Logistic Mixture Models

  • Jürgen Rost


Discrete mixture distribution models (MDM) assume that observed data do not stem from a homogeneous population of individuals but are a mixture of data from two or more latent populations (Everitt and Hand, 1981; Titterington et al., 1985). Applied to item response data this means that a particular IRT model does not hold for the entire sample but that different sets of model parameters (item parameters, ability parameters, etc.) are valid for different subpopulations.


Mixture Model Latent Class Item Parameter Latent Class Model Ability Estimate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Andrich, D. (1978). Application of a psychometric rating model to ordered categories which are scored with successive integers. Applied Psychological Measurement 2 581–594.CrossRefGoogle Scholar
  2. Andrich, D. (1982). An extension of the Rasch model for ratings providing both location and dispersion parameters. Psychometrika 47, 104–113.CrossRefGoogle Scholar
  3. Andersen, E.B. (1973). Conditional inference for multiple-choice questionnaires. British Journal of Mathematical and Statistical Psychology 26, 31–44.MathSciNetCrossRefGoogle Scholar
  4. Borkenau, P. and Ostendorf, F. (1991). Ein Fragebogen zur Erfassung fünf robuster Persönlichkeitsfaktoren. Diagnostica 37, 29–41.Google Scholar
  5. Bozdogan, H. (1987). Model selection for Akaike’s information criterion (AIC). Psychometrika 53, 345–370.MathSciNetCrossRefGoogle Scholar
  6. Everitt, B.S. and Hand, D.J. (1981). Finite Mixture Distributions. London: Chapman and Hall.zbMATHCrossRefGoogle Scholar
  7. Gitomer, D.H. and Yamamoto, K. (1991). Performance modeling that integrates latent trait and class theory. Journal of Educational Measurement 28, 173–189.CrossRefGoogle Scholar
  8. Kelderman, H. and Macready, G.B. (1990). The use of loglinear models for assessing differential item functioning across manifest and latent examinee groups. Journal of Educational Measurement 27, 307–327.CrossRefGoogle Scholar
  9. Köller, O., Rost, J., and Köller, M. (1994). Individuelle Unterschiede beim Lösen von Raumvorstellungsaufgaben aus dem IST-bzw. IST-70-Untertest “Wüfelaufgaben.” Zeitschrift für Psychologie 202, 64–85.Google Scholar
  10. Masters, G.N. (1982). A Rasch model for partial credit scoring. Psychometrika 47, 149–174.zbMATHCrossRefGoogle Scholar
  11. Mislevy, R.J. and Verhelst, N. (1990). Modeling item responses when different subjects employ different solution strategies. Psychometrika 55, 195–215.CrossRefGoogle Scholar
  12. Mislevy, R.J., Wingersky, M.S., Irvine, S.H., and Dann, P.L. (1991). Resolving mixtures of strategies in spatial visualisation tasks. British Journal of Mathematical and Statistical Psychology 44, 265–288.CrossRefGoogle Scholar
  13. Read, T.R.C. and Cressie, N.A.C. (1988). Goodness-of-Fit Statistics for Discrete Multivariate Data. New York: Springer.zbMATHCrossRefGoogle Scholar
  14. Rost, J. (1988). Measuring attitudes with a threshold model drawing on a traditional scaling concept. Applied Psychological Measurement 12, 397–409.CrossRefGoogle Scholar
  15. Rost, J. (1990). Rasch models in latent classes: An integration of two approaches to item analysis. Applied Psychological Measurement 14, 27 1282.Google Scholar
  16. Rost, J. (1991). A logistic mixture distribution model for polytomous item responses. British Journal of Mathematical and Statistical Psychology 44, 75–92.CrossRefGoogle Scholar
  17. Rost, J. and von Davier, M. (1993). Measuring different traits in different populations with the same items. In R. Steyer, K.F. Wender, and K.F. Widaman (eds.), Psychometric Methodology, Proceedings of the 7th European Meeting of the Psychometric Society (pp. 446–450 ). Stuttgart/ New York: Gustav Fischer Verlag.Google Scholar
  18. Rost, J. and von Davier, M. (1994). A conditional item fix index for Rasch models. Applied Psychological Measurement 18, 171–182.CrossRefGoogle Scholar
  19. Rost, J. and von Davier, M. (1995). Mixture distribution Rasch models. In G. Fischer and I. Molenaar (eds.), Rasch Models: Foundations, Recent Developments, and Applications (pp. 257–268). Springer.Google Scholar
  20. Rost, J. and Georg, W. (1991). Alternative Skalierungsmöglichkeiten zur klassischen Testtheorie am Beispiel der Skala “Jugendzentrismus.” ZAInformation 28, 52–75.Google Scholar
  21. Titterington, D.M., Smith, A.F.M., and Makov, U.E. (1985). Statistical Analysis of Finite Mixture Distributions. Chichester: Wiley.zbMATHGoogle Scholar
  22. von Davier, M.V. and Rost, J. (1995). WINMIRA: A program system for analyses with the Rasch model, with the latent class analysis and with the mixed Rasch model. Kiel: Institute for Science Eduation ( IPN), distributed by lec Progamma, Groningen.Google Scholar
  23. von Davier, M.V. and Rost J. (1995). Polytomous mixed Rasch models. In G. Fischer and I. Molenaar (eds.), Rasch Models: Foundations, Recent Developments, and Applications (pp. 371–379). Springer.Google Scholar
  24. von Davier, M.V. and Rost, J. (1996). Self-monitoring—A class variable? In J. Rost and R. Langeheine (eds.), Applications of Latent Trait and Latent Class Models in the Social Sciences. Münster: Waxmann.Google Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • Jürgen Rost

There are no affiliations available

Personalised recommendations