The Origin of the Atmosphere and of the Oceans

  • A. Delsemme


The atmosphere of the Earth, its oceans as well as most carbon contained in its carbonates and in organic matter, seem to have been brought by a large bombardment of comets that lasted almost one billion years before diminishing drastically to its present-day value.


Heliocentric Distance Giant Planet Terrestrial Planet Solar Nebula Carbonaceous Chondrite 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alexander, E.C., Ozima, M. (eds.) (1978), Terrestrial Rare Gases,Adv. Earth Planet. Sci., 3 (Japan Sci. Soc. Press, Tokyo ), 229.CrossRefGoogle Scholar
  2. Anders, E. (1971), Meteorites and the early solar system. Ann. Rev. Astronom. Astrophys., 9, 1–34.ADSCrossRefGoogle Scholar
  3. Anders, E., Grevesse, N. (1989), Abundances of the elements: meteoritic and solar. Geochim. Cosmochim. Acta, 53, 197–214.ADSCrossRefGoogle Scholar
  4. Anderson, A.T. (1975), Some basaltic and andesitic gases. Rev. Geophys. Space Phys., 13, 37–55.Google Scholar
  5. Bar-Nun, A. Kleinfeld, I., Kochavi, E. (1988), Trapping of gas mixtures by amorphous water ice. Phys. Rev B, 38, 7749–7754.CrossRefGoogle Scholar
  6. Bar-Nun, A., Kleinfeld, I. (1989), On the temperature and gas composition in the region of comet formation. Icarus, 80, 243–253.ADSCrossRefGoogle Scholar
  7. Berkner, L.V. Marshall, L.C. (1965), On the origin and rise of oxygen concentration in the earth’s atmosphere. J. Atmos. Sci., 22, 225–261.Google Scholar
  8. Bernal, J.D. (1968), Origins of Prebiotic Systems…. S.W. Fox (ed.) (Academic Press, New York ), pp. 65–68.Google Scholar
  9. Bertout, C. (1989), Annu. Rev. Astronom. Astrophys., 27, 351–395.ADSCrossRefGoogle Scholar
  10. Cameron, A.G.W. (1985), Formation and evolution of the primitive solar nebula. In D.C. Black and M.S. Matthews (eds.), Protostars & Planets II ( University of Arizona Press, Tucson ), pp. 1073–1099.Google Scholar
  11. Cameron, A.G.W. (1988), Origin of the solar system. Annu. Rev. Astron. Astrophys., 26, 441–472.ADSCrossRefGoogle Scholar
  12. Carr, M.H., Saunders, R.W., Strom, R.G., Wilhelms, D.E. (1984), Geology of the Terrestrial Planets (NASA SP-469, Washington DC)Google Scholar
  13. Chamberlin, T.C. and Chamberlin, R.T. (1908), Early terrestrial conditions that may have favored organic synthesis. Science, 28, 897–910.ADSCrossRefGoogle Scholar
  14. Cassen P., Shu F.H., Tereby S. (1985). In D.C. Black and M.S. Matthews (eds.), Protostars and Planets II (Univ. of Arizona Press, Tucson ), pp. 448–483.Google Scholar
  15. Chang, S. (1979), Comets: Cosmic connections with carbonaceous meteorites, interstellar molecules and the origin of life. In M. Neugebauer, D.K. Yeomans, J.C. Brandt and R.W. Hobbs (eds.), Space Missions to Comets ( NASA SP-2089, Washington, DC ), pp. 59–111.Google Scholar
  16. Chyba, C.F. (1987), The cometary contribution to the oceans of primitive Earth. Nature, 330, 632–635.ADSCrossRefGoogle Scholar
  17. Cronin, J.R., Pizzarello, S., Cruikshank, D.P. (1988), Organic matter in carbonaceous chondrites, planetary satellites, asteroids and comets. In J.F. Kerridge & M.S. Matthews (eds.), Meteorites and the Early Solar System ( Univ Arizona, Tucson ), pp. 819–857.Google Scholar
  18. Delsemme, A.H. (1979), Scientific returns from a program of space missions to comets,. In Neugebauer et al. (eds.) Space Missions to Comets, (NASA SP-2089, Washington DC), pp. 139–178.Google Scholar
  19. Delsemme, A.H. (1981), Nature and origin of organic molecues in comets. In C. Ponnamperuma (ed.), Comets and the Origin of Life (D. Reidel Publishing Company, Dordrecht, Holland ), pp. 33–42.Google Scholar
  20. Delsemme, A.H. (1981), In C. Ponnamperuma (ed.), Comets and the Origin of Life (D. Reidel Publishing Company, Dordrecht, Holland ), pp. 141–159.Google Scholar
  21. Delsemme, A.H. (1987). In Diversity and Similarity of comet (European Space Agency, ESA-SP-278, Paris), pp. 19–30.Google Scholar
  22. Delsemme, A.H. (1991), Nature and history of the organic compounds in comets: An astrophysical view. In R.L. Newburn, M. Neugebauer, and J. Rahe (eds.), Comets in the Post-Halley Era, Vols. I-II ( Dordrecht, Boston ), pp. 377–427.Google Scholar
  23. Delsemme, A.H. (1991 b), Origin of the biosphere of the Earth. In J. Heidmann & M.J. Klein (eds.), Lecture Notes in Physics 390: Bioastronomy ( Springer-Verlag, New York ), pp. 117–123.Google Scholar
  24. Delsemme, A.H. (1991c), International Halley Watch. In Z. Sekanina (ed.), The Comet Halley Archives Summary Volume (NASA-JPL, Pasadena ), pp. 317–330.Google Scholar
  25. Delsemme, A.H. (1992), Cometary origin of carbon, nitrogen and water on the Earth. 64 2. The Origin of the Atmosphere and of the Oceans Origins Life Evol. Biosphere, 21, 279–298.ADSGoogle Scholar
  26. Delsemme, A.H. (1993), Cometary origin of the biosphere: A progress report. Adv. Space Res., 15, 49–57.CrossRefGoogle Scholar
  27. Delsemme, A.H. and Miller, D.C. (1970), Physico-chemical phenomena in comets -II: Gas adsorption in the snows of the nucleus. Planet. Space Sci, 18, 717–730.ADSCrossRefGoogle Scholar
  28. Delsemme, A.H. and Wenger, A. (1970), Physico-chemical phenomena in comets -I: Ex-perimental study of snows in a cometary environment. Planet Space Sci., 18, 709–716.ADSCrossRefGoogle Scholar
  29. Delsemme, A.H. and Swings, R. (1952), Gas hydrates in cometary nuclei and interstellar grains. Ann. Astrophys., 15, 1–6.ADSGoogle Scholar
  30. Dreibus, G. and H. Wänke (1989), Supply and loss of volatile constituents during the accretion of terrestrial planets. In S.K. Atreya, J.B. Pollack, and M.S. Matthews (eds.), Origin and Evolution of Planetary and Satellite Atmospheres (Univ. Arizona Press, Tucson ), pp. 268–288.Google Scholar
  31. Dymond, J. and Hogan, L. (1978), Factors controlling the noble gas abundance patterns of deep-sea basalts. Earth planet. Sci. Lett., 38, 117–128.ADSCrossRefGoogle Scholar
  32. Eberhart, P. (1981). In Basaltic Volcanism Study Project (Pergamon, New York), pp 10251031.Google Scholar
  33. Eberhart, P. Dolder, U. and Schulte, W., Krankowsky, D., Lammerzahl, R, Hoffmann, J.H., Hodges, R.R. Bertheller, J.J, and Illiano, J.M. (1987), The D/H ratio in water from Comet P/Halley, Astron. and Astrophys.,187 435–437.Google Scholar
  34. Everhart, E. (1977), The evolution of comet orbits as perturbed by Uranus and Neptune. In A.H. Delsemme (ed.), Comets, Asteroids, Meteorites ( Univ. Toledo ), pp 99–104.Google Scholar
  35. Fernandez, J.A. and Ip, W.H. (1981), Dynamical evolution of a cometary swarm in the outer planetary region. Icarus, 47, 470–479.ADSCrossRefGoogle Scholar
  36. Fernandez, J.A. and Ip, W.H. (1983), On the time-evolution of the cometary influx in the region of the terrestrial planets. Icarus, 54, 377–387.ADSCrossRefGoogle Scholar
  37. Gaffey, M.J. and Mc Cord, T. B (1979), Mineralogical and petrological characteristics of asteroid surface materials. In T. Gehrels (ed.), Asteroids ( Univ. Arizona ), pp. 688–723.Google Scholar
  38. Geiss, J. and Reeves, H. (1981), Deuterium in the solar system. Astron. Astrophys., 93, 189–199.ADSGoogle Scholar
  39. Goldreich, R. and Ward, W.R. (1973), The formation of planetesimals, Astrophys. J.,183 1051–1061.Google Scholar
  40. Grinspoon, D.H. and Lewis, J.S. (1987), Deuterium fractionation in the presolar nebula: kinetic limitations on surface catalysis. Icarus, 72, 430–436.ADSCrossRefGoogle Scholar
  41. Hartmann, L.W., Kenyon, S.J. (1990), Optical veiling disk accretion, and the evolution of T Tauri Stars. Astrophys. J., 349, 190–196.ADSCrossRefGoogle Scholar
  42. Horedt, G.P. (1978), Blow-off of the protoplanetary cloud by a T Tauri like solar wind. Astron. Astrophys., 64, 173–178.ADSGoogle Scholar
  43. Hubbard, W.B. (1984), Planetary Interiors (Van Nostrand-Reinhold, New York). Ip, W.H. and Fernandez, J.A. (1988), Exchange of condensed matter among the outer and terrestrial protoplanets and the effect on surface impact and atmospheric accretion. Icarus, 74, 47–61.Google Scholar
  44. Jessberger, E.K., Christoforidis, A and Kissel, J. (1988), Aspects of the major element composition of Halley’s dust. Nature, 332, 691–695.ADSCrossRefGoogle Scholar
  45. Kazimirchak-Polonskaya, E.I. (1972), The major planets as powerful transformers of cometary orbits. In G.A Chebotarev, E.I. Kazimirchak-Polonskaya, B.G. Marsden (eds.), The Motions, Evolution of Orbits and Origins of Comets (D. Reidel Publishing Co., Dordrecht, Holland ), pp. 373–397.Google Scholar
  46. Kerridge, J.F. (1991) (personal communication). See also Anders, E. and Kerridge, J.F. (1988), Future directions in meteorite research. In J.F. Kerridge and M.S. Matthews (eds.), Meteorites and the Early Solar System (Univ. of Arizona, Tucson), pp. 11551186.Google Scholar
  47. Krueger, F.R. and Kissel, J. (1987), The chemical composition of the dust of Comet P/Halley as measured by “PUMA” on board VEGA-1. Naturwiss., 74, 312–316.ADSCrossRefGoogle Scholar
  48. Laplace, P.S. (1796), Exposition du Systeme du Monde (Vve Courcier, Paris), pp. 431 in the 4th edition of 1813.Google Scholar
  49. Larimer, J.W. (1967), Chemical fractionations in meteorites -I: Condensation of the elements. Geochim. Cosmochim. Acta, 31, 1215–1238.ADSCrossRefGoogle Scholar
  50. Larimer, J.W. (1968), An experimental investigation of oldhamite, CaS; and the petrologic significance of oldhamite in meteorites. Geochim. Cosmochim. Acta, 32, 965–982, and Experimental studies on the system Fe-MgO-SiO2–02 and their bearing on the petrology of chondritic meteorites, 1187–1207.Google Scholar
  51. Larson, R.B. (1984), Gravitational torques and star formation. Mon. Not. Royal Astron. Soc., 206, 197–207.ADSGoogle Scholar
  52. Lewis, J.S. (1972 a), Low temperature condensation from the solar nebula. Icarus, 16, 241–252.Google Scholar
  53. Lewis, J.S. (1972 b), Metal/silicate fractionation in the solar system.Earth Planet. Sci. Lett.,15 286–290.Google Scholar
  54. Lewis, J.S. (1974), The temperature gradient in the solar nebula. Science, 186, 440–443.ADSCrossRefGoogle Scholar
  55. Lewis, J., Barshay, S.S. and Noyes, B. (1979), Primordial retention of carbon by the terrestrial planets. Icarus, 37, 190–206.ADSCrossRefGoogle Scholar
  56. Lewis, J.S. and Prinn, R.G. (1980), Kinetic inhibition of CO and N2 reduction in the solar nebula. Astrophys. J., 238, 357–364.ADSCrossRefGoogle Scholar
  57. Lin, D.N.C. and Papaloizou, J. (1985), On the dynamical origin of the solar system. In D.C. Black and M.S. Matthews (eds.), Protostars and Planets II) (Univ. of Arizona, Tucson), pp. 981–1072, in particular Fig 7.Google Scholar
  58. Lynden-Bell, D. and Pringle, J.E. (1974), The evolution of viscous discs and the origin of the nebular variables. Mon. Not. Royal Astron. Soc., 168, 603–637.ADSGoogle Scholar
  59. Matsui, T. and Abe, Y. (1986), Impact induced atmospheres and oceans on Earth and Venus. Nature, 322, 526–528.ADSCrossRefGoogle Scholar
  60. Mizuno, H. (1980), Formation of the giant planets. Progr. Theoret. Phys., 64, 544–557.ADSCrossRefGoogle Scholar
  61. Morfill, G.E. (1988), Protoplanetary accretion disks with coagulation and evaporation. Icarus, 75, 371–379.ADSCrossRefGoogle Scholar
  62. Morfill, G.E. and Wood, J.A. (1989), Protoplanetary accretion disc models: the effects of several meteoritic, astronomical, and physical constraints. Icarus, 82, 225–243.ADSCrossRefGoogle Scholar
  63. Morgan, J.W., Wandless, G.A., Petrie, R.K., and Irving, A.J. (1981), Composition of the earth’s upper mantle. I- siderophile trace elements in ultramafic nodules. Tectonophys., 75, 47–67.CrossRefGoogle Scholar
  64. Morrison, D. (1977). In A.H. Delsemme (ed.), Comets, Asteroids, Meteorites (Univ. of Toledo, Ohio ), pp. 177–184.Google Scholar
  65. Oro, J. (1961), Comets and the formation of biochemical compounds on the primitive earth. Nature, 190, 389–390.ADSCrossRefGoogle Scholar
  66. Owen, T., Bar-Nun, A., and Kleinfeld, I. (1991). In Newburn et al. (eds.), Comets in the post-Halley Era, vol. I ( Kluwer Publ., Netherlands ), pp. 429–437.Google Scholar
  67. Pepin, R.O. (1989), Atmospheric compositions: key similarities and differences. In Atreya et al. (eds.), Origin and Evolution of Planetary and Satellite Atmospheres (Univ. of Arizona, Tucson ), pp. 291–305.Google Scholar
  68. Pepin, R.O. (1991), On the origin and early evolution of terrestrial planet atmospheres and 66 2. The Origin of the Atmosphere and of the Oceans meteoritic volatiles. Icarus, 92, 2–79.ADSCrossRefGoogle Scholar
  69. Prinn, R.G. and Fegley, B. (1989). In Atreya et al. (eds.), Origin and Evolution of Planetary and Satellite Atmospheres (Univ. of Arizona, Tucson ), pp. 78–137.Google Scholar
  70. Rama Murthy, V. (1991), Early differentiation of the Earth and the problem of mantle siderophile elements: a new approach. Science, 253, 303–306.ADSCrossRefGoogle Scholar
  71. Reynolds, J.H., Frick, U., Neil, J.M., and Phinney, D.L. (1975), Rare-gas-rich separates from carbonaceous chondrites. Geochim. Cosmoshim. Acta, 42, 1775–1797.Google Scholar
  72. Ringwood, A.E. (1977), Composition and Origin of the Earth, (School of Physics, Publ. 1299, Australian National Univ., Canberra ).Google Scholar
  73. Rowan-Robinson, M. (1985), Infrared observations of interstellar clouds. Physica Scripta, T11, 68–70.CrossRefGoogle Scholar
  74. Rubey, W.W. (1951), Geologic history of sea water: an attempt to state the problem. Bull. Geol. Soc. Am., 62, 1111–1147.CrossRefGoogle Scholar
  75. Rubey, W.W. (1955). In Poldervaart (ed.), Crust of the Earth, (Geol. Soc. of America, New York ), pp. 630–650.Google Scholar
  76. Safronov, V.S. (1972). In G.A Chebotarev, E.I. Kazimirchak-Polonskaya, B.G. Marsden (eds.), The Motions, Evolution of Orbits and Origins of Comets (D. Reidel Publishing Co., Dordrecht, Holland ), pp. 329–334.Google Scholar
  77. Safronov, V.S. (1991), Kuiper Prize Lecture: Some problems in the formation of the planets. Icarus, 94, 260–271.ADSCrossRefGoogle Scholar
  78. Sears, D.W.G. and Dodd, R.T. (1988), Overview and classification of meteorites. In J.F. Kerridge and M.S.Matthews, (eds.), Meteorites and the Early Solar System (Univ. of Arizona, Tucson ), pp. 3–31.Google Scholar
  79. Signer, P. and Suess, H.E. (1963). In Geiss and Goldberg (eds.), Earth Science and Meteoritics (North Holland, Amsterdam), pp. 241–278.Google Scholar
  80. Smith, B.A. and Terrile, R.J. (1984), A circumstellar disk around ß Pictons. Science, 226, 1421–1424.Google Scholar
  81. Stevenson, D.J. and Lunine, J.I. (1988), Rapid formation of Jupiter by diffusive redistribution of water vapor in the solar nebula. Icarus, 75, 146–155.ADSCrossRefGoogle Scholar
  82. Turekian, K.K. (1972). In Chemistry of the Earth (Holt, Rinehart & Winston, New York ), pp. 102.Google Scholar
  83. Van Hise, N. (1904). In A Treatise on Metamorphism (United States Geological Survey, Mon. 40), pp. 970, 973, & 974.Google Scholar
  84. Vidal-Madjar, A. (1983). In Audouze et al. (eds.), Diffuse Matter in Galaxies (ASI Series C No 110, Reidel Dordrecht), pp. 57–94.Google Scholar
  85. Von Weiszacker (1944) quoted by Kuiper in A. Hyneck (ed.), Astrophysics: a topical symposium ( Univ. of Chicago Press, Chicago).Google Scholar
  86. Wänke, H. (1981), Constitution of terrestrial planets, Phil. Trans. Roy. Soc. London, Ser.A, 303, 287–302.Google Scholar
  87. Wänke, H. Dreibus, G., and Jagouts, E. (1984). In Kroner et al. (eds.), Archaean Geochemistry (Springer Verlag, Berlin), pp. 1–24.Google Scholar
  88. Weidenschilling, S.J. (1988), Formation processes and time scales for meteorite parent bodies. In J.F. Kerridge and M.S. Matthews (eds.), Meteorites and the Early Solar System (Univ. of Arizona, Tucson ), pp. 348–371.Google Scholar
  89. Weissman, R (1989). In Atreya et al. (eds.), Origin and Evolution of Planetary and Satellite Atmospheres (Univ. of Arizona, Tucson), pp. 230–267.Google Scholar
  90. Wetherill, G.W. (1975), Late heavy bombardment of the moon and terrestrial planets. In Proceedings of the 6th Lunar Science Conference ( Lunar and Planetary Institute, Houston ), 1539–1561.Google Scholar
  91. Wetherill, G.W. (1980), Formation of the terrestrial planets. Annu. Rev. Astron. Astrophys., 18, 77–113.ADSCrossRefGoogle Scholar
  92. Wetherill, G.W. (1989). In Binzel et al. (eds.), Asteroids II (Univ. Arizona, Tucson ), pp. 666–670.Google Scholar
  93. Wetherill, G.W. (1990), Comparison of analytical and physical modeling of planetesimal accumulation. Icarus, 88, 336–354.ADSCrossRefGoogle Scholar
  94. Wetherill, G.W. (1991), Occurrence of Earth-like bodies in planetary systems. Science, 253, 535–538.ADSCrossRefGoogle Scholar
  95. Wetherill, G.W. and Champman, C.R. (1988), Asteroids and meteorites. In J.F. Kerridge and M.S. Matthews (eds.), Meteorites and the Early Solar System (Univ. Arizona, Tucson ), pp. 35–67.Google Scholar
  96. Wetherill, G.W. and Cox, L.P. (1985), The range of validity of the two-body approximation in models of terrestrial planet accumulation. Icarus, 63, 290–303.ADSCrossRefGoogle Scholar
  97. Wetherill, G.W. and Stewart, G.R. (1989), Accumulation of a swarm of small planetesimals. Icarus, 77, 330–357.ADSCrossRefGoogle Scholar
  98. Whipple, F.L. (1979), Scientific need for a cometary mission. In Neugebauer et al. (eds.), Space Missions to Comets (NASA SP-2089, Washington DC), pp. 1–32.Google Scholar
  99. Wood, J.A., Morfill, G.E. (1988), A review of solar nebula models. In J. F. Kerridge and M.S.Google Scholar
  100. Matthews (eds), Meteorites and the Early Solar System (Univ. of Arizona, Tucson), pp. 329–347.Google Scholar
  101. Zellner, B. (1979). In Asteroids,T. Gehrels (ed.), University of Arizona Press, Tucson, pp. 783–806.Google Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • A. Delsemme

There are no affiliations available

Personalised recommendations