Multicomponent Response Models

  • Susan E. Embretson


Cognitive theory has made significant impact on theories of aptitude and intelligence. Cognitive tasks (including test items) are viewed as requiring multiple processing stages, strategies, and knowledge stores. Both tasks and persons vary on the processing components. That is, the primary sources of processing difficulty may vary between tasks, even when the tasks are the same item type.


Item Response Theory Work Memory Capacity Item Difficulty Fluid Intelligence Verbal Analogy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Andersen, E.B. (1980). Discrete Statistical Models with Social Science Applications. Amsterdam: North Holland.zbMATHGoogle Scholar
  2. Bentler, P.M. and Bonnett, D.G. (1980). Significance tests and goodness of fit in the analysis of covariance structures. Psychological Bulletin 88, 588–606.CrossRefGoogle Scholar
  3. Bertrand, R., Dupuis, F.A., and Garneau, M. (1993). Effets des caracteristiques des items sur le role des composantes impliquees dans la performance enresolution de problemes mathematiques ecrits: une etude de validite de construit. Rapport Final Presente au Fonds pour la Formation de Chercheurs et l’Aide a la Recherche. Universite Laval, Santa-Foy, Quebec, Canada: Mars.Google Scholar
  4. Bock, R.D. (1975). Multivariate Statistical Methods in Behavioral Research. New York, NY: McGraw-Hill.zbMATHGoogle Scholar
  5. Brown, A.L. (1978). Knowing when, where, and how to remember. In R. Glaser (Ed), Advances in Instructional Psychology (Vol. 1 ). Hillsdale, NJ: Erlbaum.Google Scholar
  6. Carpenter, P.A., Just, M.A., and Shell, P. (1990). What one intelligence test measures: A theoretical account of processing in the Raven’s Progressive Matrices Test. Psychological Review, 97.Google Scholar
  7. Dempster, A.P., Laird, N.M., and Rubin, D.B. (1977). Maximum likelihood estimating with incomplete data via the EM algorithm. Journal of the Royal Statistical Society, Series B, 39, 1–38.MathSciNetzbMATHGoogle Scholar
  8. Embretson, S.E. (1983a). An incremental fix index for the linear logistic latent trait model. Paper presented at the Annual Meeting of the Psychometric Society, Los Angeles, CA.Google Scholar
  9. Embretson, S.E. (1983b). Construct validity: Construct representation versus nomothetic span. Psychological Bulletin 93, 179–197.CrossRefGoogle Scholar
  10. Embretson, S.E. (1984). A general multicomponent latent trait model for response processes. Psychometrika 49, 175–186.CrossRefGoogle Scholar
  11. Embretson, S.E. (1985). Multicomponent latent trait models for test design. In S. Embretson (Ed), Test Design: Developments in Psychology and Psychometrics (pp. 195–218 ). New York, NY: Academic Press.Google Scholar
  12. Embretson, S.E. (1994). Applications to cognitive design systems to test development. In C. Reynolds (Ed), Advances in Cognitive Assessment: An Interdisciplinary Perspective (pp. 107–135). Plenum.Google Scholar
  13. Embretson, S.E. (1995a). A measurement model for linking individual learning to processes and knowledge: Application and mathematical reasoning. Journal of Educational Measurement 32, 277–294.CrossRefGoogle Scholar
  14. Embretson, S.E. (1995b). Working memory capacity versus general control processes in abstract reasoning. Intelligence 20, 169–189.CrossRefGoogle Scholar
  15. Embretson, S.E. and Schneider, L.M. (1989). Cognitive models of analogical reasoning for psychometric tasks. Learning and Individual Differences 1, 155–178.CrossRefGoogle Scholar
  16. Embretson, S.E., Schneider, L.M., and Roth, D.L. (1986). Multiple processing strategies and the construct validity of verbal reasoning tests. Journal of Educational Measurement 23, 13–32.CrossRefGoogle Scholar
  17. Fischer, G.H. (1983). Logistic latent trait models with linear constraints. Psychometrika 48, 3–26.MathSciNetzbMATHCrossRefGoogle Scholar
  18. Janssen, R., Hoskens, M., and DeBoeck, P. (1991). A test of Embretson’s multicomponent model on vocabulary items. In R. Steyer and K. Widaman (Eds), Psychometric Methodology (pp. 187–190 ). Stuttgart, Germany: Springer-Verlag.Google Scholar
  19. Kyllonen, P. and Christal, R. (1990). Reasoning ability is (little more than) working memory capacity? Intelligence 14, 389–434.CrossRefGoogle Scholar
  20. Maris, E.M. (1992). Psychometric models for psychological processes and structures. Invited paper presented at the European Meeting of the Psychometric Society. Barcelona, Spain: Pompeau Fabre University.Google Scholar
  21. Mayer, R., Larkin, J., and Kadane, P. (1984). A cognitive analysis of mathematical problem solving. In R. Sternberg (Ed), Advances in the Psychology of Human Intelligence, Vol. 2 (pp. 231–273 ). Hillsdale, NJ: Erlbaum Publishers.Google Scholar
  22. McCollam, K. and Embretson, S.E. (1993). Components or strategies? The basis of individual differences in spatial processing. Unpublished paper. Lawrence, Kansas: University of Kansas.Google Scholar
  23. Mislevy, R.J. and Bock, R.D. (1990). BILOG 3: Item Analysis and Test Scoring with Binary Logistic Models. In: Scientific Software.Google Scholar
  24. Mulholland, T., Pellegrino, J.W., and Glaser, R. (1980). Components of geometric analogy solution. Cognitive Psychology 12, 252–284.CrossRefGoogle Scholar
  25. Pellegrino, J.W., Mumaw, R., and Shute, V. (1985). Analyses of spatial aptitude and expertise. In S. Embretson (Ed), Test Design: Developments in Psychology and Psychometrics (pp. 45–76 ). New York, NY: Academic Press.Google Scholar
  26. Spearman, C. (1927). The Abilities of Man. New York: Macmillan.zbMATHGoogle Scholar
  27. Sternberg, R.J. (1977). Intelligence, Information Processing and Analogical Reasoning: The Componential Analysis of Human Abilities. Hillsdale, NJ: Erlbaum.Google Scholar
  28. Whitely, S.E. (1980). Multicomponent latent trait models for ability tests. Psychometrika 45, 479–494.zbMATHCrossRefGoogle Scholar
  29. Whitely, S.E. (1981). Measuring aptitude processes with multicomponent latent trait models. Journal of Educational Measurement 18, 67–84.CrossRefGoogle Scholar
  30. Whitely, S.E. and Schneider, L.M. (1980). Process Outcome Models for Verbal Aptitude. (Technical Report NIE-80–1). Lawrence, Kansas: University of Kansas.Google Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • Susan E. Embretson

There are no affiliations available

Personalised recommendations