Organic Chemistry in Comets From Remote and In Situ Observations

  • J. Kissel
  • F. R. Krueger
  • K. Roessler


Radiation induced chemistry is the major source of organic matter in space. Comets as small bodies, that were kept in the cold parts of our solar system since its formation provide a unique source to study such genuine material.

When the VEGA and GIOTTO spacecrafts flew by comet P/Halley in 1986 the mass-spectrometers Puma and PIA measured the composition of cometary dust particles impacting at speeds of well above 65 km s−1. Ion formation upon impact leads to mostly atomic ions. However, a small fraction of the ions measured could be related to molecules. A sophisticated analysis allowed for the first time to point to the chemical nature of cometary organics based on actual mass spectra.

The next logical step for in situ cometary exploration is a rendezvous-type mission. This had been planned by NASA and the German BMFT, but was unfortunately canceled in the spring of 1992. In the meantime the European Space Agency (ESA) has dedicated its next major mission, Rosetta, to perform a comet rendezvous.

A time-of-flight secondary ion mass spectrometer (CoMA) can provide much higher mass resolution up to molecule masses of some 3000 Da.


Polycyclic Aromatic Hydrocarbon Solar Wind Dust Particle Cometary Nucleus Cometary Dust 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. A’Hearn, M.F. and Festou, M.C. (1990), Physics and Chemistry of Comets. In W.F. Huebner ( Springer Verlag, Heidelberg ), pp. 69–112.Google Scholar
  2. Benninghoven, A. and Sichtermann, W.K. (1978), Detection, identification and structural investigation of biologically important compounds by secondary ion mass spectrometry, Analyt. Chem., 50, 1180–1184.CrossRefGoogle Scholar
  3. Clark, B.C. (1988), Primeval procreative comet pond. Origins Life, 18, 209–238.ADSCrossRefGoogle Scholar
  4. Clark, B.C., Mason, L.W., and Kissel, J., 1987, Systematics of the CHON and other light-element particle populations in Comet P/Halley. Astron. Astrophys., 187, 779–784.ADSGoogle Scholar
  5. Draganic, I.G., Draganic, Z.D., and Vujosevic, S. (1984), Some radiation-chemical aspects of chemistry in cometary nuclei. Icarus, 60, 464–475.ADSCrossRefGoogle Scholar
  6. Duley, W.W. and Williams, D.A. (1984), Interstellar Chemistry (Academic Press, London). Eigen, M. and Schuster, P. (1977), The Hypercycle ( Springer-Verlag, Berlin).Google Scholar
  7. Mcadden, L.A., A’Hearn, M.F., Feldman, P.D. Roettger, E.E., Edsall, D.M., and Butter- worth, P.S. (1987), Activity of comet P/Halley 23–25Google Scholar
  8. March, 1986: IUE Observations Astron. Astrophys, 187, 333–338.Google Scholar
  9. Greenberg, J.M. (1978). In J.A.M. McDonnell (ed.), Cosmic Dust (Wiley, New York), pp. 187–294.Google Scholar
  10. Greenberg, J.M. (1984), The structure and evolution of interstellar grains. Sci. Am., 250, 124–135.Google Scholar
  11. Heyl, M. and Roessler, K. (1992), In J.P. Adloff et al. (eds.), Handbook of Hot Atom Chemistry ( Kodansha, Tokyo and Verlag Chemie, Weinheim ), pp. 602–624.Google Scholar
  12. Hoyle, F. and Wickramasinghe, N.C., pre-print no. 122, University College, Cardiff.Google Scholar
  13. Huebner, W.F. (1987), First polymer in space identified in Comet Halley. Science, 237, 628–630.ADSCrossRefGoogle Scholar
  14. Huebner, W.F., Boice, D.C., and Sharp, C.M. (1987), Polyoxymethylene in Comet Halley. The Astrophysical Journal, 320, 149–152.ADSCrossRefGoogle Scholar
  15. Huebner, W.F. (1990), Physics and Chemistry of Comets, (Springer-Verlag, Berlin). Jessberger, E.K., Kissel, H., Fechtig, H., and Krueger, F.R. (1986), Eur. Space Agency Spec. Publ., 249, 27.ADSGoogle Scholar
  16. Jessberger, E.K., Christoforidis, A. and Kissel, J. (1988), Aspects of the major element composition of Halley’s dust. Nature, 332, 691–695.ADSCrossRefGoogle Scholar
  17. Jessberger, E.K. and Kissel, J. (1991). In R. Newburn, M. Neugebauer (eds.), Comets in the Post-Halley Era (II) ( Kluwer Academic Publishers, Dordrecht ), pp. 1075–1092.Google Scholar
  18. Kaiser, R.I. (1991), Chemische Prozesse durch Zyklotronionen in festem Methan (Report JL-2492, Research Centre KFA Jülich, Germany).Google Scholar
  19. Kaiser, R.I., Lauterwein, J., Maller, P. and Roessler, K. (1992), Nucl. Instr. Meth.,B 65 463–467.Google Scholar
  20. Kaiser, R. I. and Roessler, K. (1992), Cosmic ray modification of organic cometary matter simulated by cyclotron irradiation. Ann. Geophysicae, 10, 222–225.ADSGoogle Scholar
  21. Kaiser, R.I. (1993), MeV-Ionen induzierte chemische Reaktionen in festem Methan, Ethen and Ethin (Report JI- 2856, Research Centre KFA Jülich, Germany ).Google Scholar
  22. Kissel, J., Sagdeev, R.Z., Bertaux, J.L., Angarov, V.N., Audouze, J., Blamont, J.E., Bachler, K.V., Hoerner, H., Inogamov, N.A., Khomorov, V.N., Knabe, W., Krueger, F.R., Langevin, Y., Levasseur- Regourd, A.C., Managadze, G.G., Podkolzin, S.N., Sharipo, V.D., Tabaldyev S.R., and Zubkov, B.V. (1986a), Encounters with Comet Halley–The First Results). Nature, 321, 280–282.ADSCrossRefGoogle Scholar
  23. Kissel, J., Brownlee, D.E., Bachler, K., Clark, B.C., Fechtig, H., Gran, E., Hornung, K., Igenbergs, E.B., Jessberger, E.K., Krueger, F.R., Kuczera, H., McDonnell, J.A.M., Morfill, G.E., Rahe, J., Schem, G.H., Sekanina, Z., Utterback, N.G., Vilk, H.J., and Zook, H. (1986b), Encounters with Comet Halley–The First Results. Nature, 321, 336–337.Google Scholar
  24. Kissel, J. and Krueger, F.R. (1987a), Ion formation by impact of fast dust particles and comparison with related techniques. Appl. Phys., A 42, 69–85.Google Scholar
  25. Kissel, J. and Krueger, F.R. (1987b), The organic component in dust from comet Halley asGoogle Scholar
  26. measured by the PUMA mass spectrometer on board Vega I Nature,326 755–760.Google Scholar
  27. Korth, A., Krueger, F.R., Mendis, D.S., and Mitchell D.L. (1990), In C.I. Lagerkvist et al. (eds.), Asteroids, Comets, Meteors III, (Uppsala), pp. 373.Google Scholar
  28. Korth, A., Marconi, M.L., Mendis, D.A., Krueger, F.R., Richter, K.A., Lin, R.P., Mitchell, O.L., Andersen, K.A., Carlson, C.W., Réme, H., Savaud, J.A. and d’Uston, C. (1989), Probable detection of organic-dust-borne aromatic CH3 ions in the coma of comet Halley. Nature, 337, 53–55.Google Scholar
  29. Krueger, F.R. (1983), Thermodynamics of ion formation by fast dissipation of energy at solid surfaces. Naturforschung, 38a, 385–394.ADSGoogle Scholar
  30. Krueger, F.R. (1984), Physik und Evolution ( Parey, Berlin).Google Scholar
  31. Krueger, F.R. (1984a), Eur. Space Agency Spec. Publ., 224, 49.ADSGoogle Scholar
  32. Krueger, F.R. and J. Kissel (1989), Biogenesis by cometary grains — thermodyamic apsects of self-organization. Origins Life Evol. Biosphere, 19, 87–93.ADSCrossRefGoogle Scholar
  33. Krueger, F.R., Korth, A., and Kissel, J. (1991), The organic matter of comet Halley as inferred by joint gas phase and solid phase analyses. Space Science Reviews, 56, 167175.Google Scholar
  34. Lecluse, C. (1993), Fractionnement isotopique des éléments légers au cours de la formation du systéme solaire (Ph.D. thesis, Université Paris V II ).Google Scholar
  35. Lohrmann, R., Bridsen, P.K., and Orgel, L.E. (1980), Efficient metal-ion catalyzed template-directed oligonucleotide synthesis. Science, 208, 1464.ADSCrossRefGoogle Scholar
  36. Mahfouz, R.M., Sauer, M., Atwa, S.T., Kaiser, R.I., and Roessler, K. (1992). Nucl. Instr. Meth.,B 65 447–451.Google Scholar
  37. Mayer, F.J., Krueger, F.R., and Kissel, J. (1986). In A. Benninghoven (ed.), Proceedings in Physics, 9 ( Springer-Verlag, Berlin ), pp. 169.Google Scholar
  38. Moroz,V.I., Combes, M., Bibring, J.P., Coron, N., Crovisier, J., Encrenaz, T., Crifo, J.F., Sanko, N., Grigoryev, A.V., Bockelée-Morvan, D., Gispert, R., Nikolsky, Y.V., Emerich, C., Lamarre,J.M., Rocard, E., Krasnoplosky, V.A., and Owen, T. (1987), Detection of parent molecules in comet P/Halley from the IKS-Vega experiment. Astron. Astrophys., 187, 513–518.ADSGoogle Scholar
  39. Nicolis, G. and Prigogine, I. (1977), Self-Organization in Non-equilibrium Systems ( Wiley, New York).Google Scholar
  40. Patnaik, A., Roessler, K., and Zâdor, E. (1989), Modification of simple organic solids in space -Energetic carbon interactions with solid methane. Adv. Space Res, 9 (6), 49–52.ADSCrossRefGoogle Scholar
  41. Patnaik, A., Roessler, K., and Zâdor, E. (1990), Radiochimica Acta, 50, 75–85.Google Scholar
  42. Rettig, T.W., Tegler, S.C., Pasto, D.J., and Mumma, M.J. (1992), Comet outbursts and polymers of HCN. Astrophys. J., 398, 293–298.ADSCrossRefGoogle Scholar
  43. Roessler, K. (1987), Polycyclic Aromatic Hydrocarbons and Astrophysics In A. Léger, L. d’Hendecourt, and N. Boccara (eds.), Polycyclic Aromatic Hydrocarbons and Astrophysics ( Reidel, Dordrecht ), 173–176.CrossRefGoogle Scholar
  44. Roessler, K. and Eich, G. (1987), In Amorphous Hydrogenated Films, E-MRS, XVII ( Les Editions de Physique, Paris ), pp. 167–175.Google Scholar
  45. Roessler, K., Eich, G., Patnaik, A., and Zador, E. (1990), Polycyclic aromatic hydrocarbons via multicenter reactions induced by solar radiation, Lunar and Planetary Sci., XXI, 1035–1036.Google Scholar
  46. Roessler, K. (1991), In E. Bussoletti and G. Strazzulla (eds.), Solid State Astrophysics ( North Holland, Amsterdam ), pp. 197–266.Google Scholar
  47. Roessler, K. (1992a), Nucl. Instr. Meth., B 65, 55–66.Google Scholar
  48. Roessler, K. (1992b), In J.P. Adloff (eds.), Handbook of Hot Atom Chemistry ( Kodansha, Tokyo and Verlag Chemie, Weinheim ), pp. 602–624.Google Scholar
  49. Roessler, K. (1993), Aristoteles und die Weltraumsimulation (Script, Inauguration Lecture, Mathematisch-Naturwissenschaftliche Fakultät, Universität Münster, 8. Dec. 1993 ).Google Scholar
  50. Schulze, H. and Kissel, J. (1992), Chemical heterogeneity and mineralogy of Halley’s dust. Meteoritics, 27, 286–287.ADSGoogle Scholar
  51. Schutte, W., Allamandola, L.J. and Sandford, S.A. (1993a), Formaldehyde and organic molecule production in astrophysical ices at cryogenic temperatures. Science, 259, 1143–1145.ADSCrossRefGoogle Scholar
  52. Schueler, B., Feigl, P., Krueger, F.R., and Hillenkamp, F. (1981), Cationization of organic molecules under pulsed laser induced ion generation. Org . Mass Spectrom, 16,502— 506.Google Scholar
  53. Solc, M., Vanysek, V., and Kissel, J. (1987), Carbon-isotope ratio in PUMA 1 spectra of P/Halley dust. Astron. Astrophys., 187, 385–387.ADSGoogle Scholar
  54. Stöcklin, G. (1969), Chemie heiWerAtome ( Verlag Chemie, Weinheim) (Chimie des atomes chauds, Masson et Cie, Paris, 1972 ).Google Scholar
  55. Strazzulla, G. and Johnson, R.E. (1991), Irradiation effects on comets and cometary debris. In R.L. Newborn, M. Neugebauer and J. Rahe (eds.), Comets in the Post- Halley Era Vols. I-11 ( Dordrecht, Boston ), pp. 243–275.CrossRefGoogle Scholar
  56. Whipple, F.L. (1950), A comet model. I. The acceleration of Comet Encke. Astrophys. J., 111, 375–394.Google Scholar
  57. Winnewisser, G. and Armstrong, J.T. (eds.) (1989), The Physics and Chemistry of Interstellar Molecular Clouds ( Springer, Berlin ).Google Scholar
  58. Zscheeg, H., Kissel, J., Natour, Gh., and Vollmer, E. (1992), COMA–An additional space experiment for in situ analysis of cometary matter. Astrophysics and Space Science, 195, 447–461.ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • J. Kissel
  • F. R. Krueger
  • K. Roessler

There are no affiliations available

Personalised recommendations