics of the Circulation. Oxford University Press, Oxford.

    Google Scholar 

  • Conrad, W.A. (1969). Pressure flow relationship in collapsible tubes. IEEE Trans. Biomed. Eng. BME-16: 284–295.

    Article  Google Scholar 

  • Cumming, G., Henderson, R., Horsfield, K., and Singhal, S.S. (1968). The functional morphology of the pulmonary circulation. In The Pulmonary Circulation and Interstitial Space (A. Fishman and H. Hecht, eds.). University of Chicago Press, Chicago, pp. 327–338.

    Google Scholar 

  • Flaherty, J.E., Keller, J.B., and Rubinow, S.I. (1972). Post buckling behavior of elastic tubes and rings with opposite sides in contact. SIAM J. Appl. Math. 23: 446–455.

    Article  Google Scholar 

  • Flügge, W. (1960). Stresses in Shells. Springer-Verlag, Heidelberg.

    Book  Google Scholar 

  • Fung, Y.C. (1954). The static stability of a two-dimensional curved panel in a supersonic flow, with applications to panel flutter. J. Aeronaut. Sci. 21: 556–565.

    Google Scholar 

  • Fung, Y.C. (1958). On two-dimensional panel flutter. J. Aeronaut. Sci. 25: 145–160.

    Google Scholar 

  • Fung, Y.C. (1993a). A First Course in Continuum Mechanics, 3rd ed. Prentice-Hall, Englewood Cliffs, NJ.

    Google Scholar 

  • Fung, Y.C. (1993b). Biomechanics: Mechanical Properties of Living Tissues, 2nd ed. Springer-Verlag. New York.

    Google Scholar 

  • Fung, Y.C., and Sechler, E.E. (1960). Instability of thin elastic shells. In Structural Mechanics. Proc. of Symp. on Naval Structure Mechanics (J.N. Goodier and N. Hoff, eds.). Pergamon Press, New York.

    Google Scholar 

  • Fung, Y.C., and Sechler, E.E. (eds.) (1974). Thin Shell Structures: Theory, Experiment and Design. Prentice-Hall, Englewood Cliffs, NJ.

    Google Scholar 

  • Fung, Y.C., and Sobin, S.S. (1972a). Elasticity of the pulmonary alveolar sheet. Circ. Res. 30: 451–469.

    Article  PubMed  CAS  Google Scholar 

  • Fung, Y.C., and Sobin, S.S. (1972b). Pulmonary alveolar blood flow. Circ. Res. 30: 470–490.

    Article  PubMed  CAS  Google Scholar 

  • Fung, Y.C., Perrone, N., and Anliker, M. (1972). Biomechanics: Its Foundations and Objectives. Prentice-Hall, Englewood Cliffs, NJ.

    Google Scholar 

  • Fung, Y.G, Sobin, S.S., Tremer, H., Yen, M.R.T., and Ho, H.H. (1983). Patency and compliance of pulmonary veins when airway pressure exceeds blood pressure. J. Appl. Physiol: Respir., Exerc. Environ. Physiol. 54: 1538–1549.

    CAS  Google Scholar 

  • Gardner, A.M.N., Turner, M.J., Wilmshurst, C.C., and Griffiths, D.J. (1977). Hydrodynamics of blood flow through the inferior vena cava. Med. Biol. Eng. Comp. 15: 248–253.

    Article  CAS  Google Scholar 

  • Gibson, A.H. (1910). On the flow of water through pipes and passages having converging or diverging boundaries. Proc. Roy. Soc. London A, 83: 366–378.

    Article  Google Scholar 

  • Glazier, J.B., Hughes, J.M.B., Maloney, J.E., and West, J.B. (1969). Measurements of capillary dimensions and blood volume in rapidly frozen lungs. J. Appl. Physiol. 26: 65–76.

    PubMed  CAS  Google Scholar 

  • Holt, J.P. (1969). Flow through collapsible tubes and through in situ veins. IEEE Trans. Biomedical Eng. BME-16: 274–283.

    Article  Google Scholar 

  • Howell, J.B.L., Permutt, S., Proctor, D.F., and Riley, R.L. (1961). Effect of inflation of the lung on different parts of pulmonary vascular bed. J. Appl. Physiol. 16: 71–76.

    PubMed  CAS  Google Scholar 

  • Jensen, O.E. (1990). Instabilities of flow in a collapsed tube. J. Fluid Mech. 220: 623–659.

    Article  CAS  Google Scholar 

  • Jensen, O.E., and Pedley, T.J. (1989). The existence of steady flow in a collapsible tube. J. Fluid Mech. 206: 339–374.

    Article  CAS  Google Scholar 

  • Kamm, R.D., and Pedley, T.J. (1989). Flow in collapsible tube: a brief review. J. Biomech. Eng. 111: 177–179.

    Article  PubMed  CAS  Google Scholar 

  • Katz, A.I., Chen, Y., and Moreno, A.H. (1969). Flow through a collapsible tube: Experimental analysis and mathematical model. Biophys. J. 9: 1261–1279.

    Article  PubMed  CAS  Google Scholar 

  • Kline, S.J. (1959). On the nature of stall. J. Basic Eng, Trans. ASME 81, Ser. D: 305–320. See also Kline et al., J. Basic Eng., Trans. ASME 81: 321-331.

    Google Scholar 

  • Kline, S.J., Moore, C.A., and Cochran, D.L. (1957). Wide-angle diffusers of high performance and diffuser flow mechanisms. J. Aeronaut. Sci. 24: 469–471.

    Google Scholar 

  • Knowlton, F.P., and Starling, E.H. (1912). The influence of variations in temperature and blood pressure on the performance of the isolated mammalian heart. J. Physiol. (London) 44: 206–219.

    CAS  Google Scholar 

  • Lai-Fook, S.J. (1979). A continuum mechanics analysis of pulmonary vascular interdependence in isolated dog lobes. J. Appl. Physiol. 45: 419–429.

    Google Scholar 

  • Macklin, C.C. (1946). Evidences of increase in the capacity of the pulmonary arteries and veins of dogs, cats and rabbits during inflation of the freshly excised lung. Rev. Canad. Biol. 5: 199–232.

    PubMed  CAS  Google Scholar 

  • Matsuzaki, Y. (1995). Unsteady flow in a collapsible tube: analysis and experiment. Proc. Fourth China, Japan, USA, Singapore Conf. Biomechanics.

    Google Scholar 

  • Matsuzaki, Y, and Fung, Y.C. (1976). On separation of a divergent flow at moderate Reynolds numbers. J. Appl. Mech. 43: 227–231.

    Article  Google Scholar 

  • Matsuzaki, Y., and Fung, Y.C. (1977a). Unsteady fluid dynamic forces on a simply-supported circular cylinder of finite length conveying a flow, with applications to stability analysis. J. Sound Vibr. 54: 317–330.

    Article  Google Scholar 

  • Matsuzaki, Y., and Fung, Y.C. (1977b). Stability analysis of straight and buckled two-dimensional channels conveying an incompressible flow. J. Appl. Mech. 44: 548–552.

    Article  Google Scholar 

  • Matsuzaki, Y., and Fung, Y.C. (1979). Nonlinear stability analysis of a compressible flow. J. Appl. Mech. 46: 31–36.

    Article  Google Scholar 

  • Matsuzaki, Y, and Matsumoto, T. (1989). Flow in a two-dimensional collapsible channel with rigid inlet and outlet. J. Biomech. Eng. 111: 180–184, 1989.

    Article  PubMed  CAS  Google Scholar 

  • McCutcheon, E.P., and Rushmer, R.F. (1967). Korotkoff sounds: An experimental critique. Circ. Res. 20: 149–169.

    Article  PubMed  CAS  Google Scholar 

  • Mead, J., and Whittenberger, J.L. (1964). Lung inflation and hemodynamics. In Handbook of Physiological Sec. 3, Respiration, Vol. 1. (W.O. Fenn and H. Rahn, eds.). American Physiology Society, Washington, DC, pp. 477–486.

    Google Scholar 

  • Moreno, A.H., Katz, A.I., Gold, L.D., and Reddy, R.V. (1970). Mechanics of distension of dog veins and other very thin-walled tubular structures. Circ. Res. 27: 1069–1079.

    Article  PubMed  CAS  Google Scholar 

  • Ohba, K., Yoneyama, N., Shimanaka, Y, and Maeda, H. (1984). Self-excited oscillations of flow in collapsible tube, I. Technol. Rep. Kansai Univ. No. 25, pp. 1-13.

    Google Scholar 

  • Pedley, T.J. (1980). The Fluid Mechanics of Large Blood Vessels, Cambridge University Press, Cambridge.

    Book  Google Scholar 

  • Permutt, S., and Riley, R.L. (1963). Hemodynamics of collapsible vessels with tone: Vascular waterfall, J. Appl. Physiol. 18: 924–932.

    PubMed  CAS  Google Scholar 

  • Permutt, S., Bromberger-Barnea, B., and Bane, H.N. (1962). Alveolar pressure, pulmonary venous pressure, and the vascular waterfall. Med. Thorac. 19: 239–260.

    PubMed  CAS  Google Scholar 

  • Pollack, A.A., and Wood, E.H. (1949). Venous pressure in the saphenous vein at the ankle in man during exercise and changes in posture. J. Appl. Physiol. 1: 649–662.

    PubMed  CAS  Google Scholar 

  • Schoendorfer, D.W., and Shapiro, A.H. (1977). The collapsible tube as a prosthetic vocal source. Proc. San Diego Biomed. Symp. 16: 349–356.

    Google Scholar 

  • Shapiro, A.H. (1977). Steady flow in collapsible tubes, J. Biomech. Eng. 99: 126–147.

    Article  Google Scholar 

  • Sobin, S.S., Fung, Y.C., Tremer, H., and Rosenquist, T.H. (1972). Elasticity of the pulmonary interalveolar microvascular sheet in the cat. Circ. Res. 30: 440–450.

    Article  PubMed  CAS  Google Scholar 

  • Sobin, S.S., Lindal, R.G., Fung, Y.C., and Tremer, H.M. (1978). Elasticity of the smallest noncapillary pulmonary blood vessels in the cat. Microvas. Res. 15: 57–68.

    Article  CAS  Google Scholar 

  • Sobin, S.S., Fung, Y.C., Lindal, R.G., Tremer, H.M., and Clark, L. (1980). Topology of pulmonary arterioles, capillaries and venules in the cat. Microvac. Res. 19: 217–233.

    Article  CAS  Google Scholar 

  • Strahler, A.N. (1964). Quantitative geomorphology of drainage basin and channel networks. In Handbook of Applied Hydrology: Compedium of Water Resources Technology (V.T. Chow, ed.). McGraw-Hill, New York.

    Google Scholar 

  • Timoshenko, S., and Gere, J.M. (1961). Theory of Elastic Stability, 2nd ed. McGraw-Hill, New York.

    Google Scholar 

  • Ur, A., and Gordon, M. (1970). Origin of Korotkoff sounds. Am. J. Physiol. 218: 524–529.

    PubMed  CAS  Google Scholar 

  • Weibel, E.R. (1963). Morphometry of the Human Lung. Springer-Verlag, Berlin.

    Google Scholar 

  • Wexler, L., Bergel, D.H., Gabe, I.T., Makin, G.S., and Mills, C.J. (1968). Velocity of blood flow in normal human venae cavae. Circ. Res. 23: 349–359.

    Article  PubMed  CAS  Google Scholar 

  • Wild, R., Pedley, T.J., and Riley, D.S. (1977). Viscous flow in collapsible tubes of slowly-varying elliptical cross-section. J. Fluid Mech. 81: 273–294.

    Article  Google Scholar 

  • Yen, R.T., and Foppiano, L. (1981). Elasticity of small pulmonary veins in the cat. J. Biomech. Eng. Trans. ASME 103: 38–42.

    Article  CAS  Google Scholar 

  • Yen, R.T., Fung, Y.C., and Bingham, N. (1980). Elasticity of small pulmonary arteries in the cat. J. Biomech. Eng. Trans. ASME 102: 170–177.

    Article  CAS  Google Scholar 

  • Yen, R.T., Zhuang, F.Y., Fung, Y.C., Ho, H.H., Tremer, H., and Sobin, S.S. (1983). Morphometry of cat’s pulmonary venous tree. J. Appl. Physiol. In press.

    Google Scholar 

  • Young, D.F., and Tsai, F.Y. (1973). Flow characteristics in models of arterial stenosis. I. Steady flow. J. Biomech. 6: 395–410.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Fung, Y.C. (1997). The Veins. In: Biomechanics. Springer, New York, NY. https://doi.org/10.1007/978-1-4757-2696-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-2696-1_4

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-2842-9

  • Online ISBN: 978-1-4757-2696-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics