Skip to main content

Numerical Models of Comet and Asteroid Impacts

  • Chapter
Comets and the Origin and Evolution of Life

Abstract

Numerical simulation techniques can be applied to the collision of large organic-rich objects (comets and carbonaceous chondrite asteroids) with the early Earth. Results from these simulations imply that it is possible for a fraction of the extraterrestrial organic material to survive the high temperatures occurring during the impact (and thus contribute prebiotic material to the early Earth). Recent models for atmospheric passage, however, predict that the fate of such candidate impactors is an airburst capable of pyrolyzing the entire organic inventory of the comet or asteroid.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Baldwin, B. and Y. Shaeffer (1971), Ablation and breakup of large meteoroids during atmospheric entry, J. Geophys. Res., 76, 4653.

    Article  ADS  Google Scholar 

  • Biberman, L.M., S. Ya. Bronin, and M.V. Byrkin (1980), Acta Astronaut., 7, 53–65.

    Article  ADS  Google Scholar 

  • Ceplecha, Z. (1977), Meteoroid populations and orbits. In Comets, Asteroids and Meteorites ( A.H. Delsemme, ed.). University of Toledo, Toledo, OH.

    Google Scholar 

  • Chamerberlin, T.C. and R.T. Chamberlin (1908), Early terrestrial conditions that may have favored organic synthesis, Science, 28, 897–911.

    Article  ADS  Google Scholar 

  • Chyba, C.F., P.J. Thomas, L. Brookshaw, and C. Sagan (1990), Cometary delivery of organic molecules to the early Earth, Science, 249, 366–373.

    Article  ADS  Google Scholar 

  • Chyba, C.F., P.J. Thomas, and K.J. Zahnle (1993), The 1980 Tunguska explosion: Atmospheric disruption of a stony asteroid, Nature, 361, 40–44.

    Article  ADS  Google Scholar 

  • Clark, B.C. (1988), Primeval procreative comet pond, Origins Life, 18, 209.

    Article  ADS  Google Scholar 

  • Eliezer, S., A. Ghatak, and H. Hora (1986), An Introduction to Equations of State: Theory and Applications. Cambridge University Press, Cambridge.

    Google Scholar 

  • Folinsbee, R.E., J.A.V. Douglas, and J.A. Maxwell (1967), Revelstoke, a new Type I carbonaceous chondrite, Geochim. Cosmochim. Acta, 31, 1625–1635.

    Article  ADS  Google Scholar 

  • Kasting, J.F. (1990), Bolide impacts and the oxidation state of carbon in the Earth’s early atmosphere, Origins Life, 20, 199–231.

    Article  Google Scholar 

  • Krinov, E.L. (1966), Giant Meteorites. Pergamon, Oxford.

    Google Scholar 

  • Levin, B.Y. and V.A. Bronshten (1986), The Tunguska event and the meteors with terminal flares, Meteoritics, 21, 199–215.

    Article  ADS  Google Scholar 

  • Melosh, H.J. (1989), Impact Cratering: A Geologic Process. Oxford University Press, New York.

    Google Scholar 

  • Monaghan, J.J. (1985), Particle methods for hydrodynamics, Comput. Phys. Rep., 3, 7 1124.

    Google Scholar 

  • Monaghan, J.J. (1992), Ann. Rev. Astrophys., 30, 543–574.

    Article  ADS  Google Scholar 

  • O’Keefe, J.D. and T.J. Ahrens (1982), Cometary and meteorite swarm impact on planetary surfaces, J. Geophys. Res., 87, 6668–6680.

    Article  ADS  Google Scholar 

  • Oro, J. (1961), Comets and the formation of biochemical compounds on the primitive Earth, Nature, 190, 389–390.

    Article  ADS  Google Scholar 

  • Passey, Q.R. and H.J. Melosh (1980), Effects of atmospheric breakup on crater field formation, Icarus, 42, 211–233.

    Article  ADS  Google Scholar 

  • SESAME ‘83 (1983), Report on the Los Alamos Equation-of-State Library, LALP-83–4. Los Alamos National Laboratory, Los Alamos, NM.

    Google Scholar 

  • Thompson, S.L., and H.S. Lauson (1972), Improvements in the Chart-D radiation-hydrodynamic code III: Revised analytic equations of state. Sandia National Laboratory Report RR-71 0714.

    Google Scholar 

  • Tillotson, J.H. (1962), Metallic equation of state for hypervelocity impact. General Atomic Report GA-3216.

    Google Scholar 

  • Tyburczy, J.A., T.S. Duffy, T.J. Ahrens, and M.A. Lange (1991), Shock wave equation of state of serpentine to 150 GPA: Implications for the occurrence of water in the earth’s lower mantle, J. Geophys. Res., 96, 18011.

    Article  ADS  Google Scholar 

  • Walker, J.C.G. (1986), Carbon dioxide on the early Earth, Origins Life, 16, 117–127.

    ADS  Google Scholar 

  • Wilkening, L.L. (1978), Carbonaceous chondritic material in the Solar System, D. Naturwiss., 65, 73.

    Google Scholar 

  • Zahnle, K. and M.-M. Mac Low (1994), The collision of Jupiter and comet Shoemaker-Levy 9, Icarus, 108, 1–17.

    Article  ADS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Thomas, P.J., Brookshaw, L. (1997). Numerical Models of Comet and Asteroid Impacts. In: Thomas, P.J., Chyba, C.F., McKay, C.P. (eds) Comets and the Origin and Evolution of Life. Springer, New York, NY. https://doi.org/10.1007/978-1-4757-2688-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-2688-6_6

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4757-2690-9

  • Online ISBN: 978-1-4757-2688-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics