Skip to main content

Abstract

There is now a wealth of evidence to link impacts by comets and asteroids with catastrophic disruptions of the biosphere and mass extinctions. Such evidence includes impact craters formed close to boundary events, iridium and other siderophile element/isotope anomalies, microtektites, and shocked quartz. Mass extinctions, crater excavations, and various geologic upheavals all seem to follow a common periodicity of ~30 Myr. Another cycle of ~250 Myr supports a link with the solar motion about the galaxy, this being its orbital period, whilst 26 Myr-32 Myr is its half-period for oscillations about the galactic disk. Oort cloud disturbances and therefore comet showers produced as the solar system passes through the disk seem the most likely explanation for the observed phenomena, although there is currently a problem with understanding the phase of the showers. This may be reconciled if the cyclicity is, in fact, ~15 Myr. An alternative (which does not explain the 250 Myr cycle) is the solar companion star or “Nemesis” theory, invoking Oort cloud disturbances when this hypothetical star passes perihelion every 30 Myr. The fact that the biosphere may be significantly affected by comets through means other than actual impacts (e.g., dust veiling of the atmosphere) is emphasized, such considerations leading to an understanding of the structure of boundary events through prolonged periods of influx to the Earth of meteoroids and dust. The possible contemporary modulation of the biosphere by cometary decay products is mentioned. Finally, the role of large impacts in panspermia—the spreading of life from one planet to another—is briefly discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alcock, C., Akerlof, C.W., Allsman, R.A., Axelrod, T.S., Bennett, D.P., Chan, S., Cook, K.H., Freeman, K.C., Griest, K., Marshall, S.L., Park, H-S., Perlmutter, S., Peterson, B.A., Pratt, M.R., Quinn, P.J., Rodgers, A.W., Stubbs, C.W., and Sutherland, W. (1993), Possible gravitational microlensing of a star in the Large Magellanic Cloud, Nature, 365, 621–623.

    Article  ADS  Google Scholar 

  • Alvarez, W. (1990), Interdisciplinary aspects of research on impacts and mass extinctions; A personal view, Geol. Soc. Amer., Spec. Pap., 247, 93–98.

    Google Scholar 

  • Alvarez, W. and Asaro, F. (1990), An Extraterrestrial Impact, Sci. Amer., 263, 44–52. Alvarez, W. and Muller, R.A. (1984), Evidence from crater ages for periodic impacts on the Earth, Nature, 308, 718–720.

    Article  ADS  Google Scholar 

  • Alvarez, L.W., Alvarez, W., Asaro, F., and Michel, H.V. (1980), Extraterrestrial Cause for the Cretaceous-Tertiary Extinction, Science, 208, 1095–1108.

    Article  ADS  Google Scholar 

  • Alvarez, W., Asaro, F., Michel, H.V., and Alvarez, L.W. (1982), Iridium anomaly approxi- mately synchronous with terminal Eocene extinctions, Science, 216, 886–888.

    Article  ADS  Google Scholar 

  • Alvarez, W., Hansen, T., Hut, P., Kauffman, E.G., and Shoemaker, E.M. (1989), Uniformitarianism and the response of Earth scientists to the theory of impact crises, pp. 13–24 in Clube (1989).

    Google Scholar 

  • Alvarez, W., Smit, J., Lowrie, W., Asaro, E, Margolis, S.V., Claeys, P., Kastner, M., and Hildebrand, A.R. (1992), Proximal impact deposits at the Cretaceous-Tertiary boundary in the Gulf of Mexico: A restudy of DSDP Leg 77 Sites 536 and 540, Geology, 20, 697–700.

    Article  ADS  Google Scholar 

  • Anders, E. (1989), Pre-biotic organic matter from comets and asteroids, Nature, 342, 255–257.

    Article  ADS  Google Scholar 

  • Asher, D.J. and Clube, S.V.M. (1993), An extraterrestrial influence during the current glacial-interglacial, Ql. J. Roy. Astron. Soc., 34, 481–511.

    ADS  Google Scholar 

  • Bahcall, J.N. and Bahcall, S. (1985), The Sun’s motion perpendicular to the galactic plane, Nature, 316, 706–708.

    Article  ADS  Google Scholar 

  • Bailey, M.E. (1990) Cometary masses, pp. 7–35 in Baryonic Dark Matter, eds. D. LyndenBell and G. Gilmore, Kluwer, Dordrecht, Holland.

    Google Scholar 

  • Bailey, M.E. (1991), Comet craters versus asteroid craters, Adv. Space Res., 11 (6), 43–60.

    Article  ADS  Google Scholar 

  • Bailey, M.E. (1992), Origin of short-period comets, Cel. Mech. Dyn. Astron., 54, 49–61.

    Article  ADS  Google Scholar 

  • Bailey, M.E., Wilkinson, D.A., and Wolfendale, A.W. (1987), Can episodic comet showers explain the 30-Myr cyclicity in the terrestrial record?, Mon. Not. Roy. Astron. Soc., 227, 863–885.

    ADS  Google Scholar 

  • Bailey, M.E., Clube, S.V.M., and Napier, W.M. (1990), The Origin of Comets, Pergamon Press, Oxford.

    Google Scholar 

  • Bailey, M.E., Clube, S.V.M., Hahn, G., Napier, W.M., and Valsecchi, G.B. (1994), Hazards due to giant comets: Climate and short-term catastrophism, in Gehrels (1994).

    Google Scholar 

  • Baldwin, R. (1949), The Face of the Moon, University of Chicago Press, Chicago.

    Google Scholar 

  • Baldwin, R.B. (1985), Relative and absolute ages of individual craters and the rate of infalls in the Moon in the post-Imbrium period, Icarus, 61, 63–91.

    Article  ADS  Google Scholar 

  • Barlow, N. (1990), Application of the inner Solar System cratering record to the Earth, Geol. Soc. Amer., Spec. Pap., 247, 181–187.

    Google Scholar 

  • Begelman, M.C. and Rees, M.J. (1976), Can cosmic clouds cause climatic catastrophes?, Nature, 261, 298–299.

    Article  ADS  Google Scholar 

  • Blum, J.D. (1993), Zircon can take the heat, Nature, 366, 718.

    Article  ADS  Google Scholar 

  • Blum, J.D., Chamberlain, C.P., Hingston, M.P., Koeberl, C., Marin, L.E., Schuraytz, B.C., and Sharpton, V.L. (1993), Isotopic comparison of K/T boundary impact glass with melt rock from the Chicxulub and Manson impact structures, Nature, 364, 325–327.

    Article  ADS  Google Scholar 

  • Bohor, B.F., Foord, E.E., Modreski, P.J., and Triplehorn, D.M. (1984), Mineralogic evidence for an impact event at the Cretaceous-Tertiary boundary, Science, 224, 867–869.

    Article  ADS  Google Scholar 

  • Bohor, B.F., Modreski, P.J. and Foord, E.E. (1987), Shocked quartz in the Cretaceous-Tertiary boundary clays: Evidence for a global distribution, Science, 236, 705–709.

    Article  ADS  Google Scholar 

  • Burek, P.J. and Wanke, H. (1988), Impacts and glacio-eustasy, plate-tectonic episodes, and geomagnetic reversals: A concept to facilitate detection of impact events, Phys. Earth Planet. Int., 50, 183–194.

    Article  ADS  Google Scholar 

  • Ceplecha, Z. (1992), Influx of interplanetary bodies onto Earth, Astron. Astrophys., 263, 361–366.

    ADS  Google Scholar 

  • Chapman, C.R. and Morrison, D. (1994), Impacts on the Earth by asteroids and comets: Assessing the hazard, Nature, 367, 33–40.

    Article  ADS  Google Scholar 

  • Chyba, C. (1993), Explosions of small Spacewatch objects in the Earth’s atmosphere, Nature, 363, 701–703.

    Article  ADS  Google Scholar 

  • Chyba, C., Thomas, P., and Zahnle, K. (1993), The 1908 Tunguska explosion: Atmospheric disruption of a stony asteroid, Nature, 361, 40–44.

    Article  ADS  Google Scholar 

  • Cisowski, S.M. (1990). A critical review of the case for, and against, extraterrestrial impact at the K/T boundary, Surveys Geophys., 11, 55–131.

    Article  ADS  Google Scholar 

  • Claeys, P., Casier, J-G., and Margolis, S.V. (1992), Microtektites and Mass Extinctions: Evidence for a Late Devonian Asteroid Impact, Science, 257, 1102–1104.

    Article  ADS  Google Scholar 

  • Clube, S.V.M. (1989), The catastrophic role of giant comets, pp. 81–112 in Catastrophes and Evolution: Astronomical Foundations, ed. S. V. M. Clube, Cambridge University Press, Cambridge, UK.

    Google Scholar 

  • Clube, S.V.M. (1992), The fundamental role of giant comets in Earth history, Cel. Mech. Dyn. Astron., 54, 49–61.

    Article  Google Scholar 

  • Clube, S.V.M. and Napier, W.M. (1982a), Spiral arms, comets, and terrestrial catastrophism, Ql. J. Roy. Astron. Soc., 23, 45–66.

    ADS  Google Scholar 

  • Clube, S.V.M. and Napier, W.M. (1982b), The role of episodic bombardment in geophysics, Earth Planet. Sci. Lett., 57, 251–262.

    Article  ADS  Google Scholar 

  • Clube, S.V.M. and Napier, W.M. (1984a), The microstructure of terrestrial catastrophism, Mon. Not. Roy. Astron. Soc., 211, 953–968.

    ADS  Google Scholar 

  • Clube, S.V.M. and Napier, W.M. (1984b), Terrestrial catastrophism: Nemesis or galaxy?, Nature, 311, 635–636.

    Article  ADS  Google Scholar 

  • Clube, S.V.M. and Napier, W.M. (1986), Giant comets and the galaxy: implications of the terrestrial record, pp. 260–285 in The Galaxy and the Solar System, eds. R. Smolu- chowski, J.N. Bahcall, and M.S. Matthews, University of Arizona Press, Tucson.

    Google Scholar 

  • Clube, S.V.M. and Napier, W.M. (1990), The Cosmic Winter, Blackwell, Oxford. Courtillot, V. E. (1990), A Volcanic Eruption, Sci. Amer., 263, 53–60.

    Google Scholar 

  • Courtillot, V.E., Féraud, G., Maluski, H., Vandamme, D., Moreau, M.G. and Besse, J. (1988), The Deccan flood basalts and the Cretaceous/Tertiary boundary, Nature, 333, 843–846.

    Article  ADS  Google Scholar 

  • Covey, C., Ghan, S.J., Walton, J.J. and Weissman, P.R. (1990), Global environmental effects of impact-generated aerosols; Results from a general circulation model, Geol. Soc. Amer., Spec. Pap., 247, 263–270.

    Google Scholar 

  • Cowles, R.B. (1939), Possible implications of reptilian thermal tolerance, Science, 90, 465466.

    Google Scholar 

  • Creer, K.M. and Pal, P.C. (1989), On the frequency of reversals of the geomagnetic dipole, pp. 113–132 in Clube (1989).

    Google Scholar 

  • Crowley, T.J. and North, G.R. (1988), Abrupt climate change and extinction events in earth history, Science, 240, 996–1002.

    Article  ADS  Google Scholar 

  • Crowley, T.J. and North, G.R. (1991), Paleoclimatology, Oxford University Press, New York.

    Google Scholar 

  • Davis, M., Hut, P., and Muller, R.A. (1984), Extinction of species by periodic comet showers, Nature, 308, 715–717.

    Article  ADS  Google Scholar 

  • De Laubenfels, M.W. (1956), Dinosaur extinction: one more hypothesis, J. Paleont., 30, 207–212.

    Google Scholar 

  • Dessler, A. (1991), The small comet hypothesis, Rev. Geophys., 29, 355–382 and 609–610. Donovan, S.K., ed. (1989), Mass Extinctions: Processes and Evidence, Belkhaven, London. Elliott, D.K., ed. (1986), Dynamics of Extinction, Wiley, New York.

    Google Scholar 

  • Emiliani, C., Kraus, E.B., and Shoemaker, E.M. (1981), Sudden death at the end of the Mesozoic, Earth Planet. Sci. Lett., 55, 317–334.

    Article  ADS  Google Scholar 

  • Erwin, D.H. (1993), The Great Paleozoic Crisis: Life and Death in the Permian, Columbia, New York.

    Google Scholar 

  • Erwin, D.H. (1994), The Permo-Triassic extinction, Nature, 367, 231–236.

    Article  ADS  Google Scholar 

  • Fischer, A.G. and Arthur, M.A. (1977), Secular variations in the pelagic realm, Soc. Econ. Paleont. Mineral Spec. Publ., 25, 19–50.

    Google Scholar 

  • Gehrels, T., ed. (1994), The Hazard due to Comets and Asteroids, University of Arizona Press, Tucson.

    Google Scholar 

  • Gilmour, I., Wolbach, W.S., and Anders, E. (1989), Major wildfires at the Cretaceous-Tertiary boundary, pp. 195–213 in Clube (1989).

    Google Scholar 

  • Glass, B.P., Swinki, M.B. and Zwart, P.A. (1979), Australiasian, Ivory Coast and North American tektite strewn fields: Size, mass and correlation with geomagnetic reversalsand other Earth events, Proc. Lunar Planet. Sci. Conf, 10, 25–37.

    Google Scholar 

  • Gold, T. (1992), The deep, hot biosphere, Proc. Natl. Acad. Sci. (USA), 89, 6045–6049. Goldsmith, D. (1986), Nemesis: The death star and other theories ofmass extinction, Walker, New York.

    Google Scholar 

  • Gostin, V.A., Haines, P.W., Jenkins, R.J.F., Compston, W., and Williams, I.S. (1986), Impact ejecta horizon within late Precambrian shales, Adelaide geosyncline, South Australia, Science, 233, 198–203.

    Article  ADS  Google Scholar 

  • Gould, S.J. (1965), Is uniformitarianism necessary?, Amer. J. Sci., 263, 223–228.

    Article  Google Scholar 

  • Gould, S.J. and Eldridge, N. (1993), Punctuated equilibrium comes of age, Nature, 366, 223–227

    Article  ADS  Google Scholar 

  • Nelson, G. (1994), Older than that, Nature, 367, 108.

    Article  ADS  Google Scholar 

  • Gratz, A.J., Nellis, W.J., and Hinsey, N.A. (1993), Observations of high-velocity, weakly shocked ejecta from experimental impacts, Nature, 363, 522–524.

    Article  ADS  Google Scholar 

  • Grieve, R.A.F. (1987), Terrestrial impact structures, Ann. Rev. Earth Planet. Sci., 15, 245270.

    Google Scholar 

  • Grieve, R.A.F. (1990a), Impact cratering on the Earth, Sci. Amer., 262, 44–51.

    Article  ADS  Google Scholar 

  • Grieve, R.A.F. (1990b), The record of impact on Earth: Implications for a major Cretaceous/Tertiary impact event Geol. Soc. Amer., Spec. Pap., 247, 25–37.

    Google Scholar 

  • Grieve, R.A.F. (1991), Terrestrial impact: The record in the rocks, Meteoritics, 26, 175–194.

    Article  ADS  Google Scholar 

  • Grieve, R.A.F. (1993), When will enough be enough? Nature, 363, 670–671.

    Article  ADS  Google Scholar 

  • Hahn, G. and Bailey, M.E. (1990), Rapid dynamical evolution of giant comet Chiron, Nature, 348, 132–136.

    Article  ADS  Google Scholar 

  • Hallam, A. (1989), Catastrophism in geology, pp. 25–55 in Clube (1989).

    Google Scholar 

  • Hasegawa, I. (1992), Historical variation in the meteor flux as found in Chinese and Japanese chronicles, Cel. Mech. Dyn. Astron., 54, 129–142.

    Article  ADS  Google Scholar 

  • Hassig, P.J., Rosenblatt, M., and Roddy, D.J. (1987), Analytical simulation of a 10-kmdiameter asteroid impact into a terrestrial ocean: Part 2—Atmospheric response, Lunar Planet. Sci. Conf, Abstracts, 17, 321–322.

    Google Scholar 

  • Heymann, D. and Anders, E. (1967), Meteorites with short cosmic ray exposure ages, as determined from their Al26 content, Geochim. Cosmochim. Acta, 31, 1793–1809

    Article  ADS  Google Scholar 

  • Hildebrand, A.R. and Boynton, W.V. (1990), Proximal Cretaceous-Tertiary boundary impact deposits in the Caribbean, Science, 248, 843–847.

    Article  ADS  Google Scholar 

  • Hills, J.G. (1981), Comet showers and the steady-state infall of comets from the Oort cloud, Astron. J., 86, 1730–1740.

    Article  ADS  Google Scholar 

  • Hills, J.G. and Goda, M.P. (1993), The fragmentation of small asteroids in the atmosphere, Astron. J., 105, 1114–1144.

    Article  ADS  Google Scholar 

  • Hodych, J.P. and Dunning, G.R. (1992), Did the Manicouagan impact trigger end-of-Triassic mass extinction?, Geology, 20, 51–54.

    Article  ADS  Google Scholar 

  • Holmes, A. (1927), The Age of the Earth: An Introduction to Geological Ideas, Benn, London.

    Google Scholar 

  • Hoyle, F. and Lyttleton, R.A. (1939), The effect of interstellar matter on climatic variation, Proc. Cambridge Phil. Soc. Math. Phys. Sci., 35, 405–415.

    Article  ADS  Google Scholar 

  • Hoyle, F. and Wickramasinghe, N.C. (1978), Comets, ice ages and ecological catastrophes, Astrophys. Space Sci., 53, 523–526.

    Article  ADS  Google Scholar 

  • Hoyle, E and Wickramasinghe, N.C. (1993), Our Place in the Cosmos: The Unfinished Revolution, Dent, London.

    Google Scholar 

  • Hoyt, W.G. (1987), Coon Mountain Controversies, University of Arizona Press, Tucson. Hsü, K.J. and McKenzie, J.A. (1990), Carbon-isotope anomalies at era boundaries; Global catastrophes and their ultimate cause, Geol. Soc. Amer., Spec. Pap., 247, 61–70.

    ADS  Google Scholar 

  • Hut, P., Alvarez, W., Elder, W.P., Hansen, T., Kauffman, E.G., Keller, G., Shoemaker, E.M. and Weissman, P.R. (1987), Comet showers as a cause of mass extinctions, Nature, 329, 118–126.

    Article  ADS  Google Scholar 

  • Innanen, K.A., Patrick, A.T., and Duley, W W. (1978), The interaction of the spiral density wave and the Sun’s galactic orbit, Astrophys. Space Sci., 57, 511–515.

    Article  ADS  Google Scholar 

  • Ivanov, B.A. (1991), Impact crater processes, Adv. Space Res., 11 (6), 67–75.

    Article  ADS  Google Scholar 

  • Izett, G.A. (1991), Tektites in Cretaceous-Tertiary boundary rocks on Haiti and their bearing on the Alvarez impact extinction hypothesis, J. Geophys. Res., 96, 20879–20905.

    Article  ADS  Google Scholar 

  • Izett, G.A., Dalrymple, G.B. and Snee, L.W. (1991), Ar age of the Cretaceous- Tertiary boundary tektites from Haiti, Science, 252, 1539–1542.

    Article  ADS  Google Scholar 

  • Jablonski, D. and Raup, D.M., eds. (1986), Patterns and Processes in the History of Life, Springer-Verlag, New York.

    Google Scholar 

  • Jansa, L.F., Aubry, M.-R, and Gradstein, F.M. (1990), Comets and extinctions; Cause and effect?, Geol. Soc. Amer., Spec. Pap., 247, 223–232.

    Google Scholar 

  • Jessberger, E.K., Christoforidis, A., and Kissel, J. (1988), Aspects of the major element composition of Halley’s dust, Nature, 332, 691–695.

    Article  ADS  Google Scholar 

  • Johnson, K.R. (1993), Extinctions at the antipodes, Nature, 366, 511–512.

    Article  ADS  Google Scholar 

  • Jones, H.D. (1988), Halley and comet impacts, J. Brit. Astron. Assoc., 98, 339.

    Google Scholar 

  • Jones, E.M. and Kodis, J.W. (1982), Atmospheric effects of large body impacts: The first few minutes, Geol. Soc. Amer., Spec. Pap. 190, 175–186.

    Google Scholar 

  • Keller, G., MacLeod, N., Lyons, J.B., and Officer, C.B. (1993), Is there evidence for Cretaceous-Tertiary boundary-age deep-water deposits in the Caribbean and Gulf of Mexico?, Geology, 21, 776–780.

    Article  ADS  Google Scholar 

  • Korobejnikov, V.P., Chushkin, P.I. and Shurshalov, L.V. (1991), Combined simulation of the flight and explosion of a meteoroid in the atmosphere, Solar System Res., 25, 242–255.

    ADS  Google Scholar 

  • Krogh, T.E., Kamo, S.L., Sharpton, V.L., Marin, L.E., and Hildebrand, A.R. (1993), U-Pb ages of single shocked zircons linking distal K/T ejecta to the Chicxulub crater, Nature, 366, 731–734.

    Article  ADS  Google Scholar 

  • Kyte, F.T. and Wasson, J.T. (1986), Accretion rate of extraterrestrial material: Iridium deposited 33 to 67 million years ago, Science, 232, 1225–1229.

    Article  ADS  Google Scholar 

  • Lindsay, J.F. and Srnka, L.J. (1975), Galactic dust lanes and lunar soil, Nature, 257, 776777.

    Google Scholar 

  • Liritzis, I. (1993), Cyclicity in terrestrial upheavals during the Phanerozoic Eon, Ql. J. Roy. Astron. Soc., 34, 251–260.

    ADS  Google Scholar 

  • Love, S.G. and Brownlee, D.E. (1993), A direct measurement of the terrestrial mass accretion rate of cosmic dust, Science, 262, 550–553.

    Article  ADS  Google Scholar 

  • Lowe, D.R., Byerly, G.R., Asaro, F., and Kyte, F.J. (1989), Geological and geochemical record of 3400-million-year-old terrestrial meteorite impacts, Science, 245, 959–962.

    Article  ADS  Google Scholar 

  • Macleod, N. and Keller, G. (1991), Hiatus distributions and mass extinctions at the Cretaceous/Tertiary boundary, Geology, 19, 497–501.

    Article  ADS  Google Scholar 

  • Mark, K. (1987), Meteorite Craters, University of Arizona Press, Tucson.

    Google Scholar 

  • Marvin, U.B. (1990), Impact and its revolutionary implications for geology, Geol. Soc. Amer., Spec. Pap., 247, 147–154.

    ADS  Google Scholar 

  • Matese, J.J. and Whitmire, D.P. (1986), Planet X as the source of the periodic and steady-state flux of short period comets, pp. 297–309 in The Galaxy and the Solar System, eds. R. Smoluchowski, J.N. Bahcall and M.S. Matthews, University of Arizona Press, Tucson.

    Google Scholar 

  • Maurrasse, F.J.-M.R. and Sen, G. (1991), Impacts, tsunamis, and the Haitian Cretaceous-Tertiary boundary layer, Science, 252, 1690–1693.

    Article  ADS  Google Scholar 

  • Mazaud, A., Laj, C., de Seze, L., and Verosub, K.L. (1983), Long time-scale fluctuations in the evolution of the Earth, Nature, 304, 328–330; see also 311, 396 (1984)

    Google Scholar 

  • McCrea, W.H. (1975), Ice ages and the galaxy, Nature, 255, 607–609.

    Article  ADS  Google Scholar 

  • McCrea, W.H. (1981), Long time-scale fluctuations in the evolution of the Earth, Proc. Roy. Soc. A, 375, 1–41.

    Article  ADS  Google Scholar 

  • McKinnon, W.B. (1992), Killer acid at the K/T boundary, Nature, 357, 15–16.

    Article  ADS  Google Scholar 

  • McLaren, D.J. and Goodfellow, W.D. (1990), Geological and biological consequences of giant impacts, Ann. Rev. Earth Planet. Sci., 18, 123–171.

    Article  ADS  Google Scholar 

  • Melosh, H.J. (1988a), Impact Cratering: A Geologic Process, Oxford University Press, Oxford and New York.

    Google Scholar 

  • Melosh, H.J. (1988b), The rocky road to panspermia, Nature, 332, 687–688

    Article  ADS  Google Scholar 

  • Melosh, H.J. (1991), Atmospheric impact processes, Adv. Space Res., 11 (6), 87–93.

    Article  ADS  Google Scholar 

  • Melosh, H.J., Schnieider, N., Zahnle, K., and Latham, D. (1990), Ignition of global wildfires at the Cretaceous-Tertiary boundary, Nature, 343, 251–254.

    Article  ADS  Google Scholar 

  • Muller, R. (1988), Nemesis: The Death Star, Weidenfeld and Nicolson, New York. Napier, W.M. (1989), Terrestrial catastrophism and galactic cycles, pp. 133–167 in Clube (1989).

    Google Scholar 

  • Napier, W.M. and Clube, S.V.M. (1979), A theory of terrestrial catastrophism, Nature, 282, 455–459.

    Article  ADS  Google Scholar 

  • Nininger, H.H. (1942), Cataclysm and evolution, Pop. Astron., 50, 270–272.

    Google Scholar 

  • Officer, C.B., Hallam, A., Drake, C.L., and Devine, J.D. (1987), Late Cretaceous and paroxysmal Cretaceous/Tertiary extinctions, Nature, 326, 143–149.

    Article  ADS  Google Scholar 

  • O’Keefe, J.D. and Ahrens, T.J. (1982), The interaction of the Cretaceous/Tertiary extinction bolide with the atmosphere, ocean and solid Earth, Geol. Soc. Amer., Spec. Pap. 190, 103–120.

    Google Scholar 

  • O’Keefe, J.D. and Ahrens, T.J. (1989), Impact production of CO2 by the Cretaceous/Tertiary extinction bolide and the resultant heating of the Earth, Nature, 338, 247–249.

    Article  ADS  Google Scholar 

  • Olsson-Steel, D. (1986), The origin of the sporadic meteoroid component, Mon. Not. Roy. Astron. Soc., 219, 47–73.

    ADS  Google Scholar 

  • Olsson-Steel, D. (1987), Collisions in the solar system—IV. Cometary impacts upon the planets, Mon. Not. Roy. Astron. Soc., 227, 501–524.

    ADS  Google Scholar 

  • Öpik, E.J. (1958), On the catastrophic effects of collisions with celestial bodies, Irish Astron. J., 5, 34–36.

    ADS  Google Scholar 

  • Orth, C.J., Attrep, M., Jr., and Quintana, L.R. (1990), Iridium abundance patterns across bio-event horizons in the fossil record, Geol. Soc. Amer., Spec. Pap., 247, 45–59.

    Google Scholar 

  • Peale, S.J. (1989), On the density of Halley’s comet, Icarus, 82, 36–49.

    Article  ADS  Google Scholar 

  • Perlmutter, S. and Muller, R.A. (1988), Evidence for comet storms in meteorite ages, Icarus, 74, 369–373.

    Article  ADS  Google Scholar 

  • Perlmutter, S., Muller, R.A., Pennypacker, C.R., Smith, C.K., Wang, L.P., White, S., and Yang, H.S. (1990), A search for Nemesis: Current status and review, Geol. Soc. Amer., Spec. Pap., 247, 87–91.

    Google Scholar 

  • Pilkington, M. and Grieve, R.A.F. (1992), The geological signature of terrestrial impact craters, Rev. Geophys., 30, 161–181.

    Article  ADS  Google Scholar 

  • Pollack, J.B., Toon, O.B., Ackerman, T.P., McKay, C.P., and Turco, R.P. (1983), Environmental effects of an impact-generated dust cloud: Implications for the Cretaceous-Tertiary extinctions, Science, 219, 287–289.

    Article  ADS  Google Scholar 

  • Pope, K.O., Ocampo, A.C., and Duller, C.E. (1991), Mexican site for K/T impact crater?, Nature, 351, 105.

    Article  ADS  Google Scholar 

  • Prinn, R.G. and Fegley, B. (1987), Bolide impacts, acid rain, and biospheric traumas at the Cretaceous-Tertiary boundary, Earth Planet. Sci. Lett., 83, 1–15.

    Article  ADS  Google Scholar 

  • Rabinowitz, D. (1993), The size distribution of the Earth-approaching asteroids, Astrophys. J., 407, 412–427.

    Article  ADS  Google Scholar 

  • Rampino, M.R. (1982), A non-catastrophist explanation for the iridium anomaly at the Cretaceous/Tertiary boundary, Geol. Soc. Amer., Spec. Pap. 190, 455–460.

    Google Scholar 

  • Rampino, M.R. (1992), Gaia versus Shiva: Cosmic effects on the long-term evolution of the terrestrial biosphere, pp. 382–390 in Scientists on Gaia, eds. S.H. Schneider and P.J. Boston, MIT Press, Cambridge, MA and London.

    Google Scholar 

  • Rampino, M.R. and Caldeira, K. (1992), Episodes of terrestrial geologic activity during the past 260 million years: a quantitative approach, Cel. Mech. Dyn. Astron., 54, 143–159

    Article  ADS  Google Scholar 

  • Rampino, M.R. and Caldeira, K. (1993), Major episodes of geologic change: correlations

    Google Scholar 

  • time structure and possible causes, Earth Planet. Sci. Lett.,114 215–227.

    Google Scholar 

  • Rampino, M.R. and Haggerty, B.M. (1994), Impacts and mass extinctions, in Gehrels (1994).

    Google Scholar 

  • Rampino, M.R. and Stothers, R.B. (1984a), Terrestrial mass extinctions, cometary impacts, and the Sun’s motion perpendicular to the galactic plane, Nature, 308, 709–712

    Article  ADS  Google Scholar 

  • Rampino, M.R. and Stothers, R.B. (1984b), Geologic rhythms and cometary impacts, Science, 226, 1427–1431.

    Article  ADS  Google Scholar 

  • Rampino, M.R. and Stothers, R.B. (1986), Geologic periodicity and the galaxy, pp. 241259 in The Galaxy and the Solar System, eds. R. Smoluchowski, J.N. Bahcall, and M.S. Matthews, University of Arizona Press, Tucson.

    Google Scholar 

  • Rampino, M.R. and Stothers, R.B. (1988), Flood basalt volcanism during the past 250 million years, Science, 241, 663–668.

    Article  ADS  Google Scholar 

  • Raup, D.M. (1986a), Biological extinction in Earth history, Science, 231, 1528–1533.

    Article  ADS  Google Scholar 

  • Raup, D.M. (1986b), The Nemesis Affair: A Story of the Death of the Dinosaurs and the Ways of Science, Norton, New York.

    Google Scholar 

  • Raup, D.M. (1991), Extinction: Bad Genes or Bad Luck?, Norton, New York.

    Google Scholar 

  • Raup, D.M. and Sepkoski, J.J. (1984), Periodicity of extinctions in the geologic past, Proc. Natl. Acad. Sci. (USA), 81, 801–805.

    Article  ADS  Google Scholar 

  • Raup, D.M. and Sepkoski, J.J. (1986), Periodic extinction of families and genera, Science, 231, 833–836.

    Article  ADS  Google Scholar 

  • Raup, D.M. and Sepkoski, J.J. (1988), Testing for periodicity of extinction, Science, 241, 94–96.

    Article  ADS  Google Scholar 

  • Rhodes, M.C. and Thayer, C.W. (1991), Mass extinctions: Ecological selectivity and primary production, Geology, 19, 877–880.

    Article  ADS  Google Scholar 

  • Rickman, H. (1989), The nucleus of comet Halley: Surface structure, mean density, gas and dust production, Adv. Space Res., 9 (3), 59–71.

    Article  ADS  Google Scholar 

  • Rickman, H., Kamél, L., Festou, M., and Froeschlé, Cl. (1987), Estimates of masses, volumes and densities of short-period comet nuclei, pp. 471–481 in Symposium on the Diversity and Similarity of Comets, European Space Agency, Paris, SP-278.

    Google Scholar 

  • Robin, E., Froget, L., Jéhano, C., and Rocchia, R. (1993), Evidence for a KIT impact in the Pacific Ocean, Nature, 363, 615–617.

    Article  ADS  Google Scholar 

  • Roddy, D.J., Schuster, S.H., Rosenblatt, M., Grant, L.B., Hassig, P.J., and Kreyenhagen, K.N. (1987), Analytical simulation of a 10 km diameter asteroid impact into a terrestrial ocean: Part 1-Summary, Lunar Planet. Sci. Conf, Abstracts, 17, 720–721.

    Google Scholar 

  • Sack, N.J. (1988), Organic-chemical clues to the theory of impacts as a cause of mass extinctions, Earth, Moon and Planets, 43, 131–143.

    Article  Google Scholar 

  • Sagdeev, R.Z., Elyasberg, P.E. and Moroz, V.I. (1988), Is the nucleus of comet Halley a low density body?, Nature, 331, 240–242.

    Article  ADS  Google Scholar 

  • Sarjeant, W.A.S. (1990), Astrogeological events and mass extinctions: global crises orscientific chimaerae?, Modern Geology, 15, 101–112.

    Google Scholar 

  • Schmidt, R.M. and Holsapple, K.A. (1982), Estimates of crater size for large-body impact: Gravity-scaling results, Geol. Soc. Amer., Spec. Pap. 190, 93–102.

    Google Scholar 

  • Sepkoski, J.J. (1990), The taxonomic structure of periodic extinctions, Geol. Soc. Amer., Spec. Pap., 247, 33–44.

    Google Scholar 

  • Sepkoski, J.J. and Raup, D.M. (1986), Periodicities in marine extinction events, pp. 3–36 in Dynamics of Extinctions, ed. D.K. Elliot, Wiley-Interscience, New York.

    Google Scholar 

  • Seyfert, C.K. and Sirkin, L.A. (1979), Earth History and Plate Tectonics, Harper and Row, New York.

    Google Scholar 

  • Shapley, H. (1921), Note on a possible factor in changes of geological climate, J. Geol., 29, 502–504.

    Article  ADS  Google Scholar 

  • Sharpton, V.L. and Ward, P.D., eds. (1990), Global catastrophes in Earth history: An interdisciplinary conference on impacts, volcanism, and mass mortality, Geol. Soc. Amer., Spec. Pap., 247.

    Google Scholar 

  • Sharpton, V.L., Dalrymple, G.B., Marin, L.E., Ryder, G., Schuraytz, B.C., and UrrutiaFucugauchi, J. (1992), New links between the Chicxulub impact structure and the Cretaceous/Tertiary boundary, Nature, 359, 819–821.

    Article  ADS  Google Scholar 

  • Sharpton, V.L., Burke, K., Caamargo-Zanoguera, A., Hall, S.A., Lee, D.S., Marin, S.E., Suarez-Reynoso, G., Quezada-Muneton, J.M., Spudis, P.D., and Urrutia-Fucugauchi, J. (1993), Chicxulub multiring impact basin: Size and other characteristics derived from gravity analysis, Science, 261, 1564–1567.

    Article  ADS  Google Scholar 

  • Shaw, H.R. (1987), The periodic structure of the natural record, and nonlinear dynamics, Eos, 68, 1651–1665.

    Article  ADS  Google Scholar 

  • Shea, J.H. (1982), Twelve fallacies of uniformitarianism, Geology, 10, 455–460.

    Article  ADS  Google Scholar 

  • Sheehan, P.M. and Russell, D.A. (1994), Faunal changes following the Cretaceous-Tertiary

    Google Scholar 

  • impact: Using paleontological data to assess the hazards of impacts, in Gehrels (1994). Shoemaker, E.M. (1983), Asteroid and comet bombardment of the Earth, Ann. Rev. Earth Planet. Sci., 11, 464–494.

    Google Scholar 

  • Shoemaker, E.M. and Izett, G.A. (1992), Stratigraphic evidence from Western North America for multiple impacts at the KIT boundary, Lunar and Planet. Sci. Conference, Abstracts, 23, 1293–1294.

    Google Scholar 

  • Silver, L.T. and Schultz, P.H. eds. (1982), Geological Consequences of Impacts of Large Asteroids and Comets on the Earth, Geol. Soc. Amer., Spec. Pap. 190.

    Google Scholar 

  • Sleep, N.H., Zahnle, K.J., Kasting, J.F., and Morowitz, H.J. (1989), Annihilation of ecosys-

    Google Scholar 

  • tems by large asteroid impacts on the early Earth, Nature,342 139–142.

    Google Scholar 

  • Smit, J. (1994), Extinctions at the Cretaceous-Tertiary boundary: The link to the Chicxulub

    Google Scholar 

  • crater, in Gehrels (1994).

    Google Scholar 

  • Standish, E.M. (1993), Planet X: No dynamical evidence in the optical observations, Astron. J., 105, 2000–2006.

    Article  ADS  Google Scholar 

  • Stanley, S.M. (1987), Extinctions, Scientific American Books, New York.

    Google Scholar 

  • Steel, D. (1992), Cometary supply of terrestrial organics: Lessons from the K/T and the present epoch, Origins Life Evol. Biosphere,21 339–357.

    Google Scholar 

  • Steel, D.I., Asher, D.J., Napier, W.M., and Clube, S.V.M. (1992), Are impacts correlated in time?, in Gehrels (1994).

    Google Scholar 

  • Stetter, K.O., Huber, R., Blöchl, E., Kurr, M., Eden, R.D., Fielder, M., Cash, H., and Vance, I. (1993), Hyperthermophilic archaea are thriving in deep North Sea and Alaskan oil reservoirs, Nature, 365, 743–745.

    Article  ADS  Google Scholar 

  • Stigler, S.M. and Wagner, M.J. (1987), A substantial bias in nonparametric tests for periodicity in geophysical data, Science, 238, 940–945.

    Article  ADS  Google Scholar 

  • Stothers, R.B. (1985), Terrestrial record of the Solar System’s oscillation about the galactic plane, Nature, 317, 338–341.

    Article  ADS  Google Scholar 

  • Stothers, R.B. (1988), Structure of Oort’s comet cloud inferred from terrestrial impact craters, The Observatory, 108, 1–9.

    ADS  Google Scholar 

  • Stothers, R.B. (1989), Structure and dating errors in the geologic time scale and periodicity in mass extinctions, Geophys. Res. Lett., 16, 119–122.

    Article  ADS  Google Scholar 

  • Stothers, R.B. (1992), Impacts and tectonism in Earth and Moon history of the past 3800 million years, Earth, Moon and Planets, 58, 145–152.

    Article  Google Scholar 

  • Sykes, M.V. and Walker, R.G. (1992a), The Nature of Comet Nuclei, pp. 587–591 in Asteroids, Comets, Meteors 1991, eds. A.W. Harris and E. Bowel], Lunar and Planetary Institute, Houston, TX.

    Google Scholar 

  • Sykes, M.V. and Walker, R.G. (1992b), Cometary dust trails. I. Survey, Icarus, 95, 180–210.

    Article  ADS  Google Scholar 

  • Talbot, R.J. and Newman, M.J. (1977), Encounters between stars and dense interstellar clouds, Astrophys. J. Suppl., 34, 295–308.

    Article  ADS  Google Scholar 

  • Thaddeus, P. and Chanan, G.A. (1985), Cometary impacts, molecular clouds, and the motion of the Sun perpendicular to the galactic plane, Nature, 314, 73–75.

    Article  ADS  Google Scholar 

  • Toon, O.B., Zahnle, K., Turco, R.P., and Covey, C. (1994), Environmental perturbations cause by asteroid impacts, in Gehrels (1994).

    Google Scholar 

  • Torbett, M.V. (1989), Solar system and galactic influences on the stability of the Earth, Palaeogeography, Palaeoclimatology, Palaeoecology, 75, 3–33.

    Article  Google Scholar 

  • Torbett, M.V. and Smoluchowski, R. (1984), Orbital stability of the unseen solar companion linked to periodic extinction events, Nature, 311, 641–642.

    Article  ADS  Google Scholar 

  • Turco, R.P., Toon, O.B., Ackerman, T.P., Pollack, J.B., and Sagan, C. (1991), Nuclear winter:

    Google Scholar 

  • Physics and physical mechanisms, Ann. Rev. Earth Planet. Sci.,19 383–422. Urey, H.C. (1973), Cometary collisions and geological periods, Nature,242 32–33.

    Google Scholar 

  • Van den Bergh, S. (1989), Life and death in the inner solar system, Publ. Astron. Soc. Pacific, 101, 500–509.

    Article  ADS  Google Scholar 

  • Vandervoort, P.O. and Sather, E.A. (1993), On the resonant orbit of a solar companion star in the gravitational field of the galaxy, Icarus, 105, 26–47.

    Article  ADS  Google Scholar 

  • Walliser, O.H., ed. (1986), Global Bio-Events, Springer-Verlag, Berlin.

    Google Scholar 

  • Watson, F. (1941), Between the Planets, Blakiston, Philadelphia.

    Google Scholar 

  • Weissman, P.R. (1985), Terrestrial impactors at geological boundary events: Comets or asteroids?, Nature, 314, 517–518.

    Article  ADS  Google Scholar 

  • Weissman, P.R. (1986), Are cometary nuclei primordial rubble piles?, Nature, 320, 24 2244.

    Google Scholar 

  • Weissman, P.R. (1990), The cometary impactor flux at the Earth, Geol. Soc. Amer., Spec. Pap., 247, 171–180.

    Google Scholar 

  • Wetherill, G.W. (1989), Cratering of the terrestrial planets by Apollo objects, Meteoritics, 24, 15–22.

    Article  ADS  Google Scholar 

  • Wetherill, G.W. (1991) End products of cometary evolution: Cometary origin of Earth-crossing bodies of asteroidal appearance, pp. 537–556 in Comets in the Post-Halley Era, eds. R.L. Newburn, Jr., M. Neugebauer, and J. Rahe, Kluwer, Dordrecht.

    Google Scholar 

  • Whipple, F.L. (1950), A comet model I. The acceleration of comet Encke, Astrophys. J., 111, 375–394.

    Article  ADS  Google Scholar 

  • Whitmire, D.P. and Jackson, A.A. (1984), Are periodic mass extinctions driven by a distant solar companion?, Nature, 308, 713–715.

    Article  ADS  Google Scholar 

  • Whitmire, D.P. and Matese, J.J. (1985), Periodic comet showers and planet X, Nature, 313, 36–38.

    Article  ADS  Google Scholar 

  • Wickramasinghe, N.C., Hoyle, F., and Rabilizirov, R. (1989), Greenhouse dust, Nature, 341, 28.

    Article  ADS  Google Scholar 

  • Williams, G.E., ed. (1981), Megacycles, Hutchinson Ross, Stroudsburg, Pennsylvania. Williams, G.E. (1986), The Acraman impact structure: Source of ejecta in late Precambrian shales, South Australia, Science, 233, 200–203.

    Google Scholar 

  • Wolbach, W.S., Lewis, R.S., and Anders, E. (1985), Cretaceous extinctions: Evidence for wildfires and search for meteoric material, Science, 230, 167–170.

    Article  ADS  Google Scholar 

  • Wolbach, W.S., Gilmour, I., Anders, E. Orth, C.J., and Brooks, R.R. (1988), Global fire at the Cretaceous—Tertiary boundary, Nature, 334, 665–669.

    Google Scholar 

  • Wolbach, W.S., Gilmour, I., and Anders, E. (1990), Major wildfires at the Cretaceous—Tertiary boundary, Geol. Soc. Amer., Spec. Pap., 247, 391–400.

    Google Scholar 

  • Wolfe, J.A. (1991), Palaeobotanical evidence for a June impact winter at the Cretaceous/Tertiary boundary, Nature, 352, 420–423. But see also Nature, 356, 295–296.

    Google Scholar 

  • Yabushita, S. (1991), A statistical test for periodicity hypothesis in the crater formation rate, Mon. Not. Roy. Astron. Soc., 250, 481–485.

    ADS  Google Scholar 

  • Yabushita, S. (1992), Periodicity in the crater formation rate and implications for astronomical modelling, Cel. Mech. Dyn. Astron., 54, 161–178.

    Article  ADS  Google Scholar 

  • Yabushita, S. and Allen, A.J. (1989), On the effect of accreted interstellar matter on the terrestrial environment, Mon. Not. Roy. Astron. Soc., 238, 1465–1478.

    ADS  Google Scholar 

  • Zahnle, K. (1990), Atmospheric chemistry by large impacts, Geol. Soc. Amer., Spec. Pap., 247, 271–288.

    Google Scholar 

  • Zahnle, K. (1992), Airburst Origin of Dark Shadows on Venus, J. Geophys. Res., 97, 10243–10255.

    Article  ADS  Google Scholar 

  • Zahnle, K. and Grinspoon, D. (1990), Comet dust as a source of amino acids at the Cretaceous/Tertiary boundary, Nature, 348, 157–160.

    Article  ADS  Google Scholar 

  • Zhao, M. and Bada, J. (1989), Extraterrestrial amino acids in Cretaceous/Tertiary boundary sediments at Stevns Klint, Denmark, Nature, 339, 463–465.

    Article  ADS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Steel, D. (1997). Cometary Impacts on the Biosphere. In: Thomas, P.J., Chyba, C.F., McKay, C.P. (eds) Comets and the Origin and Evolution of Life. Springer, New York, NY. https://doi.org/10.1007/978-1-4757-2688-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-2688-6_9

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4757-2690-9

  • Online ISBN: 978-1-4757-2688-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics