Dietary Fat, Genes, and Human Health

  • Donald B. Jump
  • Steven D. Clarke
  • Annette Thelen
  • Marya Liimatta
  • Bing Ren
  • Maria V. Badin
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 422)


Dietary fat is an essential macronutrient in the diet of all animals. It provides a source of energy and hydrophobic components for biomolecule synthesis. Fatty acids also are used for the synthesis of signaling molecules like steroids and prostanoids as well as being covalently linked to specific proteins.1,2 In addition to these well established roles, recent studies indicate that fatty acids have pronounced effects on gene expression leading to changes in metabolism, cell growth and differentiation.3–22 While many of these effects are beneficial to human health, dietary fat appears to become a problem when humans or animals ingest high fat diets and/or diets that are disproportionately enriched in saturated or polyunsaturated fatty acids. Numerous epidemiologic, clinical and animal studies have studied the link of dietary fat to the onset and progression of chronic diseases like breast, colon and prostate cancer, coronary heart disease, insulin resistance, hypertension and obesity.23–40 How these diets contribute to disease is unclear. In our view, the recent advances defining the cellular and molecular basis of dietary fat action are likely to provide important clues to explain how fats alter cell function and lead to chronic disease. In this presentation, we will first briefly discuss the diverse effects of fatty acids on cell function and then focus on dietary fat regulation of gene transcription.


Peroxisome Proliferator Activate Receptor Proximal Promoter Region Upstream Stimulatory Factor Preinitiation Complex Dietary Polyunsaturated Fatty Acid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D.J. McGarry, Lipid metabolism 1: Utilization and storage of energy in lipid form, in: Textbook of Biochemistry with Clinical Correlations Devlin, T.M. ed. 3rd ed. p. 387–420 Wiley-Liss, Inc.New York (1992).Google Scholar
  2. 2.
    J.I. Gordon, R.H. Duronio, D.A. Rudnick, S.P.Adams, and G.W. Gokel, Protein N- myristoylation. J. Biol. Chem. 266: 8647 (1991).Google Scholar
  3. 3.
    S.D. Clarke, M.K. Armstrong and D.B. Jump, Nutritional control of rat liver fatty acid synthase and 514 mRNA abundance. J. Nutr. 120: 218 (1990).Google Scholar
  4. 4.
    S.D. Clarke, M.K.Armstrong, and D.B. Jump, Dietary polyunsaturated fats uniquely suppress rat liver fatty acid synthase and S14 mRNA content, J. Nutr. 120: 225 (1990).Google Scholar
  5. 5.
    W.L.Blake and S.D. Clarke, Suppression of hepatic fatty acid synthase and 514 gene transcripiton by dietary polyunsaturated fatty acids, J. Nutr. 120: 1727 (1990).Google Scholar
  6. 6.
    D.B. Jump, S.D. Clarke, O.A. MacDougald and A. Thelen, Polyunsaturated fatty acids inhibit 514 gene transcription in rat liver and cultured hepatocytes. Proc. Natl. Acad. Sci. USA 90: 8454 (1993).CrossRefGoogle Scholar
  7. 7.
    D.B. Jump, S.D. Clarke, A. Thelen and M. Liimatta, Coordinate regulation of glycolytic and lipogenic gene expression by polyunsaturated fatty acids. J. Lipid Res. 35: 1076 (1994).Google Scholar
  8. 8.
    K.T. Landchultz, D.B. Jump, O.A. MacDougald and M.D. Lane, Transcriptional control of the stearoylCoA desaturase-1 gene by polyunsaturated fatty acids. Biochem. Biophys. Res. Comm. 200: 763 (1994).CrossRefGoogle Scholar
  9. 9.
    M. Liimatta, H.C. Towle, S.D. Clarke, and D.B. Jump, Dietary polyunsaturated fatty acids interfere with the insulin/glucose activation of L-type pyruvate kinase, Molecular Endocrinology 8: 1147 (1994).CrossRefGoogle Scholar
  10. 10.
    D.B. Jump, B. Ren, S.D. Clarke and A. Thelen, A., Effects of fatty acids on hepatic gene expression, Prostaglandins, Leukot. Essent. Fatty Acids 52: 107 (1995).CrossRefGoogle Scholar
  11. 11.
    S.D. Clarke and D.B. Jump, Dietary polyunsaturated fatty acids regulaion of gene transcription. Annu. Rev. Nutr. 14: 83 (1994).CrossRefGoogle Scholar
  12. 12.
    D.B. Jump, S.D. Clarke, A. Thelen, M. Liimatta, B.Ren and M. Badin. Dietary polyunsaturated fatty acid regulation of gene transcription. Progress in Lipid Research (In Press)(1996).Google Scholar
  13. 13.
    I. lssemann and S. Green Activation of a member of the steroid hormone receptor superfamily by peroxisome proliferators. Nature 347: 645 (1990).CrossRefGoogle Scholar
  14. 14.
    M. Gottlicher, E. Widmark, Q. Li and J.A. Gustafsson, Fatty acids activate a chimera of the clofibric acid-activated receptor and the glucocorticoid receptor. Proc. Natl. Acad. Sci. USA 89: 4653 (1992).CrossRefGoogle Scholar
  15. 15.
    J.K. Reddy and N.D. Lalwani, Carcinogenesis by hepatic peroxisome proliferator: evaluation of the risk of hypolipidemic drugs and industrial plasticizers to humans. CRC Crit. Rev. Toxicol. 12: 1 (1983).CrossRefGoogle Scholar
  16. 16.
    S. Green, Receptor-mediated mechanism of peroxisome proliferators. Biochem. Pharmacol. 43: 393 (1992).CrossRefGoogle Scholar
  17. 17.
    P. Tontonoz, E. Hu, R.A. Graves, A.I. Budavari and B.M. Spiegelman, mPPARy2: tissue-specific regulator of an adipocyte enhancer, Genes Dev. 8: 1224 (1994).Google Scholar
  18. 18.
    E-Z. Amri, B. Bertrand, G. Ailhaud and P. Grimaldi, Regulation of adipose cell diffeentiation. I. Fatty acids are inducers of aP2 gene expression. J. Lipid Res. 32: 1449 (1991).Google Scholar
  19. 19.
    E-Z. Amri, G. Ailhaud, and R. Grimaldi, Regulation of adipose cell differentiation. II. Kinetics of induction of the aP2 gene by fatty acids and modulation by dexamethasone. J. Lipid Res. 32: 1457 (1991).Google Scholar
  20. 20.
    E-Z. Amri, G. Ailhaud and P. Grimaldi, Fatty acids as signal transducing molecules: involvement in the differentiation of preadipose to adipose cells. J. Lipid Res. 35: 930 (1994)Google Scholar
  21. 21.
    E-Z. Amri, F. Bonino, G. Ailhaud, N.A. Abumrad, and P. Grimaldi, Cloning of a protein that mediates transcription effects of fatty acids in preadipocytes. J. Biol. Chem. 270: 2367 (1995).CrossRefGoogle Scholar
  22. 22.
    B.M. Forman, R Tontonoz, J. Chen, R.P. Brun, B.M. Spiegelman and R.M. Evans, 15- Deoxy-412.14-prostaglandin J2 is a ligand for the adipocyte determination factor, PPARy, Cell 83: 803 (1995).CrossRefGoogle Scholar
  23. 23.
    E. Ferrannini, E.J. Barrett, S. Bevilacqua, R.A. DeFronzo, Effect of fatty acids on glucose production and utilization in man. J. Clin. Invest. 72: 1737 (1983).CrossRefGoogle Scholar
  24. 24.
    L.H. Storlien, E.W. Kraegen, D.J. Chisholm, G.L. Ford, D.G. Bruce, and W.S. Pascoe, Fish oil prevents insulin resistance induced by high fat feeding in rats. Science 237: 885 (1987).CrossRefGoogle Scholar
  25. 25.
    L.H. Storlien, D.E. James, K.M. Burleigh, D.J. Chisholm, E.W. Kraegen, Fat feeding causes widespread in vivo insulin resistance, decreased energy expenditure and obesity in rats. Am. J. Physiol. 251: E576 (1986).Google Scholar
  26. 26.
    J.D. McGarry, What if Minkowski has been ageusic? An alternative angle on diabetes. Science 258: 766 (1992).CrossRefGoogle Scholar
  27. 27.
    G.M. Reaven, Role of insulin resistance in human disease. Diabetes 37: 1595 (1988).CrossRefGoogle Scholar
  28. 28.
    T.H. Malasanos and P.W. Stacpoole, Biological effects of w-3 fatty acids in diabetes mellitus. Diabetes Care 14: 1160 (1991).Google Scholar
  29. 29.
    L.H. Storlien, A.B. Jenkins, D.J. Chisholm, W.S. Pascoe, S. Khouri and E.W. Kraegen, Influence of diatary fat composition on development of insulin resistance in rats: Relationship to muscle triglyceride and w-3 fatty acids in muscle phospholipid. Diabetes 40: 280 (1991).CrossRefGoogle Scholar
  30. 30.
    M. Borkman, L.H. Storlien, D.A. Pan, A.B. Jenkins, D.J. Chisholm and L.V. Campbell, The relation between insulin sensitivity and the fatty-acid composition of skeletal muscle phospholipids, N.Engl. J. Med. 328: 238 (1993).CrossRefGoogle Scholar
  31. 31.
    D.A. Pan, A.J. Hulbert and L.H. Storlien. Dietary fats, membrane phospholipids and obesity. J. Nutr. 124: 1555 (1994)Google Scholar
  32. 32.
    H. Hallaq, T.W. Smith and A. Leaf, Modulation of dihydropyridine-sensitive calcium channels in heart cells by fish oil fatty acids. Proc. Natl. Acad. Sci. USA. 89: 1760 (1992)CrossRefGoogle Scholar
  33. 33.
    H.N. Hodis, W.J. Mack, S.P. Azen, P. Alaupovic, J.M. Pogoda, L. LaBree, L.C. Hemphill, D.M. Kramsch and D.H. Blankenhorn, Triglyceride-and cholesterol-rich lipoproteins have a differential effect on mild/moderate and severe lesion progression as assessed by quantitative coronary angiography in a controlled trial of lovastatin. Circulation 90: 42 (1994).CrossRefGoogle Scholar
  34. 34.
    W.T. Cave, Dietary n-3 PUFA effects on animal tumorigenesis. FASEB J. 5: 2160 (1991).Google Scholar
  35. 35.
    C.W. Welsch, Dietary fat, calories and experimental mammary gland tumorigenesis. Cancer Res. 52: 52040 (1992).Google Scholar
  36. 36.
    W.C. Willett, Diet and Health: What should we eat? Science 264: 532 (1994).CrossRefGoogle Scholar
  37. 37.
    W.S. Harris, Fish oils and plasma lipid and lipoprotein metabolism in humans: a critical review. J. Lipid Res. 30: 785.Google Scholar
  38. 38.
    B.E. Phillipson, D.W. Rothrock, W.E. Connor, W.S. Harris, D.R. Illingworth, Reduction of plasma lipids, lipoproteins and apolipoproteis by dietary fish oils in patients with hypertriglyceridemia. N. Engl. J. Med. 312: 1210 (1985).CrossRefGoogle Scholar
  39. 39.
    D. Kromhout, E.B. Bosschieter and C.L. Coulander, The inverse relation between fish consumption and 20-years mortality from coronary heart disease. N. Engl. J. Med. 312: 1205 (1985).CrossRefGoogle Scholar
  40. 40.
    P.J. Neste!, W.E. Connor, M.F. Reardon, S. Connor, S. Wong and R. Boston, Suppression by diets rich in fish oil of very low density lipoprotein production in man. J. Clin. Invest. 74: 82 (1984).CrossRefGoogle Scholar
  41. 41.
    A.F. Goodridge, Regulation of the activity of acetyl coenzyme A carboxylase by palmitoyl coenzyme A and citrate. J. Biol. Chem. 247: 6946 (1972).Google Scholar
  42. 42.
    P.F. Randle, P.B. Garland, C.N. Hales and E.A. Newsholme The glucose-fatty acid cycle. Its role in insulin sensitivity and metabolic disturbances of diabetes mellitus. Lancet 1: 785 (1963).CrossRefGoogle Scholar
  43. 43.
    E.W. Kraegen, P.W. Clarke, A.B. Jenkins, E.A. Daley, D.J. Chisholm and L.H. Storlien, Development of muscle insulin resistance after liver insulin resistance in high-fat-fed rats. Diabetes 40: 1397 (1991).CrossRefGoogle Scholar
  44. 44.
    M.T. Clandinin, S. Cheema, C.J. Field, M.L. Garg, J. Vendatraman and T.R. Clandinin, Dietary fat: exogenous determination of membrane structure and cell function. FASEB J. 5: 2761 (1991)Google Scholar
  45. 45.
    A.A. Spector and M.A.York, Membrane lipid composition and cellular function. J. Lipid Res. 26: 1015 (1985).Google Scholar
  46. 46.
    C.J. Field, E.A. Ryan, A.B.R. Thomson and M.T. Clandinin., Diet fat composition alters membrane phospholipid composition, insulin binding and glucose metabolism in adipocytes from control and diabetic animals. J. Biol. Chem. 265: 11143 (1990).Google Scholar
  47. 47.
    E.M. Dax, J.S. Partilla, M.A. Pilleyro and R.I. Gregerman, Altered glucagon and catecholamine hormone sensitive adenylyl cyclase responsiveness in rat liver membranes induced by manipulation of dietary fatty acid intake. Endocrinologj 127: 2236 (1990).CrossRefGoogle Scholar
  48. 48.
    O. Laneuville, D.K. Breuer, N. Xu, Z.H. Huang, D.A. Gage, J.T. Watson, M. Lagarde, D.L. DeWitt and W.L. Smith, Fatty acid substrate specificities of human prostaglandin-endoperoxide H synthase-1 and -2, J. Biol. Chem. 270: 19330 (1995).CrossRefGoogle Scholar
  49. J.E. Kinsella, K.S. Broughton and J.W. Whelan, Dietary unsaturated fatty acids: interaction and possible needs in relation to eicosanoid synthesis. J. Nutt: Biochem. 1:123-141 (1990).Google Scholar
  50. 50.
    K.S. Broughton, J. Whelan, 1. Hardardottir and J. E. Kinsella, Effect of increasing the dietary (n-3) to n-6) polyunsaturated fatty acid ration on murine liver and peritoneal cell fatty acids and eicosanoid formation. J. Noir. 121: 155 (1991).Google Scholar
  51. 51.
    Halliwell, B. and Gutterridge, J.M.C. Free Radicals in Biology and Medicine, Clarendon Press, Oxford. pp. 139 (1985).Google Scholar
  52. 52.
    B. Henning, J.H. Diana, M. Toborek, C.J. McClain, Influence of nutrients and cytokines on endothelial cell metabolism. J. Amer. Coll. Nutt-. 31: 224 (1994).Google Scholar
  53. 53.
    C.K. Sen and L. Packer, Antioxidant and redox regulation of gene transcription. FASEB J. 10: 709 (1996).Google Scholar
  54. 54.
    J.K. Reddy and G.P. Mannaerts, Peroxisomal lipid metabolism. Annu. Rev. Noir. 14: 343 (1994).CrossRefGoogle Scholar
  55. 55.
    A.B. Lock, A.M. Mitchell and E.R. Elcombe, Biochemical mechanism of induction of hepatic peroxisome proliferation, Annu. Rev. Pharmacol. Toxicol. 29: 145 (1989).CrossRefGoogle Scholar
  56. 56.
    M.K. Hellerstein, J-M. Schwarz and R.A. Neese, Regulation of hepatic de novo lipogenesis in humans. Anno Rev. Nutr. 16: 523 (1996).CrossRefGoogle Scholar
  57. 57.
    C.E. Neat, M.S. Thomassen and H. Osmundsen, Induction of peroxisomal (3-oxidation of rat liver by high-fat diets. Biochem. J. 186: 369 (1980).Google Scholar
  58. 58.
    M.S. Thomassen, E.N. Christiansen and K.R. Norum, Characterizaion of the stimulatory effect of high-fat diets on peroxisomal 0-oxidation in rat liver. Biochem. J. 206: 195 (1982).Google Scholar
  59. 59.
    T. Flatmark, A. Nilsson, J. Kvannes, T.S. Eikhom, M.H. Fukami, H. Kryvi and E.N. Christiansen, On the mechanism of induction of enzyme systems for peroxisomal 3- oxidation of fatty acids in rat liver by diets rich in partially hydrogenated fish oil. Biochim. Biophys. Acta 962: 122 (1988).CrossRefGoogle Scholar
  60. 60.
    A. Aarsland, M. Lundquist, B. Borretsen and R.K.Berge, On the effect of peroxisomal (3- oxidation and carnitine palmitoyltransferase activity by eicosapentaenoic acid in liver and heart from rats. Lipids 25: 546 (1990).Google Scholar
  61. 61.
    G.S. Rambjor, A.I. Walen, S.L. Windsor and W.S. Harris, Eicosapentaenoic acid is primarily respnsible for hypotriglyceridemic effect of fish oil in humans. Lipids 31: S45 (1996)CrossRefGoogle Scholar
  62. 62.
    B. Ren, A. Thelen and D. Jump Unpublished observation (1996).Google Scholar
  63. 63.
    S. Vaulont and A. Kahn, Transcriptional control of metabolic regulation by carbohydrates. FASEB J. 8: 28 (1994).Google Scholar
  64. 64.
    M.O. Bergot, M-J.M. Diaz-Guerra, N. Puzenat, M. Raymondjean and A.Kahn, Cis-regulation of the L-type pyruvate kinase gene promoter by glucose, insulin and cAMP. Nucleic Acids Res. 20: 1871 (1992).Google Scholar
  65. 65.
    Z. Liu, K.S.Thompson and H.C. Towle, Carbohydrate regulation of the rat L-type pyruvate kinase gene requires two nuclear factors: LF-A l and a member of the c-myc family, J. Biol. Chem. 268: 12787 (1993).Google Scholar
  66. 66.
    H-M. Shih, Z. Liu and H.C. Towle, Two GACGTG motifs with proper spacing dictate the carbohydrate regulation of hepatic gene transcription. J. Biol. Chem. 270: 21991 (1995).CrossRefGoogle Scholar
  67. 67.
    R. Hertz, J. Bishara-Shieban and J. Bar-Tana, Mode of action of peroxisome proliferators as hypolipidemic drugs, J. Biol. Chem. 270: 13470 (1995).CrossRefGoogle Scholar
  68. 68.
    R.Hertz, M. Seckbach, M.M. Zakin and J. Bar-Tana, Transcription suppression of the transferrin gene by hypolipidemic peroxisome proliferators. J. Biol. Chem. 271: 218 (1996).CrossRefGoogle Scholar
  69. 69.
    D.J. Mangelsdorf and R.M. Evans, The RXR heterodimers and orphan receptors. Cell 83: 841 (1995).CrossRefGoogle Scholar
  70. 70.
    B. Ren, A. Thelen, and D.B. Jump, Peroxisome proliferator-activated receptor-a inhibits hepatic S14 gene transcription. J. Biol. Chem. 271: 17167 (1996)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • Donald B. Jump
    • 1
  • Steven D. Clarke
    • 2
  • Annette Thelen
    • 1
  • Marya Liimatta
    • 1
  • Bing Ren
    • 1
  • Maria V. Badin
    • 1
  1. 1.Departments of Physiology and BiochemistryMichigan State UniversityEast LansingUSA
  2. 2.Division of Nutritional Sciences Department of Human EcologyUniversity of Texas-AustinAustinUSA

Personalised recommendations