Skip to main content

Short Chain Fatty Acid Regulation of Intestinal Gene Expression

  • Chapter
Dietary Fat and Cancer

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 422))

Abstract

The molecular pathways involved in regulation of intestinal epithelial cell proliferation and differentiation have not been characterized to the extent that analogous pathways have been defined for many other cell types, especially those in the hematopoietic lineages. Much of the published work on intestinal cells has focused on regulation by polypeptide growth factors and extracellular matrix proteins while relatively less attention has been given to the contributions of luminal factors to growth and differentiation. Notwithstanding, luminal fluid in the colon contains a number of putative growth regulators. Foremost among these is the four carbon short chain fatty acid (SCFA) butyrate. Herein, we will review selected aspects of the cell physiology and biology of butyrate. Emphasis will be given to studies in epithelial systems, although a larger body of work has been conducted in cells of hematopoietic origin. We will also emphasize our own studies using the HT-29 colon adenocarcinoma cell line as a model for study of early cellular and molecular events associated with butyrate-mediated growth and differentiation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Bugaut, and M. Bentejac. Biological effects of short-chain fatty acids in nonruminant mammals. Annu. Rev. Nutr. 13: 217 (1993).

    Article  CAS  Google Scholar 

  2. K.H. Soergel. Colonic fermentation: Metabolic and clinical consequences. Clin Investig 72: 742 (1994).

    Article  CAS  Google Scholar 

  3. W.E.W. Roediger. Role of anaerobic bacteria in the metabolic welfare of the colonic mucosa in man. Gut 21. 793–798 (1980).

    Article  CAS  Google Scholar 

  4. J.H. Cummings, E.W. Pomare, W.J. Branch, C.P. E. Naylor, G.T. McFarlane. Short chain fatty acids in human large intestine, portal, hepatic and venous blood. Gut 28: 1221 (1987).

    Article  CAS  Google Scholar 

  5. 5. E. Titus, and G.A. Ahearn. Vertebrate gastrointestinal fermentation: transport mechanisms for volatile fatty acids. American Physiological Society (1992).

    Google Scholar 

  6. W.E.W. Roediger. Utilization of nutrients by isolated epithelial cells of the rat colon. Gastroenterology. 83: 424 (1982).

    CAS  Google Scholar 

  7. M.J. Koruda. Dietary fiber and gastrointestinal disease. Surgery. Gynecology Obstetrics 177: 209 (1993).

    CAS  Google Scholar 

  8. G. D’Argenio, V. Cosenza, M. Delle Cave, R lovino, N. Della Valle, G. Lombardi, and G. Mazzacca. Butyrate enemas in experimental colitis and protection against large bowel cancer in a rat model. Gastroenterology 110:1727 (1996).

    Google Scholar 

  9. L.C. Boffa, J.R. Lupton, M.R. Mariani, M. Ceppi, H. L. Newmark, A. Scalmati, and M. Lipkin. Modulation of colonic epithelial cell proliferation, histone acetylation, and luminal short chain fatty acids by variation of dietary fiber (wheat bran) in rats. Cancer Res. 52: 5906 (1992).

    CAS  Google Scholar 

  10. L.H. Augenlicht, A.Velcich, and B.G. Heerdt. Short-chain fatty acids and molecular and cellular mechanisms of colonic cell differentiation and transformation. Advances Exp Med Biol 375: 137 (1995).

    CAS  Google Scholar 

  11. T. Sakata. Stimulatory effect of short-chain fatty acids on epithelial cell proliferation in the rat intestine: a possible explanation for trophic effects of fermentable fibre, gut microbes and luminal trophic factors. J. Nutt: 58: 95 (1987).

    Article  CAS  Google Scholar 

  12. S.A. Kripke, A.D. Fox, J.M. Berman, R.G. Settle, and J.L. Rombeau. Stimulation of intestinal mucosal growth with intracolonic infusion of short-chain fatty acids. JPEN 13: 109 (1989).

    Article  CAS  Google Scholar 

  13. W. Scheppach, R. Bartram, A. Richter, F. Richter, H. Liepold, G. Dusel, G. Hofstetter, J. Ruthlein, and H. Kasper. Effect of short-chain fatty acids on the human colonic mucosa in vitro. JPEN 16: 43 (1992).

    Article  CAS  Google Scholar 

  14. W. Scheppach, J. Sommer, T. Kirchner, G-M. Paganelli, P. Bartram, S. Christi, F. Richter, G. Dusel, and H. Kasper. Effect of butyrate enemas on the colonic mucosa in distal ulcerative colitis. Gastroenterology 103: 51 (1992).

    CAS  Google Scholar 

  15. M.A.S. Chapman, M.F. Grahn, M.A. Boyle, M. Hutton, J. Rogers, and N.S. Williams. Butyrate oxidation is impaired in the colonic mucosa of sufferers of quiescent ulcerative colitis. Gut 35: 73 (1994).

    Article  CAS  Google Scholar 

  16. W. Frankel, J. Lew, B. Su, A. Bain, D. Klurfeld, E. Einhorn, R.P. MacDermott, and J. Rombeau. Butyrate increases colonocyte protein synthesis in ulcerative colitis. J. Surgical Res. 57: 210 (1994).

    Article  CAS  Google Scholar 

  17. A.H. Steinhart, A. Brzezinski, J.P. Baker. Treatment of refractory ulcerative proctosigmoiditis with butyrate enemas. American J. Gastroenterology 89: 179 (1994).

    CAS  Google Scholar 

  18. S.P. Perrine, G.D. Ginder, D.V. Faller, G.H. Dover, T. Ikuta, H.E. Witkowska, S. Cai, E.P. Vichinsky, N.F. Olivieri. A short term trial of butyrate to stimulate fetal globin gene expression in the ß globin gene disorders. N Engl J Med 328: 81–86 (1993).

    Article  CAS  Google Scholar 

  19. E.P.M. Candido, R. Reeves, J.R. Davie. Sodium butyrate inhibits histone acetylation in cultured cells. Cell 14: 105 (1978).

    Article  CAS  Google Scholar 

  20. J.A. D’Anna, R.A. Tobey, and L.R. Gurley. Concentration-dependent effects of sodium butyrate in Chinese hamster cells: cell-cycle progression, inner-histone acetylation, histone HI dephosphorylation, and induction of an H1-like protein. Biochemistry 19: 2656 (1980).

    Article  Google Scholar 

  21. D.E. Cosgrove and G.S. Cox. Effects of sodium butyrate and 5-azacytidine on DNA methylation in human tumor cell lines: variable response to drug treatment and withdrawal. Biochimica et Biophysica Acta 1087: 80 (1990).

    Article  CAS  Google Scholar 

  22. A. Toscani, D.R. Soprano, and K.J. Soprano. Molecular analysis of sodium butyrate-induced growth arrest. Oncogene Res. 3: 223 (1988).

    CAS  Google Scholar 

  23. S-J. Tang, L-W. Ko. Y-H.W. Lee, and F-F. Wang. Induction offos and sis proto-oncogenes and genes of the extracellular matrix proteins during butyrate induced glioma differentiation. Biochimica et Biophysica Acta 1048: 59 (1990).

    Article  CAS  Google Scholar 

  24. F.M. Foss, A. Veillette, O. Sartor, N. Rosen, and J.B. Bolen. Alterations in the expression of pp60“ and p56” associated with butyrate-induced differentiation of human colon carcinoma cells. Oncogene Res. 5: 13 (1989).

    CAS  Google Scholar 

  25. J.H. Stodart, M.A. Lane, and R.M. Niles. Sodium butyrate suppresses the transforming activity of an activated N-ras oncogene in human colon carcinoma cells. Experimental Cell Research 184: 16 (1989).

    Article  Google Scholar 

  26. Y.S. Chung, I.S. Song, R.H. Erickson, M.H. Sleisenger and Y.S. Kim. Effect of growth and sodium butyrate on brush border membrane-associated hydrolases in human colorectal cancer cell lines. Cancer Res. 45: 2976 (1985).

    CAS  Google Scholar 

  27. D. Tsao, A. Morita, A. Bella, Jr., P. Luu, and Y.S. Kim. Differential effects of sodium butyrate, dimethyl sulfoxide, and retinoic acid on membrane-associated antigen, enzymes, and glycoproteins of human rectal adenocarcinoma cells. Cancer Res. 42: 1052 (1982).

    CAS  Google Scholar 

  28. R.H. Whitehead, G.P. Young, and P.S. Bhathal. Effects of short chain fatty acids on a new human colon carcinoma cell line (LIM 1215). Gut 27: 1457 (1986).

    Article  CAS  Google Scholar 

  29. B.G. Heerdt, M.A. Houston, J.J. Rediske, and L.H. Augenlicht. Steady-state levels of mitochondrial messenger RNA species characterize a predominant pathway culminating in apoptosis and shedding of HT29 human colonic carcinoma cells. Cell Growth Differentiation 7: 101 (1996).

    CAS  Google Scholar 

  30. A. Morita, D. Tsao, and Y.S. Kim. Effect of sodium butyrate on alkaline phosphatase in HRT-18, a human rectal cancer cell line. Cancer Res. 42: 4540 (1982).

    CAS  Google Scholar 

  31. F. Herz. Divergent effects of butyrate on the alkaline phosphatases of SW-620 cells. Biochimica et Biophysica Acta 1180:289 (1993).

    Google Scholar 

  32. R.A. Hodin, S. Meng, S. Archer, and R. Tang. Cellular growth state differentially regulates enterocyte gene expression in butyrate-treated HT-29 cells. Cell Growth Differentiation 7: 647 (1996).

    CAS  Google Scholar 

  33. I. Chantret, A. Barbat, E. Dussaulx, M.G. Brattain, and A. Zweibaum. Epithelial polarity, villin expression, and enterocytic differentiation of cultured human colon carcinoma cells: a survey of twenty cell lines. Cancer Res. 48: 1936 (1988).

    CAS  Google Scholar 

  34. A. deFazio, Y-E. Chiew, C. Donoghue, C.S.L. Lee, and R.L. Sutherland. Effect of sodium butyrate on estrogen receptor and epidermal growth factor receptor gene expression in human breast cancer cell lines. J. Biological Chemistry 267: 18008 (1992).

    CAS  Google Scholar 

  35. K. Saini, G. Steele, and P. Thomas. Induction of carcinoembryonic-antigen-gene expression in human colorectal carcinoma by sodium butyrate. Biochem. J. 272: 541 (1990).

    CAS  Google Scholar 

  36. G. Deng, G. Liu, L. Hu, J.R. Gum, Jr., and Y.S. Kim. Transcriptional regulation of the human placenta-like alkaline phosphatase gene and mechanisms involved in its induction by sodium butyrate. Cancer Res. 52: 3378 (1992).

    CAS  Google Scholar 

  37. A. Souleimani, and C. Asselin. Regulation of c-fos expression by sodium butyrate in the human colon carcinoma cell line Caco-2. Biochemical and Biophysical Res. Comm. 193: 330 (1993).

    Article  CAS  Google Scholar 

  38. C.S. Morrow, M. Nakagawa, M.E. Goldsmith, M.J. Madden, and K.H. Cowan. Reversible transcriptional activation of mdrl by sodium butyrate treatment of human colon cancer cells. J. Biological Chemistry 269: 10739 (1994).

    CAS  Google Scholar 

  39. L.A. Johnson, S.J. Tapscott, and H. Eisen. Sodium butyrate inhibits myogenesis by interfering with the transcriptional activation function of MyoD and myogenin. Molecular and Cellular Biology 12: 5123 (1992).

    Google Scholar 

  40. J.G. Glauber, N.J. Wandersee, J.A. Little, and G.D. Ginder. 5’-flanking sequences mediate butyrate stimulation of embryonic globin gene expression in adult erythroid cells. Molecular and Cellular Biology 11: 4690 (1991).

    Google Scholar 

  41. K.B. Marcu, S.A. Bossone, A. J. Patel. myc function and regulation. Annu Rev Biochem 61: 809 (1992).

    Article  CAS  Google Scholar 

  42. R. Bissonnette, F. Echeverri, A. Mahoubi, D.R. Green. Apoptotic cell death induced by c-mvc is inhibited by bcl-2. Nature 359: 552 (1992).

    Article  CAS  Google Scholar 

  43. M.F. Melhem, A.I. Meisler, G.C. Finley, W.H. Bryce, M.O. Jones, [.1. Tribby, J.M. Pipas, and R.A. Koski. Distribution of cells expressing myc proteins in human colorectal epithelium, polyps, and malignant tumors. Cancer Res. 52: 5853, (1992).

    CAS  Google Scholar 

  44. K.M. Herold, and P.G. Rothberg. Evidence for a labile intermediate in the butyrate induced reduction of the level of c-myc RNA in SW837 rectal carcinoma cells. Oncogene 3: 423, (1988).

    CAS  Google Scholar 

  45. J.A. Barnard, G. Warwick. Butyrate rapidly induces growth inhibition and differentiation in HT-29 cells. Cell Growth and Differentiation 4: 495, (1993).

    CAS  Google Scholar 

  46. D.P. Heruth, G.W. Zirnstein, J.F. Bradley, and P.G. Rothberg. Sodium butyrate causes an increase in the block to transcriptional elongation in the c-myc gene in SW837 rectal carcinoma cells. J. Biological Chemistry 268: 20466 (1993).

    CAS  Google Scholar 

  47. A. Souleimani, C. Asselin. Regulation of c-myc expression by sodium butyrate in the colon carcinoma cell line Caco-2. FEBS Lett 326:45, (1993).

    Google Scholar 

  48. G. Krupitza, S. Grill, H. Harant, W. Huila, T. Szekeres, H. Huber, and C. Dirrich. Genes related to growth and invasiveness are repressed by sodium butyrate in ovarian carcinoma cells. British J. Cancer 73: 433 (1996).

    Article  CAS  Google Scholar 

  49. C.W. Taylor, Y.S. Kim, K.E. Childress-Fields, and L.C. Yeoman. Sensitivity of nuclear c-myc levels and induction to differentiation-inducing agents in human colon tumor cell lines. Cancer Letters 62: 95 (1992).

    Article  CAS  Google Scholar 

  50. A. Hague, A.M. Manning, K.A. Hanlon, L.I. Huschtscha, D. Hart, and C. Paraskeva. Sodium butyrate induces apoptosis in human colonic tumor cell lines in a p53-independent pathway: implications for the possible role of dietary fibre in the prevention of large-bowel cancer. Int. J. Cancer 55: 498 (1993).

    Article  CAS  Google Scholar 

  51. A. Hague, D.J.E. Elder, D.J. Hicks, C. Paraskeva. Apoptosis in colorectal tumor cells: Induction by the short chain fatty acids butyrate, propionate and acetate and by the bile salt deoxycholate. Int J Cancer 60: 400, (1995).

    Article  CAS  Google Scholar 

  52. M. Mandal, and R. Kumar. Bc1–2 expression regulates sodium butyrate-induced apoptosis in human MCF-7 breast cancer cells. Cell Growth Differentiation 7: 311 (1996).

    CAS  Google Scholar 

  53. L. Staiano-Coico, L. Khandke, J.F. Krane, S. Sharif, A.B. Gottlieb, J.G. Krueger, L. Heim, B. Rigas, and P.J. Higgins. TGF-a and TGF-ß expression during sodium-N-butyrate-induced differentiation of human keratinocytes: evidence for subpopulation-specific up-regulation of TGF-13 mRNA in suprabasal cells. Experimental Cell Res. 191: 286 (1990).

    Article  CAS  Google Scholar 

  54. P. Schroy, J. Rifkin, R.J. Coffey, S. Winawer, E. Friedman. Role of transforming growth factor 13 I in induction of colon carcinoma differentiation by hexamethylene bisacetamide. Cancer Res 50: 261, (1990).

    CAS  Google Scholar 

  55. E. Wintersberger, I. Mudrak, and U. Wintersberger. Butyrate inhibits mouse fibroblasts at a control point in the GI phase. J. Cellular Biochemistry 21: 239 (1983).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Barnard, J.A., Delzell, J.A., Bulus, N.M. (1997). Short Chain Fatty Acid Regulation of Intestinal Gene Expression. In: Dietary Fat and Cancer. Advances in Experimental Medicine and Biology, vol 422. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-2670-1_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-2670-1_11

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-3282-2

  • Online ISBN: 978-1-4757-2670-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics