Skip to main content

Abstract

Life appears early in the geological record of the Earth. This implies that either the origin of life was rapid or that life was carried to Earth from elsewhere. Comets have been suggested as the likely vectors for transporting life to Earth. The origin of life may have occurred in an initial phase of comet evolution when radioactive heating may have produced a liquid water core. However, a strong case cannot be made for the origin of life in comets. If life originated beyond the solar system and was carried along with interstellar organics to the solar nebula by unknown mechanisms, then comets are ideal for the collection of these lifeforms, as well as their storage and distribution to planetary surfaces. If comets were responsible for introducing life to Earth, then Earth-like life should be detectable in comets as well as in interplanetary dust particles originating from comets. The limited organic analyses of cometary material available from the missions to Comet Halley failed to detect amino acids and hence do not support the presence of Earth-type life in comets. Remote spectral analyses are virtually useless for this identification.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allamandolla, L.J., S.A. Sandford, and B. Wopenka (1987). Interstellar polycyclic aromatic hydrocarbons and carbon in interplanetary dust particles and meteorites. Science 237, 56–59.

    Article  ADS  Google Scholar 

  • Anders, E. (1989). Prebiotic organic matter from comets and asteroids. Nature 342, 255257.

    Google Scholar 

  • Bar-Nun, A., A. Lazcano-Araujo, and J. Oro (1981). Could life have evolved in cometary nuclei? Origins Life 11, 387–394.

    Article  ADS  Google Scholar 

  • Boston, P.J., M.V. Ivanov, and C.P. McKay (1992). On the possibility of chemosynthetic ecosystems in subsurface habitats on Mars. Icarus 95, 300–308.

    Article  ADS  Google Scholar 

  • R.J. Cano and M.K. Borucki (1995). Revival and identification of bacterial spores in 25- to 40-million-year-old Dominican amber. Science 268, 1060–1064.

    Article  ADS  Google Scholar 

  • Chyba, C.F. (1987). The cometary contribution to the oceans of primitive Earth. Nature 330, 632–635.

    Article  ADS  Google Scholar 

  • Chyba, C. and C. Sagan (1987). Cometary organics but no evidence for bacteria. Nature 329, 208.

    Article  ADS  Google Scholar 

  • Chyba, C.F., P.J. Thomas, L. Brookshaw, and C. Sagan (1990). Cometary delivery of organic molecules to the early Earth. Science 249, 366–373.

    Article  ADS  Google Scholar 

  • Clark, B.C. (1988). Primeval procreative comet pond. Origins Life Evol. Biosphere 18, 209–238.

    Article  ADS  Google Scholar 

  • Davies, R.E. (1988). Panspermia: Unlikely, unsupported, but just possible. Acta Astronaut. 17 129–135.

    Article  Google Scholar 

  • Davies, R.E. and R.H. Koch (1991). All the observed universe has contributed to life. Phil. Trans. R. Soc. Lond. B 334, 391–403.

    Google Scholar 

  • Davies, R.E., A.M. Delluva, and R.H. Koch (1984). Investigations of claims for interstellar organisms and complex organic molecules. Nature 311, 748–750.

    Article  ADS  Google Scholar 

  • Davis, W.L. and C.P. McKay (1995). The origin of life: A survey of theories and application to Mars. submitted.

    Google Scholar 

  • Delsemme, A.H. (1992). Cometary origin of carbon, nitrogen and water on the Earth. Origins Life Evol. Biosphere 21, 279–298.

    ADS  Google Scholar 

  • Eigen, M., Lindemann, B.F., Tietze, M., Winkler-Oswatitsch, R., Dress, A. and von Haeseler, A. (1989). How old is the genetic code? Statistical geometry provides an answer. Science 244, 673–679.

    Article  ADS  Google Scholar 

  • Gilichinsky, D.A., E.A. Vorobyova, L.G. Erokhina, D.G. Fyordorov-Dayvdov, and N.R. Chaikovskaya (1992). Long-term preservation of microbial ecosystems in permafrost. Adv. Space Res. 12 (4) 255–263.

    Article  ADS  Google Scholar 

  • Hoham, R.W., J.E. Mullet, and S.C. Roemer (1983). The life history and ecology of the snow alga Chloromonas polyptera comb. nov. (Chlorophyta, Volvocales), Canadian J. Botany 61, 2416–2429.

    Article  Google Scholar 

  • Hoham, R.W. (1975). Optimum temperatures and temperature ranges for growth of snow algae, Arctic and Alpine Res 7, 13–24.

    Article  ADS  Google Scholar 

  • Hoover, R.B., F. Hoyle, N.C. Wickramasinghe, M.J. Hoover, and S. Al-Mufti (1986). Diatoms on Earth, comets, Europa and in interstellar space. Earth, Moon, Planets, 35, 19–45.

    Google Scholar 

  • Horneck, G., Brucker, H., and Reitz, G. (1994). Long-term survival of bacterial spores in space. Adv. Space Sci. 14, (10) 41–45.

    Article  ADS  Google Scholar 

  • Hoyle, F. and C. Wickramasinghe (1979). On the nature of interstellar grains. Astrophys. Space Sci. 66, 77–90.

    Article  ADS  Google Scholar 

  • Hoyle, F. and C. Wickramasinghe (1981). Comets-a vehicle for panspermia. In Comets and the Origin of Life (C. Ponnamperuma, Ed.). pp 227–239. Reidel, Dordrecht, Holland, p. 27.

    Google Scholar 

  • Irvine, W.M., S.B. Leschine, and F.P. Schloerb (1980). Thermal history, chemical compo-sition and relationship of comets to the origin of life. Nature 283, 748–749.

    Article  ADS  Google Scholar 

  • Jessberger, E.K., A. Christoforidis, and J. Kissel (1988). Aspects of the major element composition of Halley’s dust. Nature, 332, 691–695.

    Article  ADS  Google Scholar 

  • Kissel, J. and F.R. Krueger (1987). The organic component in the dust from comet Halley as measured by the PUMA mass spectrometer on board Vega 1. Nature 326, 755–760.

    Article  ADS  Google Scholar 

  • Krueger, F.R. and J. Kissel (1989). Biogenesis by cometary grains-thermodyamic apsects of self-organization. Origins Life Evol. Biosphere 19, 87–93.

    Article  ADS  Google Scholar 

  • Kushner, D. (1981). Extreme environments: Are there any limits to life? In Comets and the Origin of Life ( C. Ponnamperuma, ed.). Reidel, Dordrecht, Holland, pp. 241–248.

    Chapter  Google Scholar 

  • Maher, K. A., and D. J. Stevenson (1988). Impact frustration of the origin of life, Nature 331, 612–614.

    Article  ADS  Google Scholar 

  • Marcus, J.N. amd M.A. Olsen (1991). Biological implications of organic compounds in comets. In Comets in the Post-Hallye Era, Vol. I ( R.L. Newburn, Jr., ed.). Kluwer, Netherlands, pp. 439–462.

    Chapter  Google Scholar 

  • Melosh, H.J. 1985. Ejection of rock fragments from planetary bodies, Geology 13, 144–148.

    Article  ADS  Google Scholar 

  • Melosh, H.J. (1988). The rocky road to paspermia. Nature 332, 687–688.

    Article  ADS  Google Scholar 

  • Miller, S.L. (1992), The prebiotic synthesis of organic compounds as a step toward the origin of life. In Major Events in the History of Life (J.W. Schopf, ed.). Jones and Bartlett, Boston, MA., pp. 1–28.

    Google Scholar 

  • Oberbeck, V.R. and H. Aggarwal (1992). Comet impacts and chemical evolution on the bombarded Earth. Origins Life Evol. Biosphere 21, 317–338.

    ADS  Google Scholar 

  • Ord, J. (1961). Comets and the formation of biochemical compounds on the primitive Earth. Nature 190, 389–390.

    Article  ADS  Google Scholar 

  • Ott, U. (1993). Interstellar grains in meteorites. Nature 364, 25–33.

    Article  ADS  Google Scholar 

  • Prialnik, D., A. Bar-Nun, and M. Podolak (1987). Radiogenic heating of comets by 26A1 and implications for their time of formation. Astrophys. J. 319 993–1002.

    Article  ADS  Google Scholar 

  • Podolak M. and D. Prialnik (1996). 26A1 and liquid water environments in comets. This book.

    Google Scholar 

  • Schidlowski, M. (1988). A 3,800-million-year isotopic record of life from carbon in sedimentary rocks. Nature 333, 313–318.

    Article  ADS  Google Scholar 

  • Schopf, J.W. (1993). Microfossils of the early Archean apex chert: New evidence for the antiquity of life. Science 260, 640–646.

    Article  ADS  Google Scholar 

  • Secker, J., J. Lepock, and P. Wesson (1994). Damage due to ultraviolet and ionizing radiaton during the ejection of shielded micro-organisms from the vicinity of 1 Mo main sequence and red giant stars. Astrophys. Space Sci. 219, 1–28.

    Article  ADS  Google Scholar 

  • Simonelli, D., J.B. Pollack, C.P. McKay, R.T. Reynolds, and A.L. Summers (1989). The carbon budget in the outer solar system. Icarus, 82, 1–35.

    Article  ADS  Google Scholar 

  • Shock, E.L. and M.D. Schulte (1990). Amino-acid synthesis in carbonaceous meteorites by aqueous alteration of polycyclic aromatic hydrocarbons. Nature 343, 728–731.

    Article  ADS  Google Scholar 

  • Sleep, N.H., Zahnle, K.J, and Kasting, J.F., and Morowitz, H.J. (1989). Annihilation of exosystems by large asteroid impacts on the early Earth. Nature 342, 139–142.

    Article  ADS  Google Scholar 

  • Steel, D. (1992). Cometary supply of terrestrial organics: Lessons from the K/T and the present epoch. Origins Life Evol. Biosphere 21, 2339–2357.

    Google Scholar 

  • Tingle, T.N., J.A. Tyburczy, T.J. Ahrens, and C.H. Becker (1992). The fate or organic matter during planetary accretion: Preliminary studies of the organic chemistry of experimentally shocked Murchison meteorite. Origins Life Evol. Biosphere 21, 385397.

    Google Scholar 

  • Wächtershäuser, G. (1988). Before enzymes and templates: Theory of surface methabolism, Microbiological Reviews 52, 452–484.

    Google Scholar 

  • Wallis, M.K. (1980). Radiogenic melting of primordial comet interiors. Nature 284, 43 1433.

    Google Scholar 

  • Wallis M.K., F. Hoyle, and C. Wickramasinghe (1992). Cometary habitats for primitive life. Adv. Space Res. 12 (4), 281–285.

    Article  ADS  Google Scholar 

  • Wharton, R.A., Jr., C.P. McKay, G.M. Simmons, Jr., and B.C. Parker (1985). Cryoconite holes on glaciers, BioScience 35, 499–503.

    Google Scholar 

  • Woese, C. R. (1987). Bacterial evolution, Microbiol. Rev. 51, 221–271.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

McKay, C.P. (1997). Life in Comets. In: Thomas, P.J., Chyba, C.F., McKay, C.P. (eds) Comets and the Origin and Evolution of Life. Springer, New York, NY. https://doi.org/10.1007/978-1-4757-2688-6_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-2688-6_12

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4757-2690-9

  • Online ISBN: 978-1-4757-2688-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics