Skip to main content

Comets as a Source of Prebiotic Organic Molecules for the Early Earth

  • Chapter
Comets and the Origin and Evolution of Life

Abstract

Life on Earth originated during the final throes of the heavy bombardment, in which the Earth—Moon system, as well as the rest of the inner solar system, was subjected to an intense bombardment of comets and asteroids. This bombardment may have rendered the Earth’s surface inhospitable for life for hundreds of millions of years subsequent to terrestrial formation. It may also have delivered to the Earth’s surface the bulk of the current terrestrial volatile inventory, in the form of a late-accreting impact veneer. Delivering intact prebiotic organic molecules of interest for the origins of life is much more difficult. However, several mechanisms seem likely to have been delivering exogenous organics to the surface of the Earth, or shock-synthesizing them in impacts. In an early carbon dioxide-rich terrestrial atmosphere, these mechanisms would have quantitatively rivaled or exceeded terrestrial organic synthesis in situ. In an early reducing (methane-rich) atmosphere, the exogenous sources would have been quantitatively unimportant compared to atmospheric production.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alvarez, L.W., Alvarez, W.A., Asaro, F., and Michel, H.V. (1980), Extraterrestrial cause for the Cretaceous-Tertiary extinction. Science 208, 1095–1108.

    Article  ADS  Google Scholar 

  • Anders, E. (1989), Pre-biotic organic matter from comets and asteroids. Nature 342, 255–57.

    Article  ADS  Google Scholar 

  • Baldwin, R.B. (1987a), On the relative and absolute ages of seven lunar front face basins. I. From viscosity arguments. Icarus 71, 1–18.

    Article  MathSciNet  ADS  Google Scholar 

  • Baldwin, R.B. (1987b), On the relative and absolute ages of seven lunar front face basins. II. From crater counts. Icarus 71, 19–29.

    Article  ADS  Google Scholar 

  • Barak, I. and Bar-Nun, A. (1975), The mechanisms of amino acid synthesis by high temperature shock-waves. Origins of Life 6: 483–506.

    Article  ADS  Google Scholar 

  • Bar-Nun, A. and Shaviv, A. (1975), Dynamics of the chemical evolution of Earth’s primitive atmosphere. Icarus 24, 197–210.

    Article  ADS  Google Scholar 

  • Bar-Nun, A., Bar-Nun, N., Bauer, S.H., and Sagan, C. (1970), Shock synthesis of amino acids in simulated primitive environments. Science 168, 470–473.

    Article  ADS  Google Scholar 

  • Basaltic Volcanism Study Project (BVSP) (1981), Basaltic Volcanism on the Terrestrial Planets. Pergamon, New York.

    Google Scholar 

  • Becker, L., Bada, J.L., Winans, R.E., Hunt, J.E., Bunch, T.E., and French, B.M. (1994), Fullerenes in the 1.85-billion-year-old Sudbury impact structure. Science 265, 642–645.

    Article  ADS  Google Scholar 

  • Becker, L., Poreda, R.J., and Bada, J.L. (1996), Extraterrestrial helium trapped in fullerenes in the Sudbury impact structure. Science 272, 249–252.

    Article  ADS  Google Scholar 

  • Cameron, A.G.W. (1983), Origin of the atmospheres of the terrestrial planets. Icarus 56, 195–201.

    Article  ADS  Google Scholar 

  • Cameron, A.G.W. (1986), The impact theory for origin of the Moon. In Origin of the Moon ( W.K. Hartmann, R.J. Phillips, and G.J. Taylor, eds.), Lunar and Planetary Inst., Houston, pp. 609–616.

    Google Scholar 

  • Ceplecha, Z. (1992), Earth influx of interplanetary bodies. Astronomy and Astrophysics 263, 361–366.

    ADS  Google Scholar 

  • Chou, C.-L. (1978), Fractionation of siderophile elements in the earth’s upper mantle. Proc. Lunar Planet. Sci. Conf. 9, 219–230.

    ADS  Google Scholar 

  • Chyba, C.F. (1990a), Impact delivery and erosion of planetary oceans in the early inner solar system. Nature 343, 129–133.

    Article  ADS  Google Scholar 

  • Chyba, C.F. (1990b), Extraterrestrial amino acids and terrestrial life. Nature 348, 113–114.

    Article  ADS  Google Scholar 

  • Chyba, C.F. (1991), Terrestrial mantle siderophiles and the lunar impact record. Icarus 92, 217–233.

    Article  ADS  Google Scholar 

  • Chyba, C.F. (1993a), The violent environment of the origins of life: Progress and uncertainties. Geochim. Cosmochim. Acta 57, 3351–3358.

    Article  ADS  Google Scholar 

  • Chyba, C.F. (1993b), Explosions of small Spacewatch objects in the Earth’s atmosphere. Nature 363, 701–703.

    Article  ADS  Google Scholar 

  • Chyba, C.F. and McDonald, G. (1995). The origin of life in the Solar System: Current issues. Annu. Rev. Earth Planet Sci. 24, 215–249.

    Article  ADS  Google Scholar 

  • Chyba, C. and Sagan, C. (1991), Electrical energy sources for organic synthesis on the early Earth. Origins Life 21, 3–17.

    Article  Google Scholar 

  • Chyba, C. and Sagan, C. (1992), Endogenous production, exogenous delivery and impact-shock synthesis of organic molecules: An inventory for the origins of life. Nature 355, 125–132.

    Article  ADS  Google Scholar 

  • Chyba, C.F., Thomas, P.J., Brookshaw, L., and Sagan, C. (1990), Cometary delivery of organic molecules to the early Earth. Science 249, 366–373.

    Article  ADS  Google Scholar 

  • Chyba, C.F., Thomas, P.J., and Zahnle, K.J. (1993), The 1908 Tunguska explosion: Atmospheric disruption of a stony asteroid, Nature 361, 40–44.

    Article  ADS  Google Scholar 

  • Chyba, C.F., Owen, T.C., and Ip, W.-H. (1995), Impact delivery of volatiles and organic molecules to Earth. In Hazards Due to Comets and Asteroids (ed. T. Gehrels ) pp. 9–58, University of Arizona Press, Tucson.

    Google Scholar 

  • Clark, B.C. (1988), Primeval procreative comet pond. Origins of Life 18, 209–238.

    Article  ADS  Google Scholar 

  • Dalrymple, G.B. and Ryder, G. (1993), ArAr age spectra of Apollo 15 impact melt rocks by laser step-heating and their bearing on the history of lunar basin formation. J. Geophys. Res. 98, 13085–13095.

    Article  ADS  Google Scholar 

  • Delsemme, A.H. (1992), Cometary origin of carbon, nitrogen and water on the Earth. Origins of Life 21, 279–298.

    Google Scholar 

  • DesMarais, D.J. (1985), In The Carbon Cycle and Atmospheric CO 2 : Natural Variations Archean to Present. (eds. E.T. Sundquist and W.S. Broecker), American Geophysical Union, Washington DC, pp. 602–611.

    Google Scholar 

  • Dreibus, G. and Wänke, H. (1987), Volatiles on Earth and Mars: A comparison. Icarus 71, 225–240.

    Article  ADS  Google Scholar 

  • Dreibus, G. and Wanke, H. (1989), Supply and loss of volatile constituents during the accretion of terrestrial planets. In Origin and Evolution of Planetary and Satellite Atmospheres ( S.K. Atreya, J.B. Pollack, and M.S. Matthews, eds.), University of Arizona Press, Tucson, pp. 268–288.

    Google Scholar 

  • Eberhardt, P., Dolder, U., Schulte, W., Krankowsky, d., Lämmerzahl, P., Berthelier, J.J., Woweries, J., Stubbemann, U., Hodges, R.R., Hoffman, J.H., and Illiano, J.M. (1987), The D/H ratio in water from comet P/Halley. Astron. Astrophys. 187, 435–437.

    Google Scholar 

  • Fernandez, J.A. (1985), The formation and dynamical survival of the comet cloud. In Dynamics of Comets: Their Origin and Evolution ( A. Carusi and G.B. Valsecchi, eds.), Reidel, Dordrecht, pp. 45–70.

    Chapter  Google Scholar 

  • Fernandez, J.A. and Ip, W.-H. (1983), On the time evolution of the cometary influx in the region of the terrestrial planets. Icarus 54, 377–387.

    Article  ADS  Google Scholar 

  • Fishman, G.J., Bhat, P.N., Mallozzi, R., Horack, J.M., Koshut, T., Kouveliotou, C., Pendleton, G.N., Meegan, C.A., Wilson, R.B., Paciesas, W.S., Goodman, S.J., and Christian, H.J. (1994), Discovery of intense gamma-ray flashes of atmospheric origin. Science 264, 1313–1316.

    Google Scholar 

  • Fiske, P.E., Nellis, W.J., Lipp, M., Lorenzana, H., Kikuchi, M., and Syono, Y. (1995), Pseudotachylites generated in shock experiments: Implications for impact cratering products and processes. Science 270, 281–283.

    Google Scholar 

  • Folinsbee, R.E., Douglas, J.A.V. and Maxwell, J.A. (1967), Revelstoke, a new Type I carbonaceous chondrite. Geochim. Cosmochim. Acta 31, 1625–1635.

    Article  ADS  Google Scholar 

  • Gilvarry, J.J. and Hochstim, A.R. (1963), Possible role of meteorites in the origin of life. Nature 197, 624–626.

    Article  ADS  Google Scholar 

  • Greenberg, M.J. (1981), Chemical evolution of interstellar dust-a source of prebiotic material? In Comets and the Origin of Life ( C. Ponnamperuma, ed.), Reidel, Dordrecht, pp. 111–127.

    Chapter  Google Scholar 

  • Grinspoon, D.H. (1988), Large impact events and atmospheric evolution on the terrestrial planets. Ph.D. thesis, University of Arizona.

    Google Scholar 

  • Hartmann, W.K. (1980), Dropping stones in magma oceans: Effects of early lunar cratering. In Proceedings of the Conference on the Lunar Highland Crust, pp. 155–171 ( Lunar and Planetary Institute, Houston ).

    Google Scholar 

  • Hartmann, W.K. (1987), A satellite-asteroid mystery and a possible early flux of scattered C-class asteroids. Icarus 71, 57–68.

    Article  ADS  Google Scholar 

  • Hartmann, W.K. (1990), Additional evidence about an early intense flux of C asteroids and the origin of Phobos. Icarus 87, 236–240.

    Article  ADS  Google Scholar 

  • Hartmann, W.K. (1995), Planetary cratering I. The question of multiple impactor populations: Lunar evidence. Meteoritics 30, 451–467.

    Article  ADS  Google Scholar 

  • Hayes, J.M., I.R. Kaplan, and K.W. Wedeking (1983), Precambrian organic geochemistry, preservation of the record. In Earth’s Earliest Biosphere (J.W. Schopf, ed.), Princeton University Press, Princeton, NJ, pp. 93–134.

    Google Scholar 

  • Hochstim, A.R. (1963), Hypersonic chemosynthesis and possible formation of organic compounds from impact of meteorites on water. Proc. Nat. Acad. Sci. 50, 200–208.

    Article  ADS  Google Scholar 

  • Horowitz, N.H. (1986), To Utopia and Back: The Search for Life in the Solar System. Freeman, New York.

    Google Scholar 

  • Ip, W.-H. (1977), On the early scattering processes of the outer planets. In Comets-AsteroidsMeteorites: Interrelations, Evolution and Origin ( A.H. Delsemme, ed.), University of Toledo Press, Toledo, OH, pp. 485–490.

    Google Scholar 

  • Kasting, J.F. (1990), Bolide impacts and the oxidation state of carbon in the Earth’s early atmosphere. Origins of Life 20, 199–231.

    Article  Google Scholar 

  • Kasting, J.F. (1993), Earth’s early atmosphere. Science 259, 920–925.

    Article  ADS  Google Scholar 

  • Kasting, J.F. and Ackerman, T.P. (1986), Climatic consequences of very high carbon dioxide levels in the Earth’s early atmosphere. Science 234, 1383–1385.

    Article  ADS  Google Scholar 

  • Kasting, J.F., Whitmire, D., and Reynolds, R. (1993), Habitable zones around main sequence stars. Icarus 101, 108–128.

    Article  ADS  Google Scholar 

  • Kerr, R.A. (1994), Atmospheric scientists puzzle over high-altitude flashes. Science 264, 1250–1251.

    Article  ADS  Google Scholar 

  • Krinov, E.L. (1966), Giant Meteorites. Pergamon, Oxford.

    Google Scholar 

  • Kyte, F.T. and Wasson, J.T. (1986), Accretion rate of extraterrestrial matter: Iridium deposited 33 to 67 million years ago. Science 232, 1225–1229.

    Article  ADS  Google Scholar 

  • Lasaga, A.C., Holland, H.D., Dwyer, M.J. (1971), Primordial oil slick. Science 174, 53–55.

    Article  ADS  Google Scholar 

  • Lewis, J. (1974), The temperature gradient in the solar nebula. Science 186, 440–443.

    Article  ADS  Google Scholar 

  • Lewis, J., Barshay, S.S. and Noyes, B. (1979), Primordial retention of carbon by the terrestrial planets. Icarus 37, 190–206.

    Article  ADS  Google Scholar 

  • Love, S.G. and Brownlee, D.E. (1993), A direct measurement of the terestrial mass accretion rate of cosmic dust. Science 262, 550–553.

    Article  ADS  Google Scholar 

  • Mason, B. (1971), Handbook of Elemental Abundances in Meteorites. Gordon and Breach, New York.

    Google Scholar 

  • McKay, C.P. (1986), Exobiology and future mars missions: The search for Mars’ earliest biosphere. Adv. Space Res. 6, 269–285.

    Article  ADS  Google Scholar 

  • McKay, C.P. (1991), Urey Prize lecture: planetary evolution and the origin of life. Icarus 91, 93–100.

    Article  ADS  Google Scholar 

  • McKay, C.P., Scattergood, T.W., Pollack, J.B., Borucki, W.J., and Van Ghyseghem, H.T. (1988), High-temperature shock formation of N2 and organics on primordial Titan. Nature 332, 520–522.

    Article  ADS  Google Scholar 

  • McKay, C.P., Borucki, W.R., and Kojiro, K.R., and Church, F. (1989), Shock production of organics during cometary impact. Lunar Planet. Sci. Conf. 20, 671–672.

    ADS  Google Scholar 

  • McKinnon, W.B., C.R. Chapman, and K.R. Housen (1990), Cratering of the uranian satellites. In Uranus ( J.T. Bergstrahl, E.D. Miner, and MS. Matthews, eds.), University of Arizona Press, Tucson, pp. 629–692.

    Google Scholar 

  • Melosh, H.J. (1989), Impact Cratering: A Geologic Process. Oxford University Press, New York.

    Google Scholar 

  • Melosh, H.J. and A.M. Vickery (1989), Impact erosion of the primordial atmosphere of

    Google Scholar 

  • Mars. Nature 338 487–489.

    Google Scholar 

  • Miller, S.L. and Urey, H.C. (1959), Organic compound synthesis on the primitive Earth. Science 130, 245–251.

    Article  ADS  Google Scholar 

  • Mukhin, L.M., Gerasimov, M.V., and Safonova, E.N. (1989), Origin of precursors of organic molecules during evaporation of meteorites and mafic terrestrial rocks. Nature 340, 46–48.

    Article  ADS  Google Scholar 

  • Noyes, W.A. and Leighton, P.A. (1941), The Photochemistry of Gases. Reinhold, New York. Oberbeck, V.R. and Aggarwal, H. (1992), Comet impacts and chemical evolution on the bombarded Earth. Origins of Life 21, 317–338.

    Google Scholar 

  • Oberbeck, V.R. and G. Fogleman (1989), Estimates of the maximum time required to originate life. Origins Life 19, 549–560.

    Article  Google Scholar 

  • Oberbeck, V.R., McKay, C.P., Scattergood, T.W., Carle, G.C. and Valentin J.R. (1989), The

    Google Scholar 

  • role of cometary particle coalescence in chemical evolution. Origins of Life 19 39–55.

    Google Scholar 

  • Orb, J. (1961), Comets and the formation of biochemical compounds on the primitive Earth. Nature 190, 389–390.

    Article  ADS  Google Scholar 

  • Pollack, J.B., Podolak, M., Bodenheimer, R, and Christofferson, B. (1986) Icarus 67 409443.

    Google Scholar 

  • Prinn, R.G. and B. Fegley (1989), Solar nebula chemistry: Origin of planetary, satellite and cometary volatiles. In Origin and Evolution of Planetary and Satellite Atmospheres ( S.K. Atreya, J.B. Pollack, and M.S. Matthews, eds.). University of Arizona Press, Tucson, pp. 78–136.

    Google Scholar 

  • Rabinowitz, D.L. (1993), The size distribution of the Earth-approaching asteroids. Astrophys. J. 407, 412–427.

    Article  ADS  Google Scholar 

  • Rabinowitz, D.L., Gehrels, T., Scotti, J.V., McMillan, R.S., and Perry M.L. (1993), The terrestrial asteroid belt: A new population of near-Earth asteroids. Nature 363, 704706.

    Google Scholar 

  • Robbins, E.I. and Iberall, A.S. (1991), Mineral remains of early life on Earth? On Mars? Geomicrobiology J. 9, 51–66.

    Article  Google Scholar 

  • Ryder, G. (1990), Lunar samples, lunar accretion and the early bombardment of the Moon. Eos 71, 313, 322–323.

    ADS  Google Scholar 

  • Ryder, G. and Wood, J.A. (1977), Serenitatis and Imbrium impact melts: Implications for large-scale layering in the lunar crust. Proc. Lunar Sci. Conf. 8, 655–668.

    ADS  Google Scholar 

  • Sagan, C. and Chyba, C. (1996), The early faint sun “paradox”: organic shielding of UV-labile greenhouse gases. In preparation.

    Google Scholar 

  • Sagan, C. and Thompson, W.R. (1984), Production and condensation of organic gases in the atmosphere of Titan. Icarus 59, 133–161.

    Article  ADS  Google Scholar 

  • Schidlowski, M.A. (1988), 3,800-million-year isotope record of life from carbon in sedimentary rocks. Nature 333, 313–318.

    Google Scholar 

  • Schlesinger, G. and Miller, S.L. (1983a), Prebiotic synthesis in atmospheres containing CH4, CO, and CO2. I. Amino acids. J. Molec. Evol. 19, 376–382.

    Article  Google Scholar 

  • Schlesinger, G. and Miller, S.L. (1983b), Prebiotic synthesis in atmospheres containing CH4, CO, and CO2. II. Hydrogen cyanide, formaldehyde, and ammonia. J. Molec. Evol. 19, 383–390.

    Article  Google Scholar 

  • Schmidt, R.M. and K.R. Housen (1987), Some recent advances in the scaling of impact and explosion cratering. Int. J. Impact Engng. 5, 543–560.

    Article  ADS  Google Scholar 

  • Schonland, B.F.J. (1928), The interchange of electricity between thunderclouds and the Earth. Proc. Roy. Soc. A 118, 252–262.

    Article  ADS  Google Scholar 

  • Schonland, B.F.J. (1953), Atmospheric Electricity Methuen, London.

    Google Scholar 

  • Schopf, J.W. (1993), Microfossils of the early Archean apex chert: New evidence of the antiquity of life. Science 260, 640–646.

    Article  ADS  Google Scholar 

  • Schopf, J.W. and Walter, M.R. (1983), Archean microfossils: New evidence of ancient microbes. In Earth’s Earliest Biosphere (J.W. Schopf, ed.). Princeton University Press, Princeton, NJ, pp. 214–239.

    Google Scholar 

  • Shoemaker, E.M. and R.F. Wolfe (1984), Evolution of the Uranus—Neptune planetesimal swarm. Proc. Lunar Planet. Sci. Conf. 15, 780–781.

    ADS  Google Scholar 

  • Sleep, N.H., K.J. Zahnle, J.F. Kasting, and H.J. Morowitz ( 1989. Annihilation of ecosystems by large asteroid impacts on the early Earth. Nature 342, 139–142.

    Article  ADS  Google Scholar 

  • Stacey, F.D. (1977), Physics of the Earth. Wiley, New York.

    Google Scholar 

  • Stevenson, D.J. (1983), The nature of the Earth prior to the oldest known rock record: The Hadean Earth. In Earth’s Earliest Biosphere: Its Origin and Evolution (J.W. Schopf, ed.). Princeton University Press, Princeton, NJ, pp. 32–40.

    Google Scholar 

  • Stevenson, D.J. (1990), Fluid dynamics of core formation. In Origin of the Earth (H.E. Newsom and J.H. Jones, eds.). Oxford University Press, New York, pp. 231–249.

    Google Scholar 

  • Stribling, R. and Miller, S.L. (1987), Energy yields for hydrogen cyanide and formaldehyde synthesis: The HCN and amino acid concentrations in the primitive ocean. Origins of Life 17, 261–273.

    Article  ADS  Google Scholar 

  • Strom, R.G. (1987), The Solar System cratering record: Voyager 2 results at Uranus and implications for the origin of impacting objects. Icarus 70, 517–535.

    Article  ADS  Google Scholar 

  • Sun, S.-S. (1984), Geochemical characteristics of archaean ultramafic and mafic volcanic rocks: Implications for mantle composition and evolution. In Archean Geochemistry ( A. Kröner, G.N. Hanson, and A.M. Goodwin, eds.). Springer-Verlag, Berlin, pp. 2546.

    Google Scholar 

  • Swindle, T.D., M.W. Caffee, C.M. Hohenberg, and S.R. Taylor (1986), I—Pu—Xe dating and the relative ages of the Earth and Moon. In Origin of the Moon ( W.K. Hartmann, R.J. Phillips, G.J. Taylor, eds.). Lunar and Planetary Institute, Houston, pp. 331–357.

    Google Scholar 

  • Tera, F., Papanastassiou, D., and Wasserburg, G. (1974), The lunar timescale and a summary of isotopic evidence for a terminal lunar cataclysm. Lunar Planet. Sci 5, 792.

    ADS  Google Scholar 

  • Tilton, G.R. (1988), Age of the Solar System. In Meteorites and the Early Solar System ( J.F. Kerridge and M.S. Matthews, eds.). University of Arizona Press, Tucson, pp. 259–275.

    Google Scholar 

  • Tingle, T.N, Tyburczy, J.A., Ahrens, T.J. and Becker, C.H. (1992), The fate of organic matter during planetary accretion: Preliminary studies of the organic chemistry of experimentally shocked Murchison meteorite. Origins of Life 21, 385–397.

    Google Scholar 

  • Veizer, J. (1983), Geologic evolution of the Archean-Early Proterozoic Earth. In Earth’s Earliest Biosphere (J.W. Schopf, ed.). Princeton University Press, Princeton, NJ, pp. 240–259.

    Google Scholar 

  • Walker, J.C.G. (1977), Evolution of the Atmosphere. Macmillan, New York.

    Google Scholar 

  • Walker, J.C.G. (1986), Carbon dioxide on the early Earth. Origins Life 16, 117–127.

    ADS  Google Scholar 

  • Walter, M.R. (1983), Archean stromatolites: evidence of the Earth’s earliest benthos. In Earth’s Earliest Biosphere (J.W. Schopf, ed.). Princeton University Press, Princeton, NJ, pp. 187–213.

    Google Scholar 

  • Wetherill, G.W. (1977), Evolution of the earth’s planetesimal swarm subsequent to the formation of the earth and moon. Proc. Lunar. Sci. Conf. 8, 1–16.

    ADS  Google Scholar 

  • Wetherill, G.W. (1990), Formation of the Earth. Annu. Rev. Earth Planet. Sci. 18, 205–256.

    Article  ADS  Google Scholar 

  • Wilhelms, D.E. (1984), Moon. In The Geology of the Terrestrial Planets (M.H. Carr, ed.), pp. 107–205. NASA SP-469.

    Google Scholar 

  • Wilhelms, D.E. (1987), The Geologic History of the Moon. U.S. Geological Survey professional paper 1348. U.S. Government Printing Office, Washington, DC.

    Google Scholar 

  • Wilkening, L.L. (1978), Carbonaceous chondritic material in the solar system. Naturwiss. 66, 73–79.

    Article  ADS  Google Scholar 

  • Zahnle, K. (1986), Photochemistry of methane and the formation of hydrocyanic acid (HCN) in the Earth’s early atmosphere. J. Geophys. Res. 91, 2819–2834.

    Article  ADS  Google Scholar 

  • Zahnle, K. (1990), Atmospheric chemistry by large impacts. In Global Catastrophes in Earth History (V.I. Sharpton and P.D. Ward, eds.). Geological Society of America SP-247, Boulder, pp. 271–288.

    Google Scholar 

  • Zahnle, K. and Grinspoon, D. (1990), Comet dust as a source of amino acids at the Cretaceous/Tertiary boundary. Nature 348, 157–159.

    Article  ADS  Google Scholar 

  • Zahnle, K.J. and Walker, J.C.G. (1982), Evolution of solar ultraviolet luminosity. Rev. Geophys. Space Phys. 20, 280–292.

    Article  ADS  Google Scholar 

  • Zhao, M. and Bada, J.L. (1989), Extraterrestrial amino acids in Cretaceous/Tertiary boundary sediments at Stevns Klint, Denmark. Nature 339, 463–465.

    Article  ADS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Chyba, C.F., Sagan, C. (1997). Comets as a Source of Prebiotic Organic Molecules for the Early Earth. In: Thomas, P.J., Chyba, C.F., McKay, C.P. (eds) Comets and the Origin and Evolution of Life. Springer, New York, NY. https://doi.org/10.1007/978-1-4757-2688-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-2688-6_7

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4757-2690-9

  • Online ISBN: 978-1-4757-2688-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics