Advertisement

A Steps Model to Analyze Partial Credit

  • N. D. Verhelst
  • C. A. W. Glas
  • H. H. de Vries
Chapter

Abstract

The partial credit model (PCM) by Masters (1982, this volume) is a unidimensional item response model for analyzing responses scored in two or more ordered categories. The model has some very desirable properties: it is an exponential family, so minimal sufficient statistics for both the item and person parameters exist, and it allows conditional-maximum likelihood (CML) estimation. However, it will be shown that the relation between the response categories and the item parameters is rather complicated. As a consequence, the PCM may not always be the most appropriate model for analyzing data.

Keywords

Item Parameter Step Model Partial Credit Discrimination Parameter Item Response Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abramowitz, M. and Stegun, I.A. (1974). Handbook of Mathematical Functions. New York: Dover Publications.Google Scholar
  2. Aitchison, J. and Silvey, S.D. (1958). Maximum likelihood estimation of parameters subject to restraints. Annals of Mathematical Statistics 29, 813–828.MathSciNetzbMATHCrossRefGoogle Scholar
  3. Birnbaum, A. (1968). Some latent trait models and their use in inferring an examinee’s ability. In F.M. Lord and M.R. Novick, Statistical Theories of Mental Test Scores. Reading, MA: Addison-Wesley.Google Scholar
  4. Bock, R.D. and Aitkin, M. (1981). Marginal maximum likelihood estimation of item parameters: An application of an EM-algorithm. Psychometrika 46, 443–459.MathSciNetCrossRefGoogle Scholar
  5. Cressie, N. and Holland, P.W. (1983). Characterizing the manifest probabilities of latent trait models. Psychometrika 48, 129–141.MathSciNetzbMATHCrossRefGoogle Scholar
  6. De Leeuw, J. and Verhelst, N.D. (1986). Maximum likelihood estimation in generalized Rasch models. Journal of Educational Statistics 11, 183–196.CrossRefGoogle Scholar
  7. De Vries, H.H. (1988). Het Partial Credit Model en het Sequentiële Rasch Model met Stochastisch Design [The partial credit model and the sequential Rasch model with stochastic design]. Amsterdam, the Netherlands: Universiteit van AmsterdamGoogle Scholar
  8. Fischer, G.H. (1974). Einfiihrung in die Theorie psychologischer Tests [Introduction to the Theory of Psychological Tests]. Bern: Huber.Google Scholar
  9. Fischer, G.H. (1981). On the existence and uniqueness of maximum likelihood estimates in the Rasch model. Psychometrika 46, 59–77.MathSciNetzbMATHCrossRefGoogle Scholar
  10. Follmann, D. (1988). Consistent estimation in the Rasch model based on nonparametric margins. Psychometrika 53, 553–562.MathSciNetzbMATHCrossRefGoogle Scholar
  11. Glas, C.A.W. (1988). The Rasch model and multi-stage testing. Journal of Educational Statistics 13, 45–52.CrossRefGoogle Scholar
  12. Glas, C.A.W. (1989). Contributions to Estimating and Testing Rasch Models. Doctoral dissertation, University of Twente, Enschede, The Netherlands.Google Scholar
  13. Glas, C.A.W. and Verhelst, N.D. (1989). Extensions of the partial credit model. Psychometrika 54, 635–659.zbMATHCrossRefGoogle Scholar
  14. Masters, G.N. (1982). A Rasch model for partial credit scoring. Psychometrika 47, 149–174.zbMATHCrossRefGoogle Scholar
  15. Mislevy, R.J. (1984). Estimating latent distributions. Psychometrika 49, 359–381.zbMATHCrossRefGoogle Scholar
  16. Molenaar, I.W. (1983). Item Steps (Heymans Bulletins HB-83–630-EX). Groningen, The Netherlands: Psychologisch Instituut RU Groningen.Google Scholar
  17. Rao, C.R. (1948). Large sample tests of statistical hypothesis concerning several parameters with applications to problems of estimation. Proceedings of the Cambridge Philosophical Society 44, 50–57.zbMATHCrossRefGoogle Scholar
  18. Rasch, G. (1960). Probabilistic Models for Some Intelligence and Attain- ment Tests. Copenhagen: Danish Institute for Educational Research.Google Scholar
  19. Verhelst, N.D. and Eggen, T.J.H.M. (1989). Psychometrische en Statistische Aspecten yen Peilingsonderzoek [Psychometric and Statistical Aspects of Assessment Research] (PPON-Rapport, 4 ). Arnhem: Cito.Google Scholar
  20. Verhelst, N.D. and Glas, C.A.W. (1993). A dynamic generalization of the Rasch model. Psychometrika 58, 395–415.zbMATHCrossRefGoogle Scholar
  21. Verhelst, N.D., Glas, C.A.W., and Verstralen, H.H.F.M. (1995). OPLM: One Parameter Logistic Model: Computer Program and Manual. Arnhem: Cito.Google Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • N. D. Verhelst
  • C. A. W. Glas
  • H. H. de Vries

There are no affiliations available

Personalised recommendations