Response Models with Manifest Predictors

  • Aeilko H. Zwinderman


Every test or questionnaire, constructed with either classical test theory or modern IRT, is ultimately meant as a tool to do further research. Most often the test is used to evaluate treatments or therapies or to see whether the abilities underlying the test are associated to other constructs, and sometimes test scores are used to make individual predictions or decisions. Whatever the ultimate goal, the immediate interest is usually to estimate correlations between the abilities underlying the test and other important variables.


Item Response Item Response Theory Item Parameter Classical Test Theory Person Parameter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abramowitz, M. and Stegun, I.A. (1965). Handbook of Mathematical Functions. New York: Dover Publications.Google Scholar
  2. Albert, A. and Anderson, J.A. (1984). On the existence of maximum like- lihood estimates in logistic regression models. Biometrika 71, 1–10.MathSciNetzbMATHCrossRefGoogle Scholar
  3. Andersen, E.B. (1973). Conditional inference for multiple choice questionnaires. British Journal of Mathematical and Statistical Psychology 26, 31–44.MathSciNetCrossRefGoogle Scholar
  4. Anderson, J.A. (1984). Regression and ordered categorical variables. Journal of the Royal Statistical Society, Series B 46, 1–30.zbMATHGoogle Scholar
  5. Diggle, P. and Kenward, M.G. (1994). Informative drop-out in longitudinal data analysis. Applied Statistics 43, 49–94.zbMATHCrossRefGoogle Scholar
  6. Dixon, W.J., Brown, M.B., Engelman, L., and Jennrich, R.I. (1990). BMDP Statistical Software Manual, Vol. 2. Berkeley: University of California Press.Google Scholar
  7. Egret (1985). Egret Reference Manual. Seattle: Statistics and Epidemiology Research Corporation and Cytel Software Corporation.Google Scholar
  8. Fischer, G.H. (1981). On the existence and uniqueness of maximum likelihood estimates in the Rasch model. Psychometrika 46, 59–77.MathSciNetzbMATHCrossRefGoogle Scholar
  9. Fischer, G.H. (1983). Logistic latent trait models with linear constraints. Psychometrika 48, 3–26.MathSciNetzbMATHCrossRefGoogle Scholar
  10. Fischer, G.H. (1990, September). On the existence and uniqueness of a CML solution in the polytomous Rasch model. Paper presented at the 21st Meeting of the European Mathematical Psychology Group, Bristol.Google Scholar
  11. Fischer, G.H. and Parzer, P. (1991). An extension of the rating scale model with an application to the measurement of change. Psychometrika 56, 637–651.zbMATHCrossRefGoogle Scholar
  12. Glas, C.A.W. (1988). The derivation of some tests for the Rasch model from the multinomial distribution. Psychometrika 53, 525–546.MathSciNetzbMATHCrossRefGoogle Scholar
  13. Glas, C.A.W. (1989). Contributions to Estimating and Testing Rasch Models. Unpublished doctoral dissertation, University of Twente, Enschede.Google Scholar
  14. Glas, C.A.W. and Verhelst, N.D. (1989). Extensions of the partial credit model. Psychometrika 54, 635–659.zbMATHCrossRefGoogle Scholar
  15. Glas, C. and Ellis, J. (1993). RSP User’s Manual. Groningen, the Netherlands: I. E.C. Progamma.Google Scholar
  16. Hoijtink, H. (1993). Linear Models with a Latent Dependent Variable: Non-Parametric Error Term Density Functions. Manuscript submitted for publication.Google Scholar
  17. Isaacson, E. and Keller, H.B. (1966). Analysis of Numerical Methods. New York: Wiley.zbMATHGoogle Scholar
  18. Liang, K.-Y., Zeger, S.L., and Qaqish, B. (1992). Multivariate regression analyses for categorical data. Journal of the Royal Statistical Society, Series B 54, 3–40.MathSciNetzbMATHGoogle Scholar
  19. Little, R.J.A. and Rubin, D.B. (1987). Statistical Analysis with Missing Data. New York: Wiley.zbMATHGoogle Scholar
  20. Mislevy, R.J. (1987). Exploiting auxiliary information about examinees in the estimation of item parameters. Applied Psychological Measurement 11, 81–91.CrossRefGoogle Scholar
  21. Molenaar, I.W. and Verhelst, N.D. (1988). Logit based parameter estimation in the Rasch model. Statistica Neerlandica 42, 273–296.Google Scholar
  22. Prentice, R.L. (1988). Correlated binary regression with covariates specific to each binary observation. Biometrics 44, 1033–1048.MathSciNetzbMATHCrossRefGoogle Scholar
  23. Rao, C.R. (1973). Linear Statistical Inference and Its Applications. New York: Wiley.zbMATHCrossRefGoogle Scholar
  24. van Houwelingen, J.C., le Cessie, S., and Zwinderman, A.H. (1991, July). Modelling Dependency for binary random variables. Paper presented at the Sixth Workshop on Statistical Modelling, Utrecht, The Netherlands.Google Scholar
  25. Verhelst, N.D. and Eggen, T.J.H.M. (1989). Psychometrische en Statistische Aspecten van Peilingsonderzoek (PPON rapport 4) (in Dutch). Arnhem: Cito.Google Scholar
  26. Verhelst, N.D. and Glas, C.A.W. (1993). A dynamic generalization of the Rasch model. Psychometrika 58, 395–416.zbMATHCrossRefGoogle Scholar
  27. Zeger, S.L. and Liang, K.-Y. (1986). Longitudinal data analysis for discrete and continuous outcomes. Biometrics 42, 121–130.CrossRefGoogle Scholar
  28. Zeger, S.L., Liang, K.-Y., and Albert, P.S. (1988). Models for longitudinal data: a generalized estimation equation approach. Biometrics 44, 1049 1060.Google Scholar
  29. Zwinderman, A.H. (1991). A generalized Rasch model for manifest predictors. Psychometrika 56, 589–600.zbMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • Aeilko H. Zwinderman

There are no affiliations available

Personalised recommendations