Biomechanics pp 23-107 | Cite as

The Heart

  • Y. C. Fung


The heart is the prime mover of blood. By periodic stimulation of its muscles it contracts periodically and pumps blood throughout the body. How the pump works is the subject of this chapter.


Residual Stress Left Ventricle Aortic Valve Mitral Valve Papillary Muscle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arts, T., and Reneman, R.S. (1980). Measurements of deformation of canine epicardium in vivo during cardiac cycle. Am. J. Physiol. 239: H432–H437.PubMedGoogle Scholar
  2. Arts, T., Reneman, R.S., and Veenstra, P.C. (1982). Epicardial deformation and left ventricular wall mechanics during ejection in the dog. Am. J. Physiol. 243: H379–H390.PubMedGoogle Scholar
  3. Bellhouse, B.J., and Bellhouse, F.H. (1969). Fluid mechanics of model normal and stenosed aortic valves. Circ. Res. 25: 693–704.PubMedGoogle Scholar
  4. Bellhouse, B.J., and Bellhouse, F.H. (1972). Fluid mechanics of a model mitral valve and left ventricle. Cardiovasc. Res. 6:199–210.PubMedCrossRefGoogle Scholar
  5. Berne, R.M., and Sperelakis, N. (eds.) (1979). Handbook of Physiology. Sec. 2. The Cardiovascular System, Vol. 1. The Heart. American Physiological Society, Bethesda, MD.Google Scholar
  6. Blum, W.F., McCulloch, A.D., and Lew, W.Y.W. (1995). Active force in rabbit ventricular myocytes. J. Biomech. 28: 1119–1122.CrossRefGoogle Scholar
  7. Brady, A.J. (1984). Passive stiffness of rat cardiac myocytes. J. Biomech. Eng. 106: 25–30.PubMedCrossRefGoogle Scholar
  8. Braunwald, E. (ed.) (1988). Heart Disease. 3rd Edition, Saunders Co., Philadelphia, PA.Google Scholar
  9. Costa, K.D., Hunter, P.J., Rogers, J.M., Guccione, J.M., Waldman, L.K., and McCulloch, A.D. (1996). A three-dimensional finite element method for large elastic deformations of ventricular myocardium: Part 1 cylindrical and spherical polar coordinates. J. Biomech. Eng. Submitted.Google Scholar
  10. Daniels, M., Noble, M.I.M., ter Keurs, H.E.D.J., and Wohlfart, B. (1984). Velocity of sarcomere shortening in rat cardiac muscle: relationship to force, sarcomere length, calcium and time. J. Physiol. 355: 367–381.PubMedGoogle Scholar
  11. Debes, J.C., and Fung, Y.C. (1995). Biaxial mechanics of excised canine pulmonary arteries, Am. J. Physiol. 269: H433–H442.PubMedGoogle Scholar
  12. Deng, S.X., Tomioka, J., Debes, J.C., and Fung, Y.C. (1994). New experiments on shear modulus of elasticity of arteries. Am. J. Physiol. 266: H1–H10.PubMedGoogle Scholar
  13. Dieudonné, J.M. (1969). La determination experimentale des contraintes myocardiques. J. Physiol. (Paris) 61: 199–218.Google Scholar
  14. Edman, K.A.P., and Nilsson, E. (1972). Relationship between force and velocity of shortening in rabbit papillary muscle. Acta Physiol. Scand. 85: 488–500.PubMedCrossRefGoogle Scholar
  15. Frank, O. (1899). Die grundform des arteriellen pulses. Erste Abhandlung, Mathematische Analyse. Z. Biol. 37: 483–526.Google Scholar
  16. Fung, Y.C. (1965). Foundations of Solid Mechanics. Prentice-Hall, Englewood Cliffs, NJ.Google Scholar
  17. Fung, Y.C. (1970). Mathematical representation of the mechanical properties of the heart muscle. J. Biomech. 3: 381–404.PubMedCrossRefGoogle Scholar
  18. Fung, Y.C. (1971). Stress-strain-history relation of soft tissues in simple elongation, In Biomechanics: Its Foundation and Objectives. (Fung, Y.C, Perrone, N, and Anliker, M., eds.), Prentice-Hall, Englewood Cliffs, NJ, pp. 181–208.Google Scholar
  19. Fung, Y.C. (1973). Biorheology of soft tissues, Biorheology, 19: 139–155.Google Scholar
  20. Fung, Y.C. (1979). Inversion of a class of nonlinear stress-strain relationships of biological soft tissues. J. Biomech. Eng, 101: 23–27.CrossRefGoogle Scholar
  21. Fung, Y.C. (1983). What principle governs the stress distribution in living organisms, In Biomechanics in China, Japan, and USA. (Fung, Y.C, Fukada, E., and Wang, J.J., eds.), Science Press, Beijing, pp. 1–13.Google Scholar
  22. Fung, Y.C (1988). Cellular growth in soft tissues affected by the stress level in service, In Tissue Engineering. (Skalak, R., and Fox, C.F., eds.), Alan Liss, Inc., New York, pp. 45–50.Google Scholar
  23. Fung, Y.C. (1990). Biomechanics: Motion, Flow, Stress and Growth, Springer-Verlag, New York.Google Scholar
  24. Fung, Y.C. (1993a). A First Course in Continuum Mechanics, 3rd Edition, Prentice-Hall, Englewood Cliffs, NJ, pp. 165–180.Google Scholar
  25. Fung, Y.C. (1993b). Biomechanics: Mechanical Properties of Living Tissues, 2nd Edition, Springer-Verlag, New York.Google Scholar
  26. Fung, Y.C, and Liu., S.Q. (1995). Determination of the mechanical properties of the different layers of blood vessels in vivo. Proc. U.S. Natl. Acad. Sci. 92: 2169–2173.CrossRefGoogle Scholar
  27. Fung, Y.C., Fronek, K., and Patitucci, P. (1979). Pseudoelasticity of arteries and the choice of its mathematical expression, Am. J. Physiol. 237, H620–H631.PubMedGoogle Scholar
  28. Fung, Y.C, Liu, S.Q., and Zhou, J. (1993). Remodeling of the constitutive equation while a blood vessel remodels itself under stress, J. Biomech. Eng. 115: 453–459.PubMedCrossRefGoogle Scholar
  29. Gorlin, R., and Gorlin, S.G. (1951). Hydraulic formula for calculation of the area of the stenotic mitral valve, other cardiac valves, and central circulatory shunts. Am. Heart J. 41: 1–29.PubMedCrossRefGoogle Scholar
  30. Green, A.E., and Adkins, J.E. (1960). Large Elastic Deformations and Non-linear Continuum Mechanics. Oxford Univ. Press, London.Google Scholar
  31. Guccione, J.M., and McCulloch, A.D. (1991). Finite element modeling of ventricular mechanics. In Theory of Heart, pp. 124-144, see Glass et al. (1991).Google Scholar
  32. Guccione, J.M., and McCulloch, A.D. (1993). Mechanics of active contraction in cardiac muscle: Part 1—constitutive relations for fiber stress that describe deactivation. J. Biomech Eng. 115: 72–81.PubMedCrossRefGoogle Scholar
  33. Guccione, J.M., Costa, K.D., and McCulloch, A.D. (1995). Finite element stress analysis of left ventricular mechanics in the beating heart. J. Biomech. 28: 1167–1177.PubMedCrossRefGoogle Scholar
  34. Guccione, J.M., McCulloch, A.D., and Waldman, L.K. (1991). Passive material properties of intact ventricular myocardium determined for a cylindrical model. J. Biomech Eng. 113: 42–55.PubMedCrossRefGoogle Scholar
  35. Hales, S. (1733). Statical Essays: II. Haemostaticks. Innays and Manby, London. Reprinted by Hafner, New York.Google Scholar
  36. Hashima, A.R., Young, A.A., McCulloch, A.D., and Waldman, L.K. (1993). Nonhomogeneous analysis of epicardial strain distributions during acute myocardial ischemia in the dog. J. Biomech. 26: 19–35.PubMedCrossRefGoogle Scholar
  37. Henderson, Y, and Johnson, F.E. (1912). Two modes of closure of the heart valves. Heart 4: 69–82.Google Scholar
  38. Hill, A.V. (1939). The heat of shortening and the dynamic constants of muscle. Proc. R. Soc. London (Biol.) B 126: 136–195.CrossRefGoogle Scholar
  39. Holmes, J.W., Yamashita, H., Waldman, L.K., and Covell, J.W. (1994). Scar remodeling and transmural deformation after infarction in the pig. Circulation 90: 411–420.PubMedCrossRefGoogle Scholar
  40. Horowitz, A. (1991). Structural considerations in formulating material laws for the myocardium. In Theory of Heart, pp. 31-58, see Glass et al. (1991).Google Scholar
  41. Hort, W. (1960). Makroskopische und mikrometrische Untersuchungen am Myokard verschieden stark gefullter linker kammern. Virchows Arch. Path. Anat. 333: 523–564.Google Scholar
  42. Humphrey, J.D., and Yin, F.C.P. (1989a). Biomechanical experiments on excised myocardium: theoretical considerations. Am. J. Physiol. 22: 377–383.Google Scholar
  43. Humphrey, J.D., and Yin, F.C.P. (1989b). Constitutive relations and finite deformations of passive cardiac tissue II: stress analysis in the left ventricle. Circ. Res. 65: 805–817.PubMedCrossRefGoogle Scholar
  44. Humphrey, J.D., Strumpf, R.K., and Yin, F.C.P. (1990). Biaxial mechanical behavior of excised ventricular epicardium. Am. J. Physiol. 259: H101–H108.PubMedGoogle Scholar
  45. Humphrey, J.D., Strumpf, R.K., Halperine, H., and Yin, E (1991). Toward a stress analysis in the heart. In Theory of Heart, pp. 59-75, see Glass et al. (1991).Google Scholar
  46. Hunter, W.C., Janicki, J.S., Weber, K.T., and Noordergraaf, A. (1983). Systolic mechanical properties of the left ventricle: effects of volume and contractile state. Circ. Res. 52: 319–327.PubMedCrossRefGoogle Scholar
  47. Huntsman, L.L., Rondinone, J.F., and Martyn, D.A. (1983). Force-length relations in cardiac muscle segments. Am. J. Physiol. 244: H701–H707.PubMedGoogle Scholar
  48. Janz, R.F., and Grimm, A.F. (1973). Deformation of the diastolic left ventricle. I. Nonlinear elastic effects. Biophys. J. 13: 689–704.PubMedCrossRefGoogle Scholar
  49. Janz, R.F., and Waldron, R.J. (1976). Some implications of a constant fiber stress hypothesis in the diastolic left ventricle. Bull. Math. Biol 38: 401–413.PubMedGoogle Scholar
  50. Janz, R.F., Grimm, A.F, Kubert, B.R., and Moriarty, T.F. (1974). Deformation of the diastolic left ventricle. II. Nonlinear geometric effects. J. Biomech. 7: 509–516.PubMedCrossRefGoogle Scholar
  51. Jones, R.T. (1969). Blood flow. In Annual Review of Fluid Mechanics. (Sears, W.R., and van Dyke, M., eds.), Annual Reviews, Palo Alto, CA.Google Scholar
  52. Jones, R.T. (1972). Fluid dynamics of heart assist devices. In Biomechanics: Its Foundations and Objectives. (Fung, Y.C., Perrone, N, and Anliker, M, eds.), Prentice-Hall, Englewood Cliffs, NJ, Chapter 1, pp. 549–565.Google Scholar
  53. Krueger, J.W., Tsujioka, K., Okada, T., Peskin, C.S., and Lacker, H.M. (1988). A “give” in tension and sarcomere dynamics in cardiac muscle relaxation. Adv. Exp. Med. Biol. 226: 567–580.PubMedGoogle Scholar
  54. Lacker, H.M., and Peskin, C.S. (1986). A mathematical method for unique determination of crossbridge properties from steady-state mechanical and energetic experiments on macroscopic muscle. In Some Mathematical Questions in Biology—Muscle Physiology. (Miura, R.M., ed.), American Mathematics Society, Providence, RI, pp. 121–153.Google Scholar
  55. Lamé, E. (1852). Leçons sur la Théorie de l’Elasticité. Paris.Google Scholar
  56. Lanir, Y. (1983). Constitutive equation for fibrous connective tissue. J. Biomech. 16: 1–12.PubMedCrossRefGoogle Scholar
  57. Lee, C.S.F., and Talbot, L. (1979). A fluid mechanical study on the closure of heart valves. J. Fluid Mech. 91: 41–63.CrossRefGoogle Scholar
  58. LeGrice, I.J., Smail, B.H., Chai, L.Z., Edgar, S.G., Gavin, J. B., and Hunter, P.J. (1995). Laminar structure of the heart: ventricular myocyte arrangement and connective tissue architecture in the dog. Am. J. Physiol. 269: H571–H582.PubMedGoogle Scholar
  59. MacKenna, D.A., Omens, J.H., McCulloch, A.D., and Covell, J.W. (1994). Contribution of collagen matrix to passive left ventricular mechanics in isolated rat hearts. Am. J. Physiol. 266: H1007–H1018.PubMedGoogle Scholar
  60. McCulloch, A.D. (1995). Cardiac mechanics. In Biomedical Engineering Handbook. (Bronzino, J.D., ed.), Chapter 31, pp. 418–439. CRC Press, Inc. Boca Raton, FL.Google Scholar
  61. McCulloch, A.D., and Omens, J.H. (1991). Factors affecting the regional mechanics of the diastolic heart. In Theory of Heart, pp. 87-119, see Glass et al. (1991).Google Scholar
  62. McCulloch, A.D., and Omens, J.H. (1991). Non-homogeneous analysis of three-dimensional transmural finite deformation in canine ventricular myocardium. J. Biomech. 24: 539–548.PubMedCrossRefGoogle Scholar
  63. McCulloch, A.D., Smail, B.H., and Hunter, P.J. (1987). Left ventricular epicardial deformation in isolated arrested dog heart. Am. J. Physiol. 252: H233–H241.PubMedGoogle Scholar
  64. McDonald, D.A. (1974). Blood Flow in Arteries. Williams & Wilkins, Baltimore, MD.Google Scholar
  65. Meier, G.D., Bove, A.A., Santamore, W.P., and Lynch, P.R. (1980). Contractile function in canine right ventricle. Am. J. Physiol. 239: H794–H804.PubMedGoogle Scholar
  66. Mirsky, I. (1973). Ventricular and arterial wall stresses based on large deformation analysis. Biophys. J. 13: 1141–1159.PubMedCrossRefGoogle Scholar
  67. Mirsky, I. (1979). Elastic properties of the myocardium: A quantitative approach with physiological and clinical applications. In Handbook of Physiology, Sec. 2, Vol. 1. The Heart. (Berne, R.M., and Sperelakis, N., eds.), American Physiological Society, Bethesda, MD., pp. 497–531.Google Scholar
  68. Netter, F. (1969). The Ciba Collection of Medical Illustrations, Vol. 5, Heart, CIBA Publications Dept., Summit, NJ.Google Scholar
  69. Omens, J.H., and Covell, J.W. (1991). Transmural distribution of myocardial tissue growth induced by volume-overload hypertrophy in the dog. Circulation 84: 1235–1245.PubMedCrossRefGoogle Scholar
  70. Omens, J.H., and Fung, Y.C. (1989). Residual strain in the rat left ventricle. Circ. Res. 66: 37–45.CrossRefGoogle Scholar
  71. Omens, J.H., Mac Kenna, D.A., and McCulloch, A.D. (1993). Measurement of strain and analysis of stress in resting rat left ventricular myocardium. J. Biomech. 26: 665–676.PubMedCrossRefGoogle Scholar
  72. Omens, J.H., May, K.D., and McCulloch, A.D. (1991). Transmural distribution of three-dimensional strain in the isolated arrested canine left ventricle. Am. J. Physiol. 261: H918–H928.PubMedGoogle Scholar
  73. Omens, J.H., Rockman, H.A., and Covell, J.W. (1994). Passive ventricular mechanics in tight-skin mice. Am. J. Physiol. 266: H1169–H1176.PubMedGoogle Scholar
  74. Ono, S., Waldman, L.K., Yamashita, H., Covell, J.W, and Ross, Jr., J. (1995). Effect of coronary artery reperfusion on transmural mycoardial remodeling in dogs. Circulation 91: 1143–1153.PubMedCrossRefGoogle Scholar
  75. Parmley, W.W., and Sonnenblick, E.H. (1967). Series elasticity of heart muscle: Its relation to contractile element velocity and proposed muscle models. Circ. Res. 20: 112–123.PubMedCrossRefGoogle Scholar
  76. Parmley, W, and Talbot, L. (1979). Heart as a pump. In Handbook of Physiology. Sec. 2. The Cardiovascular System, Vol. 1, The Heart. (Berne, R.M., and Sperelakis, N., eds.), American Physiological Society, Bethesda, MD, pp. 429–460.Google Scholar
  77. Parmley, W.W., Brutsaert, D.L., and Sonnenblick, E.H. (1969). The effects of altered loading on contractile events in isolated cat papillary muscle. Circ. Res. 24: 521–532.PubMedCrossRefGoogle Scholar
  78. Panerai, R.B. (1980). A model of cardiac muscle mechanics and energetics. J. Biomech. 13: 929–940.PubMedCrossRefGoogle Scholar
  79. Peskin, C.S. (1977). Numerical analysis of blood flow in the heart. J. Comput. Phys. 25: 220–252.CrossRefGoogle Scholar
  80. Peskin, C.S., and Wolfe, A.W. (1978). The aortic sinus vortex. Fed. Proc. 37: 2784–2792.PubMedGoogle Scholar
  81. Pinto, J.G., and Fung, Y.C. (1973a). Mechanical properties of the heart muscle in the passive state. J. Biomech. 6: 597–616.PubMedCrossRefGoogle Scholar
  82. Pinto, J.G., and Fung, Y.C. (1973b). Mechanical properties of stimulated papillary muscle in quick-release experiments. J. Biomech. 6: 617–630.PubMedCrossRefGoogle Scholar
  83. Prinzen, F.W, Arts, T., Van der Vusse, G.J., Comans, W.A., and Reneman, R.S. (1986). Gradients in fiber shortening and metabolism across the left ventricler wall. Am. J. Physiol. 250: H255–H264.PubMedGoogle Scholar
  84. Rodriquez, E.K., Hoger, A., and McCulloch, A.D. (1994). Stress-dependent finite growth in soft elastic tissues. J. Biomech. 27: 455–467.CrossRefGoogle Scholar
  85. Rodriquez, E.K., Omens, J.H., Waldman, L.K., and McCulloch, A.D. (1993). Effect of residual stress on transmural sarcome length distributions in rat left ventricle. Am. J. Physiol. 264: H1048–H1056.Google Scholar
  86. Rogers, J.M., and McCulloch, A.D. (1994). A collocation-Galerkin finite element model of cardiac action potential propagation. IEEE Trans. Biomed. Eng. 41: 743–757.PubMedCrossRefGoogle Scholar
  87. Scher, A.M. and Spach, M.S. (1979). Cardiac depolarization and repolarization and the electrocardiogram. In Handbook of Physiology, Sec. 2, Vol. 1, The Heart. (Berne, R.M., and Sperelakis, N., eds.), American Physiological Society, Bethesda, MD, pp. 357–392.Google Scholar
  88. Smail, B.H., and Hunter, P.J. (1991). Structure and function of the diastolic heart. In Theory of Heart, pp. 1-30, see Glass et al. (1991).Google Scholar
  89. Sonnenblick, E.H. (1964). Series elastic and contractile elements in heart muscle: Changes in muscle length. Am. J. Physiol. 207: 1330–1338.PubMedGoogle Scholar
  90. Sonnenblick, E.H., Ross, Jr., Covell, J.W., Spontnitz, H.M., and Spiro, D. (1967). Ultrastructure of the heart in systole and diastole: Changes in sarcomere length. Circ. Res. 21: 423–431.PubMedCrossRefGoogle Scholar
  91. Streeter, Jr., D. (1979). Gross morphology and fiber geometry of the heart. In Handbook of Physiology, Sec. 2, Cardiovascular System. Vol. 1. The Heart. (Berne, R.M., and Sperelakis, N., eds.), American Physiology Society, Bethesda, MD, pp. 61–112.Google Scholar
  92. Streeter, Jr., D., and Hanna, W.T. (1973). Engineering mechanics for successive states in canine left ventricular myocardium. I. Cavity and wall geometry. II. Fiber angle and sarcomere length. Circ. Res. 33: 639–655(I), 656-664(II).PubMedCrossRefGoogle Scholar
  93. Streeter, D., Jr., Spotnitz, H.M., Patel, D.J., Ross, Jr., J., and Sonnenblick, E.H. (1969). Fiber orientation in the canine left ventricle during diastole and systole. Circ. Res. 24: 339–347.PubMedCrossRefGoogle Scholar
  94. Suga, H., Sagawa, K., and Shoukas, A.A. (1973). Load independence of the instantaneous pressure-volume ratio of the canine left ventricle and effects of epinephrine and heart rate on the ratio. Circ. Res. 32: 314–322.PubMedCrossRefGoogle Scholar
  95. Takamizawa, K., and Hayshi, K. (1987). Strain energy density function and uniform strain hypothesis for arterial mechanics. J. Biomech. 20: 7–17.PubMedCrossRefGoogle Scholar
  96. Takamizawa, K., and Matsuda, T. (1990). Kinematics for bodies undergoing residual stress and its applications to the left ventricle. J. Appl. Mech. 57: 321–329.CrossRefGoogle Scholar
  97. ter Keurs, H.E.D.J. (1983). Calcium in contractility. In Cardiac Metabolism, (Drake-Holland, A.J., and Noble, M.I.M., eds.), Wiley, New York, pp. 73–99.Google Scholar
  98. ter Keurs, H.E.D.J., Rijnsburger, W.H., Van Heuningen, R., and Nagelsmit, M.J. (1980). Tension development and sarcomere length in rat cardiac trabeculate: evidence of length-dependent activation. Circ. Res. 46: 703–713.PubMedCrossRefGoogle Scholar
  99. Tong, P., and Fung, Y.C. (1976). The Stress-Strain Relationship for the Skin. J. Biomech. 9: 649–657.PubMedCrossRefGoogle Scholar
  100. Tözeren, A. (1985). Continuum rheology of muscle contraction and its application to cardiac contractillity. Biophys. J., 47: 303–309.PubMedCrossRefGoogle Scholar
  101. Vaishnav, R.N., and Vossoughi, J. (1983). Estimation of the residual strains in aortic segments. In Biomedical Engineering, II, Recent Developments. (Hall, C.W., ed.), Pergamon Press, New York, pp. 330–333.Google Scholar
  102. Van Leuven, S.L., Waldman, L.K., McCulloch, A.D., and Covell, J.W. (1994). Gradients of epicardial strain across the perfusion boundary during acute myocardial ischemia. Am. J. Physiol. 267: H2348–H2362.PubMedGoogle Scholar
  103. Villarreal, F.J., Waldman, L.K., and Lew, W.Y.W. (1988). A technique for measuring regional two-dimensional finite strains in canine left ventricle. Circ. Res. 62: 711–721.PubMedCrossRefGoogle Scholar
  104. Villarreal, F.J., Lew, W.Y.W., Waldman, L.K., and Covell, J.W. (1991). Transmural myocardial deformation in the ischemic canine left ventricle. Circ. Res. 68: 368–381.PubMedCrossRefGoogle Scholar
  105. Waldman, L.K. (1983). On the Mechanical Coupling of the Heart to the Circulation. Ph.D. thesis. University of California, San Diego, CA.Google Scholar
  106. Waldman, L.K. (1991). Multidimensional measurements of regional strains in the intact heart. In Theory of Heart, pp. 145-174, see Glass et al. (1991).Google Scholar
  107. Waldman, L.K., and Covell, J.W (1987). Effects of ventricular pacing on finite deformation in canine left ventricle. Am. J. Physiol. 252: H1023–H1030.PubMedGoogle Scholar
  108. Waldman, L.K., and McCulloch, A.D. (1993). Nonhomogeneous ventricular wall strain: Analysis of errors and accuracy. J. Biomech. Eng. 115: 497–502.PubMedCrossRefGoogle Scholar
  109. Waldman, L.K., Fung, Y.C., Covell, J.W. (1985). Transmural myocardial deformation in the canine left ventricle: normal in vivo three-dimensional finite strains. Circ. Res. 57: 152–163.PubMedCrossRefGoogle Scholar
  110. Waldman, L.K., Nosan, D., Villarreal, F.J., and Covell, J.W. (1988). Relation between transmural deformation and local myofiber direction in canine left ventricle. Circ. Res. 63: 550–562.PubMedCrossRefGoogle Scholar
  111. Wetterer, E., and Kenner, T. (1968). Die Dynamik des Arterien-Pulses. Springer-Verlag, Berlin.Google Scholar
  112. Whittaker, P., Kloner, R.A., Boughner, D.R., and Pickering, J.G. (1994). Quantitative assessment of myocardial collagen with picrosirius red staining and circularly polarized light. Basic Res. in Cardiol 89: 397–410.CrossRefGoogle Scholar
  113. Wong, A.Y.K., and Rautaharju, P.M. (1968). Stress distribution within the left ventricular wall approximated as a thick ellipsoidal shell. Am. Heart J. 75: 649–662.PubMedCrossRefGoogle Scholar
  114. Xie, J.P., Zhou, J., and Fung, Y.C. (1995). Bending of blood vessel wall: Stress-strain laws of the intima-media and adventitial layers. J. Biomech. Eng. 117: 136–145.PubMedCrossRefGoogle Scholar
  115. Yoran C, Covell, J.W, and Ross, Jr., J. (1973). Structural basis for the ascending limb of left ventricular function. Circ. Res. 32: 297–303.PubMedCrossRefGoogle Scholar
  116. Young, A. (1991). Epicardial deformation from coronary cinéangiogranis. In Theory of Heart, pp. 175-207, see Glass et al. (1991).Google Scholar
  117. Yu, Q., Zhou, J.B., and Fung, Y.C. (1993). Neutral axis location in Bending and Young’s modulus of different layers of arterial wall. Am. J. Physiol. 265: H52–H60.PubMedGoogle Scholar
  118. Zhou, J. (1992). Theoretical Analysis of Bending Experiments on Aorta and Determination of Constitutive Equations of materials in Different Layers of Arterial Walls. Doctoral Dissertation, University of California, San Diego, CA.Google Scholar
  119. Zienkiewicz, O.C., and Morgan, K. (1982). Finite Elements and Approximation. Wiley, New York.Google Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • Y. C. Fung
    • 1
  1. 1.Department of BioengineeringUniversity of California, San DiegoLa JollaUSA

Personalised recommendations