Dopamine Autoreceptor Pharmacology and Function

Recent Insights
  • John D. Elsworth
  • Robert H. Roth
Part of the The Receptors book series (REC)

Abstract

The potential importance of local feedback mechanisms in regulating dopaminergic activity was first noted by Farnebo and Hamberger (1), who observed that dopamine (DA) agonists were effective in attenuating the stimulus-evoked release of [3H]DA from striatal slices by an interaction with presynaptic receptors. When it became appreciated that catecholamine neurons, in addition to possessing receptors on their nerve terminals, appear to have receptors distributed over other parts of the neuron, such as the soma, dendrites, and preterminal axons, the term presynaptic receptors became inappropriate as a description for all these receptors. Carlsson (2) suggested that autoreceptor was a more appropriate term to describe them, as the sensitivity of these catecholamine receptors to the neurons’ own transmitter seemed more significant than their location at the synapse.

Keywords

Prefrontal Cortex Dopamine Receptor Nucleus Accumbens Ventral Tegmental Area Dopamine Release 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Farnebo, L.-O. and Hamberger, B. (1971) Drug-induced changes in the release of 3H-monoamines from field stimulated rat brain slices. Acta Physiol. Scand. 371 (Suppl), 35–44.CrossRefGoogle Scholar
  2. 2.
    Carlsson, A. (1975) Dopaminergic autoreceptors, in Chemical Tools in Catecholamine Research II: Regulations of Catecholamine Turnover ( Almgren, O., Carlsson, A., and Engel, J., eds.), North-Holland, Amsterdam, pp. 219–225.Google Scholar
  3. 3.
    Drukarch, B. and Stoof, J. C. (1990) D-2 dopamine autoreceptor selective drugs: do they really exist? Life Sci. 47, 361–376.PubMedCrossRefGoogle Scholar
  4. 4.
    Wolf, M. E. and Roth, R. H. (1987) Dopamine autoreceptors, in Receptor Biochemistry Methodology: Dopamine Receptors ( Creese, I. and Fraser, C. M., eds.), Liss, New York, pp. 45–96.Google Scholar
  5. 5.
    Wolf, M. E. and Roth, R. H. (1990) Autoreceptor regulation of dopamine synthesis. Ann. NYAcad. Sci. 604, 323–343.CrossRefGoogle Scholar
  6. 6.
    Westerink, B. H. C., de Boer, P., Santiago, M., and De Vris, J. B. (1994) Do nerve terminals and cell bodies of nigrostriatal dopaminergic neurons of the rat contain similar receptors? Neurosci. Lett. 167, 109–112.PubMedCrossRefGoogle Scholar
  7. 7.
    Santiago, M. and Westerink, B. H. C. (1991) The regulation of dopamine release from nigrostriatal neurons in conscious rats: the role of somatodendritic auto-receptors. Eur. J. Pharmacol. 204, 79–85.PubMedCrossRefGoogle Scholar
  8. 8.
    Westerink, B. H. C., Santiago, M., and De Vries, J. B. (1992) In vivo evidence for a concordant response of terminal and dendritic dopamine release during intranigral infusion of drugs. Naunyn-Schmiedeberg’s Arch. Pharmacol. 346, 637–643.PubMedGoogle Scholar
  9. 9.
    Bull, D. R., Palij, P., Sheehan, M. J., Millar, J., Stamford, J. A., Kruk, Z. L., and Humphrey, P. P. A. (1990) Application of fast cyclic voltammetry to measurement of electrically-evoked dopamine overflow from brain slices in vitro. J. Neurosci. Methods 32, 37–44.PubMedCrossRefGoogle Scholar
  10. 10.
    Kennedy, R. T., Jones, S. R., and Wightman, R. M. (1992) Dynamic observation of dopamine autoreceptor effects in rat striatal slices. J. Neurochem. 59, 449–455.PubMedCrossRefGoogle Scholar
  11. 11.
    McElvain, J. S. and Schenk, J. O. (1992) Blockade of dopamine autoreceptors by haloperidol and the apparent dynamics ofpotassium-stimulated endogenous release of dopamine from and reuptake into striatal suspensions in the rat. Neuropharmacology 31, 649–659.PubMedCrossRefGoogle Scholar
  12. 12.
    Sesack, S. R., Aoki, C., and Pickel, V. M. (1994) Ultrastructural localization of D2 receptor-like immunoreactivity in midbrain dopamine neurons and their striatal targets. J. Neurosci. 14, 88–106.PubMedGoogle Scholar
  13. 13.
    Silvia, C. P., King, G. R., Lee, T. H., Xue, Z. Y., Caron, M. G., and Ellinwood, E. H. (1994) Intranigral administration of D2 dopamine receptor antisense oligodeoxynucleotides establishes a role for nigrostriatal D2 autoreceptors in the motor actions of cocaine. Mol. Pharmacol. 46, 51–57.PubMedGoogle Scholar
  14. 14.
    Freedman, S. B., Patel, S., Marwood, R., Emms, F., Seabrook, G. R., Knowles, M. R., and McAllister, G. (1994) Expression and pharmacological characterization of the human D3 dopamine receptor. J. Pharmacol. Exp. Ther. 268, 417–426.PubMedGoogle Scholar
  15. 15.
    Murray, A. M., Ryoo, H. L., Gurevich, E., and Joyce, J. N. (1994) Localization of dopamine D3 receptors to mesolimbic and D2 receptors to mesostriatal regions of human forebrain. Proc. Natl. Acad. Sci. USA 91, 11,271–11, 275.Google Scholar
  16. 16.
    Sokoloff, P., Andrieux, M., Besancon, R., Pilon, C., Martres, M.-P., Giros, B., and Schwartz, J.-C. (1992) Pharmacology of human dopamine D3 receptor expressed in a mammalian cell line: comparison with D2 receptor. Eur. J. Pharmacol. 225, 331–337.PubMedCrossRefGoogle Scholar
  17. 17.
    Waters, N., Hansson, L., Lofberg, L., and Carlsson, A. (1994) Intracerebral infusion of (+)-AJ76 and (+)-UH232: effects on dopamine release and metabolism in vivo. Eur. J. Pharmacol. 251, 181–190.PubMedCrossRefGoogle Scholar
  18. 18.
    Waters, N., Lofberg, L., Haadsma-Svensson, S., Svensson, K., Sonesson, C., and Carlsson, A. (1994) Differential effects of dopamine D2 and D3 receptor antagonists in regard to dopamine release, in vivo receptor displacement and behaviour. J. Neural Transmiss. 98, 39–55.CrossRefGoogle Scholar
  19. 19.
    Waters, N., Lagerkvist, S., Lofberg, L., Piercey, M., and Carlsson, A. (1993) The dopamine D3 receptor and autoreceptor preferring antagonists (+)-AJ76 and (+)-UH232; a microdialysis study. Eur. J. Pharmacol. 242, 151–163.PubMedCrossRefGoogle Scholar
  20. 20.
    Robertson, G. S., Tham, C. S., Wilson, C., Jakubovic, A., and Fibiger, H. C. (1993) In vivo comparisons of the effects of quinpirole and the putative presynaptic dopaminergic agonists B-HT 920 and SND 919 on striatal dopamine and acetylcholine release. J. Pharmacol. Exp. Ther. 264, 1344–1351.PubMedGoogle Scholar
  21. 21.
    Lin, M. Y. and Walters, D. E. (1994) The D2 autoreceptor agonists SND 919 and PD 128483 decrease stereotypy in developing rats. Life Sci. 54, PL17–PL22.Google Scholar
  22. 22.
    Van Hartesveldt, C., Meyer, M. E., and Potter, T. J. (1994) Ontogeny of biphasic locomotor effects of quinpirole. Pharmacol. Biochem. Behay. 48, 781–786.CrossRefGoogle Scholar
  23. 23.
    Shalaby, I. and Spear, L. P. (1980) Psychopharmacological effects of low and high doses of apomorphine during ontogeny. Eur. J. Pharmacol. 67, 451–459.PubMedCrossRefGoogle Scholar
  24. 24.
    Tison, F., Normand, E., and Bloch, B. (1994) Prenatal ontogeny of D2 dopamine receptor and dopamine transporter gene expression in the rat mesencephalon. Neurosci. Lett. 166, 48–50.PubMedCrossRefGoogle Scholar
  25. 25.
    De Vries, T. J., Mulder, A. H., and Schoffelmeer, A. N. (1992) Differential ontogeny of functional dopamine and muscarinic receptors mediating presynaptic inhibition of neurotransmitter release and postsynaptic regulation of adenylate cyclase activity in rat striatum. Brain Res. 66, 91–96.CrossRefGoogle Scholar
  26. 26.
    Andersen, S. L. and Gazzara, R. A. (1993) The ontogeny of apomorphine-induced alterations of neostriatal dopamine release: effects on spontaneous release. J. Neurochem. 61, 2247–2255.PubMedCrossRefGoogle Scholar
  27. 27.
    Gazzara, R. A. and Andersen, S. L. (1994) The ontogeny of apomorphine-induced alterations of neostriatal dopamine release: effects on potassium-evoked release. Neurochem. Res. 19, 339–345.PubMedCrossRefGoogle Scholar
  28. 28.
    Andersen, S. L. and Gazzara, R. A. (1994) The development of D, autoreceptormediated modulation of K’-evoked dopamine release in the neostriatum. Brain Res. 78, 123–130.CrossRefGoogle Scholar
  29. 29.
    Teicher, M. H., Gallitano, A. L., Gelbard, H. A., Evans, H. K., Marsh, E. R., Booth, R. G., and Baldessarini, R. J. (1991) Dopamine D autoreceptor function: possible expression in developing rat prefrontal cortex and striatum. Dev. Brain Res. 63, 229–235.CrossRefGoogle Scholar
  30. 30.
    Andersen, S. L. and Teicher, M. H. (1995) Dopamine synthesis inhibition by (±)-7-OH-DPAT in striatum, accumbens, and prefrontal cortex in developing rats. Soc. Neurosci. Abstr. 21, 1780.Google Scholar
  31. 31.
    Wang, L. and Pitts, D. K. (1995) Ontogeny of nigrostriatal dopamine neuron autoreceptors: iontophoretic studies. J. Pharmacol. Exp. Ther. 272, 164–176.PubMedGoogle Scholar
  32. 32.
    Tsuchida, K., Ujike, H., Kanzaki, A., Fujiwara, Y., and Akiyama, K. (1994) Ontogeny of enhanced striatal dopamine release in rats with methamphetamineinduced behavioral sensitization. Pharmacol. Biochem. Behay. 47, 161–169.CrossRefGoogle Scholar
  33. 33.
    Beaudet, A. and Woulfe, J. (1992) Morphological substrate for neurotensindopamine interactions in the rat midbrain tegmentum. Ann. NYAcad. Sci. 668, 173–185.CrossRefGoogle Scholar
  34. 34.
    Deutch, A. Y. and Zahm, D. S. (1992) The current status of neurotensin-dopamine interactions. Ann. NYAcad. Sci. 668, 232–252.CrossRefGoogle Scholar
  35. 35.
    Shi, W.-X. and Bunney, B. S. (1992) Actions of neurotensin: a review of the electrophysiological studies. Ann. NYAcad. Sci. 668, 129–145.CrossRefGoogle Scholar
  36. 36.
    Shi, W.-X. and Bunney, B. S. (1992) Roles of intracellular cAMP and protein kinase A in the actions of dopamine and neurotensin on midbrain dopamine neurons. J. Neurosci. 12, 2433–2438.PubMedGoogle Scholar
  37. 37.
    Hökfelt, T., Everitt, B. J., Theodorsson-Norheim, E., and Goldstein, M. (1984) Occurrence of neurotensin-like immunoreactivity in subpopulations of hypothalamic, mesencephalic, and medullary catecholamine neurons. J. Comp. Neurol. 222, 543–559.PubMedCrossRefGoogle Scholar
  38. 38.
    Seroogy, K. B., Ceccatelli, S., Schalling, M., Hökfelt, T., Frey, P., Dockray, G., Buchan, A., and Goldstein, M. (1988) A subpopulation of dopaminergic neurons in the rat ventral mesencephalon contain both neurotensin and cholecystokinin. Brain Res. 455, 88–98.PubMedCrossRefGoogle Scholar
  39. 39.
    Studier, J. M., Kitabgi, P., Tramu, G., Herve, D., Glowinski, J., and Tassin, J. P. (1988) Extensive colocalization of neurotensin with dopamine in rat meso-corticofrontal dopaminergic neurons. Neuropeptides 11, 95–100.CrossRefGoogle Scholar
  40. 40.
    Bean, A. J., Adrian, T. E., Modlin, I. M., and Roth, R. H. (1989) Storage of dopamine and neurotensin in colocalized and non-colocalized neuronal populations. J. Pharmacol. Exp. Ther. 249, 681–687.PubMedGoogle Scholar
  41. 41.
    During, M. J., Bean, A. J., and Roth, R. H. (1992) Effects of CNS stimulants on the in vivo release of the colocalized transmitters, dopamine and neurtensin, from rat prefrontal cortex. Neurosci. Lett. 140, 129–133.PubMedCrossRefGoogle Scholar
  42. 42.
    Bean, A. J., During, M. J., and Roth, R. H. (1989) Stimulation-induced release of coexistent transmitters in the prefrontal cortex: an in vivo microdialysis study of dopamine and neurotensin release. J. Neurochem. 53, 655–657.PubMedCrossRefGoogle Scholar
  43. 43.
    Bean, A. J., During, M. J., and Roth, R. H. (1990) Effects of dopamine autoreceptor stimulation on the release of colocalized transmitters: in vivo release of dopamine and neurotensin from rat prefrontal cortex. Neurosci. Lett. 108, 143–148.PubMedCrossRefGoogle Scholar
  44. 44.
    Bean, A. J. and Roth, R. H. (1991) Extracellular dopamine and neurotensin in rat prefrontal cortex in vivo: effects of median forebrain bundle stimulation frequency, stimulation pattern, and dopamine autoreceptors. J. Neurosci. 11, 2694–2702.PubMedGoogle Scholar
  45. 45.
    Grace, A. A. and Bunney, B. S. (1984) The control of firing pattern in nigral dopamine neurons: burst firing. J. Neurosci. 4, 2877–2890.PubMedGoogle Scholar
  46. 46.
    Hétier, E., Boireau, A., Dubédat, P., and Blanchard, J. C. (1988) Neurotensin effects on evoked release of dopamine in slices from striatum, nucleus accumbens, and prefrontal cortex in rat. Naunyn Schmiedeberg’s Arch. Pharmacol. 337, 13–17.PubMedCrossRefGoogle Scholar
  47. 47.
    Audinat, E., Hermel, J. M., and Crepel, F. (1989) Neurotensin-induced excitation of neurons of the rat’s frontal cortex studied intracellularly in vitro. Exp. Brain Res. 78, 358–368.PubMedCrossRefGoogle Scholar
  48. 48.
    Sesack, S. R. and Bunney, B. S. (1989) Pharmacological characterization of the receptor mediating electrophysiological responses to dopamine in the rat medial prefrontal cortex: a microiontophoretic study. J. Pharmacol. Exp. Ther. 248, 1323–1333.PubMedGoogle Scholar
  49. 49.
    Deutch, A. Y. and Roth, R. H. (1990) The determinants of stress-induced activation of the prefrontal cortical dopamine system. Prog. Brain Res. 85, 367–402.PubMedCrossRefGoogle Scholar
  50. 50.
    Nemeroff, C. B. (1986) The interaction of neurotensin with dopaminergic pathways in the central nervous system: basic neurobiology and implications for the pathogenesis and treatment of schizophrenia. Psychoneuroendocrinology 11, 15–37.PubMedCrossRefGoogle Scholar
  51. 51.
    Weinberger, D. R. (1987) Implications of normal brain development for the pathogenesis of schizophrenia. Arch. Gen. Psychiatry 44, 660–669.PubMedCrossRefGoogle Scholar
  52. 52.
    Iverfelt, K., Peterson, L. L., Brodin, E., Ogern, S.-O., and Bartfai, T. (1986) Serotonin type-2 receptor mediated regulation of substance P release in the ventral spinal cord and the effects of chronic antidepressant treatment. Naunyn Schmiede-berg’s Arch. Pharmacol. 333, 1–6.CrossRefGoogle Scholar
  53. 53.
    Lundberg, J. M., Rudehill, A., Sollevi, A., Fried, G., and Wallin, G. (1989) Co-release of neuropeptide Y and noradrenaline from pig spleen in vivo: importance of sub-cellular storage, nerve impulse frequency and pattern, feedback regulation, and resupply by axonal transport. Neuroscience 28, 475–486.PubMedCrossRefGoogle Scholar
  54. 54.
    Whim, M. D. and Lloyd, P. E. (1989) Frequency dependent release of peptide cotransmitters from identified cholinergic motor neurons in Aplysia. Proc. Natl. Acad. Sci. USA 86, 9034–9038.PubMedCrossRefGoogle Scholar
  55. 55.
    Iverfelt, K., Serfozo, P., Diaz Arnesto, L., and Bartfai, T. (1989) Differential release of coexisting neurotransmitters: frequency dependence of the efflux of substance P, thyrotropin releasing hormone and [3H]serotonin from tissue slices of rat ventral spinal cord. Acta Physiol. Scand. 137, 63–71.CrossRefGoogle Scholar
  56. 56.
    Bartfai, T., Iverfelt, K., Fisone, G., and Serfozo, P. (1988) Regulation of the release of coexisting neurotransmitters. Annu. Rev. Pharmacol. Toxicol. 28, 285–310.PubMedCrossRefGoogle Scholar
  57. 57.
    von Euler, G. (1991) Biochemical characterization of the intramembrane interaction between neurotensin and dopamine D2 receptors in the rat brain. Brain Res. 561, 93–98.CrossRefGoogle Scholar
  58. 58.
    von Euler, G., van der Ploeg, I., Fredholm, B. B., and Fuxe, K. (1991) Neurotensin decreases the affinity of dopamine D2 agonist binding by a G protein-independent mechanism. J. Neurochem. 56, 178–183.CrossRefGoogle Scholar
  59. 59.
    Crawley, J. N. and Corwin, R. L. (1994) Biological actions of cholecystokinin. Peptides 15, 731–755.PubMedCrossRefGoogle Scholar
  60. 60.
    Raiteri, M., Paudice, P., and Vallebuona, F. (1993) Release of cholecystokinin in the central nervous system. Neurochem. Int. 22, 519–527.PubMedCrossRefGoogle Scholar
  61. 61.
    Marshall, F. H., Barnes, S., Hughes, J., Woodruff, G. N., and Hunter, J. C. (1991) Cholecystokinin modulates the release of dopamine from the anterior and posterior nucleus accumbens by two different mechanisms. J. Neurochem. 56, 917–922.PubMedCrossRefGoogle Scholar
  62. 62.
    Martin, J. R., Beinfeld, M. C., and Wang, R. Y. (1986) Modulation of cholecystokinin release from posterior nucleus accumbens by D-2 dopamine receptor. Brain Res. 397, 253–258.PubMedCrossRefGoogle Scholar
  63. 63.
    White, F. J. and Wang, R. Y. (1985) Interactions of cholecystokinin and dopamine on nucleus accumbens neurons. Brain Res. 300, 161–166.CrossRefGoogle Scholar
  64. 64.
    Freeman, A. S. and Bunney, B. S. (1987) Activity of A9 and A10 dopaminergic neurons in unrestrained rats: further characterization and effects of apomorphine and cholecystokinin. Brain Res. 405, 46–55.PubMedCrossRefGoogle Scholar
  65. 65.
    Hommer, D. W., Stoner, G., Crawley, J. N., Paul, S. M., and Skirboll, L. R. (1986) Cholecystokinin-dopamine coexistence: electrophysiological actions corresponding to cholecystokinin receptor subtypes. J. Neurosci. 6, 3039–3043.PubMedGoogle Scholar
  66. 66.
    Skirboll, L. R., Grace, A. A., Homer, D. W., Rehfeld, J., Goldstein, M., Hökfelt, T., and Bunney, B. S. (1981) Peptide-monoamine coexistence: studies of the actions of cholecystokinin-like peptide on the electrical activity of midbrain dopamine neurons. J. Neurosci. 6, 2111–2124.CrossRefGoogle Scholar
  67. 67.
    Laitinen, K., Crawley, J. N., Mefford, I. N., and De Witte, P. (1990) Neurotensin and cholecystokinin microinjected into the ventral tegmental area modulate microdialysate concentrations of dopamine and metabolites in the posterior nucleus accumbens. Brain Res. 523, 342–346.PubMedCrossRefGoogle Scholar
  68. 68.
    Hetey, L., Schwitzkowsky, R., Ott, T., and Barz, H. (1991) Diminished synaptosomal dopamine (DA) release and DA autoreceptor supersensitivity in schizophrenia. J. Neural Transmiss. 83, 25–35.CrossRefGoogle Scholar
  69. 69.
    Fedele, E., Andrioli, G. C., Ruelle, A., and Raiteri, M. (1993) Release-regulating dopamine autoreceptors in human cerebral cortex. Br. J. Pharmacol. 110, 20–22.PubMedCrossRefGoogle Scholar
  70. 70.
    Meador-Woodruff, J. H., Damask, S. P., and Watson, S. J. J. (1994) Differential expression of autoreceptors in the ascending dopamine systems of the human brain. Proc. Natl. Acad. Sci. USA 91, 8297–8301.PubMedCrossRefGoogle Scholar
  71. 71.
    Hurd, Y. L., Pristupa, Z. B., Herman, M. M., Niznik, H. B., and Kleinman, J. E. (1994) The dopamine transporter and dopamine D2 receptor messenger RNAs are differentially expressed in limbic- and motor-related subpopulations of human mesencephalic neurons. Neuroscience 63, 357–362.PubMedCrossRefGoogle Scholar
  72. 72.
    Elsworth, J. D., Redmond, D. E. J., Jr., and Roth, R. H. (1991) Are dopamine synthesis-modulating autoreceptors present in primate brain? Soc. Neurosci. Abstr. 17, 529.Google Scholar
  73. 73.
    Febvret, A., Berger, B., Gaspar, P., and Verney, C. (1991) Further indication that distinct dopaminergic subsets project to the rat cerebral cortex: lack of colocalization with neurotensin in the superficial dopaminergic fields of the anterior cingulate, motor, retrosplenial and visual cortices. Brain Res. 547, 37–52.PubMedCrossRefGoogle Scholar
  74. 74.
    Gaspar, P., Berger, B., and Febvret, A. (1990) Neurotensin innervation of the human cerebral cortex: lack of colocalization with catecholamines. Brain Res. 530, 181–195.PubMedCrossRefGoogle Scholar
  75. 75.
    Satoh, K. and Matsumura, H. (1990) Distribution of neurotensin-containing fibers in the frontal cortex of the macaque monkey. J. Comp. Neurol. 298, 215–233.PubMedCrossRefGoogle Scholar
  76. 76.
    Palacios, M., Savasta, M., and Mengod, G. (1989) Does cholecystokinin colocalize with dopamine in the human substantia nigra? Brain Res. 488, 369–375.PubMedCrossRefGoogle Scholar
  77. 77.
    Schalling, M., Friberg, K., Seroogy, K., Riederer, P., Bird, E., Schiffmann, S., et al. (1990) Analysis of expression of cholecystokinin in dopamine cells in the ventral mesencephalon of several species and in humans with schizophrenia. Proc. Natl. Acad. Sci. USA 87, 8427–8431.PubMedCrossRefGoogle Scholar
  78. 78.
    Sokoloff, P., Giros, B., Martres, M. P., Bouthenet, M. L., and Schwartz, J.-C. (1990) Molecular cloning and expression of a novel dopamine receptor (D3) as a target for neuroleptics. Nature 347, 146–151.PubMedCrossRefGoogle Scholar
  79. 79.
    Schwartz, J. C., Levesque, D., Martres, M. P., and Sokoloff, P. (1993) Dopamine D3 receptor: basic and clinical aspects. Clin. Neuropharmacol. 16, 295–314.PubMedCrossRefGoogle Scholar
  80. 80.
    Bouthenet, M. L., Souil, E., Martres, M. P., Sokoloff, P., Giros, B., and Schwartz, J. C. (1991) Localization of dopamine D3 receptor mRNA in the rat brain using in situ hybridization: comparison with dopamine D2 receptor mRNA. Brain Res. 564, 203–219.PubMedCrossRefGoogle Scholar
  81. 81.
    Arbilla, S. and Langer, S. Z. (1978) Stereoselectivity of presynaptic autoreceptors modulating dopamine release. Eur. J. Pharmacol. 76, 345–351.CrossRefGoogle Scholar
  82. 82.
    Galloway, M. P., Wolf, M. E., and Roth, R. H. (1986) Regulation of dopamine synthesis in the medial prefrontal cortex is mediated by release modulating autoreceptors: studies in vivo. J. Pharmacol. Exp. Ther. 236, 689–698.PubMedGoogle Scholar
  83. 83.
    Gainetdinov, R. R., Grekhova, T. V., Sotnikova, T. D., and Rayevsky, K. S. (1994) Dopamine D2 and D3 receptor preferring antagonists differentially affect striatal dopamine release and metabolism in conscious rats. Eur. J. Pharmacol. 261, 327–331.PubMedCrossRefGoogle Scholar
  84. 84.
    Gainetdinov, R. R., Sotnikova, T. D., Grekhova, T. V., and Rayevsky, K. S. (1994) Selective dopamine D3 receptor activation by 7-OH-DPAT induces hypomotility and decreases striatal dopamine release but not metabolism in awake rats. Soc. Neurosci. Abstr. 20, 1355.Google Scholar
  85. 85.
    Booth, R. G., Baldessarini, R. J., Marsh, E., and Owens, C. E. (1994) Actions of (±)-7-hydroxy-N,N-dipropylaminotetralin (7-OH-DPAT) on dopamine synthesis in limbic and extrapyramidal regions of rat brain. Brain Res. 662, 283–288.PubMedCrossRefGoogle Scholar
  86. 86.
    Aretha, C. W., Keegan, M., and Galloway, M. P. (1994) Effects of D3 preferring ligands on the autoregulation of dopamine (DA) synthesis. Soc. Neurosci. Abstr. 20, 284.Google Scholar
  87. 87.
    Meller, E., Bohmaker, K., Goldstein, M., and Basham, D. A. (1993) Evidence that striatal synthesis-inhibiting autoreceptors are dopamine D3 receptors. Eur. J. Pharmacol. 249, R5, R6.Google Scholar
  88. 87a.
    White, F. J. (1996) Synaptic regulation of mesocorticolimbic dopamine neurons. Annu. Rev. Neurosci. 19, 405–436.PubMedCrossRefGoogle Scholar
  89. 88.
    Zetterström, T., Sharp, T., Collin, A. K., and Ungerstedt, U. (1988) In vivo measurement of extracellular dopamine and DOPAC in striatum after various dopamine-releasing drugs: implications for the origin of extracellular DOPAC. Eur. J. Pharmacol. 148, 327–334.PubMedCrossRefGoogle Scholar
  90. 89.
    Gobert, A., Rivet, J.-M., Audinot, V., Peglion, J.-L., and Milian, M. J. (1994) Modulation of mesolimbic, mesocortical and nigrostriatal dopamine release and synthesis by dopamine D3 autoreceptors: influence of the selective D3 antagonist, S14297. Soc. Neurosci. Abstr. 20, 1355.Google Scholar
  91. 90.
    O’Hara, C. M., O’Malley, K. L., and Todd, R. D. (1994) Autoreceptor regulation of dopamine synthesis in a mouse mesencephalic cell line. Soc. Neurosci. Abstr. 20, 644.Google Scholar
  92. 91.
    Tang, L., Todd, R. D., and O’Malley, K. L. (1994) Dopamine D2 and D3 receptors inhibit dopamine release. J. Pharmacol. Exp. Ther. 270, 475–479.PubMedGoogle Scholar
  93. 92.
    Gifford, A. N. and Johnson, K. M. (1993) A pharmacological analysis of (+)-AJ76 and (+)-UH232 at release regulating pre- and postsynaptic dopamine receptors. Eur. J. Pharmacol. 237, 169–175.PubMedCrossRefGoogle Scholar
  94. 93.
    Lejeune, F. and Millan, M. J. (1995) Activation of dopamine D3 autoreceptors inhibits firing of ventral tegmental dopaminergic neurones in vivo. Eur. J. Pharmacol. 275, R7 - R9.PubMedCrossRefGoogle Scholar
  95. 94.
    Kreiss, D. S., Bergstrom, D. A., Gonzalez, A. M., Huang, K.-X., Sibley, D. R., and Walters, J. R. (1995) Dopamine receptor agonist potencies for inhibition of cell firing correlate with dopamine D3 receptor binding affinities. Eur. J. Pharmacol. 277, 209–214.PubMedCrossRefGoogle Scholar
  96. 95.
    Svensson, K., Carlsson, A., Huff, R. M., Kling-Petersen, T., and Waters, N. (1994) Behavioral and neurochemical data suggest functional differences between dopamine D2 and D3 receptors. Eur. J. Pharmacol. 263, 235–243.PubMedCrossRefGoogle Scholar
  97. 96.
    Zhang, M., Tarazi, F. I., and Creese, I. (1994) Antisense knockout of rat CNS dopamine D3 receptors: behavioral effects. Soc. Neurosci. Abstr. 20, 909.Google Scholar
  98. 97.
    Kreiss, D. S., Mouradian, M. M., and Walters, J. R. (1994) Effects on in vivo dopamine cell firing of dopamine D2 and D3 receptor antisense oligonucleotides infused into rat substantia nigra pars compacta. Soc. Neurosci. Abstr. 20, 909.Google Scholar
  99. 98.
    MacKenzie, R. G., VanLeewen, D., Pugsley, T. A., Shih, Y. H., Demattos, S., Tang, L., Todd, R. D., and O’Malley, K. L. (1994) Characterization of the human dopamine D3 receptor expressed in transfected cell lines. Eur. J. Pharmacol. 266, 79–85.PubMedCrossRefGoogle Scholar
  100. 99.
    Fishburn, C. S., Belleli, D., David, C., Cannon, S., and Fuchs, S. (1993) A novel short isoform of the D3 dopamine receptor generated by alternative splicing in the third cytoplasmic loop. J. Biol. Chem. 268, 5872–5878.PubMedGoogle Scholar
  101. 100.
    Schmauss, C., Levenson, R., Bergson, C., and Liu, K. (1994) Expression of a dopamine D3-receptor-like protein (D3nf) in human cortex. Soc. Neurosci. Abstr. 20, 644.Google Scholar
  102. 101.
    Liu, L., Shen, R.-Y., Kapatos, G., and Chiodo, L. A. (1994) Dopamine neuron membrane physiology: characterization of the transient outward current (IA) and demonstration of a common signal transduction pathway for IA and IK. Synapse 17, 230–240.PubMedCrossRefGoogle Scholar
  103. 102.
    Castellano, M. A., Liu, L.-X., Monsma, F. J. J., Sibley, D. R., Kapatos, G., and Chiodo, L. A. (1993) Transfected D2 short dopamine receptors inhibit voltage-dependent potassium current in neuroblastoma X glioma (NG108–15) cells. Mol. Pharmacol. 44, 649–656.PubMedGoogle Scholar
  104. 103.
    Liu, L.-X., Monsma, F. J. J., Sibley, D. R., and Chiodo, L. A. (1993) Coupling of DZ long receptor isoform to K’ currents in neuroblastoma X glioma (NG108–15) cells. Soc. Neurosci. Abstr. 19, 79.Google Scholar
  105. 104.
    Chiodo, L. A., Liu, L.-X., Monsma, F. J. J., and Sibley, D. R. (1993) Transfected D3 dopamine receptors inhibit voltage-dependent potassium current in neuroblastoma X glioma hybrid (NG108–15) cells. Soc. Neurosci. Abstr. 19, 79.Google Scholar
  106. 105.
    Liu, L.-X., Kapatos, G., and Chiodo, L. A. (1992) DA autoreceptor modulation of different calcium currents in DA neurons. Soc. Neurosci. Abstr. 18, 1516.Google Scholar
  107. 106.
    Chiodo, L. A. and Liu, L.-X. (1994) DA autoreceptor stimulation increases the voltage dependent Na’ current observed in identified DA neurons. Soc. Neurosci. Abstr. 20, 522.Google Scholar
  108. 107.
    Bowyer, J. F. and Weiner, N. (1989) K+ channel and adenylate cyclase involvement in regulation of Cat+-evoked release of [3H]dopamine from synaptosomes. J. Pharmacol. Exp. Ther. 248, 514–520.PubMedGoogle Scholar
  109. 108.
    Memo, M., Missale, C., Carruba, M. O., and Spano, P. F. (1986) D2 dopamine receptors associated with inhibition of dopamine release from rat neostriatum are independent from cyclic AMP. Neurosci. Lett. 71, 192–196.PubMedCrossRefGoogle Scholar
  110. 109.
    Cass, W. A. and Zahniser, N. R. (1991) Potassium channel blockers inhibit D2 dopamine, but not Al adenosine, receptor-mediated inhibition of striatal dopamine release. J. Neurochem. 57, 147–152.PubMedCrossRefGoogle Scholar
  111. 110.
    Tanaka, T., Vincent, S. R., Nomikos, G. G., and Fibiger, H. C. (1992) Effect of quinine on autoreceptor-regulated dopamine release in the rat striatum. J. Neurochemistry 59, 1640–1645.CrossRefGoogle Scholar
  112. 111.
    El-Mestikawy, S., Glowinski, J., and Hamon, M. (1986) Presynaptic dopamine autoreceptors control tyrosine hydroxylase activation in depolarized striatal dopaminergic terminals. J. Neurochem. 46, 12–22.PubMedCrossRefGoogle Scholar
  113. 112.
    Goldstein, M. (1995) Long- and short-term regulation of tyrosine hydroxylase, in Psychopharmacology: The Fourth Generation of Progress ( Bloom, F. E. and Kupfer, D. J., eds.), Raven, New York, pp. 189–196.Google Scholar
  114. 113.
    Haycock, J. (1987) Stimulation-dependent phosphorylation of tyrosine hydroxylase in rat corpus striatum. Brain Res. Bull. 19, 619–622.PubMedCrossRefGoogle Scholar
  115. 114.
    Salah, R. S., Kuhn, D. M., and Galloway, M. P. (1989) Dopamine autoreceptors modulate the phosphorylation of tyrosine hydroxylase in rat striatum. J. Neurochemistry 52, 1517–1522.CrossRefGoogle Scholar
  116. 115.
    El-Mestikawy, S. and Hamon, M. (1986) Is dopamine-induced inhibition of adenylate cyclase involved in the autoreceptor mediated negative control of tyrosine hydroxylase in striatal dopaminergic terminals? J. Neurochem. 47, 1425–1433.PubMedCrossRefGoogle Scholar
  117. 116.
    Onali, P. L. and Olianas, M. C. (1989) Involvement of adenylate cyclase inhibition in dopamine autoreceptor regulation of tyrosine hydroxylase in rat nucleus accumbens. Neurosci. Lett. 102, 91–96.PubMedCrossRefGoogle Scholar
  118. 117.
    Strait, K. A. and Kuczenski, R. (1986) Dopamine autoreceptor regulation of the kinetic state of striatal tyrosine hydroxylase. Mol. Pharmacol. 29, 561–569.PubMedGoogle Scholar
  119. 118.
    Onali, P., Mosca, E., and Olianas, M. C. (1992) Presynaptic dopamine autoreceptors and second messengers controlling tyrosine hydroxylase activity in rat brain. Neurochem. Int. 20, 89S - 93S.PubMedCrossRefGoogle Scholar
  120. 119.
    Tissari, A. H. and Lillgäls, M. S. (1993) Reduction of dopamine synthesis inhibition by dopamine autoreceptor activation in striatal synaptosomes with in vivo reserpine administration. J. Neurochem. 61, 231–238.PubMedCrossRefGoogle Scholar
  121. 120.
    Fujiwara, H., Kato, N., Shuntoh, H., and Tanaka, C. (1987) D2-dopamine receptor-mediated inhibition of intracellular Ca” mobilization and release of acetylcholine from guinea-pig neostriatal slices. Br. J. Pharmacol. 91, 287–297.PubMedCrossRefGoogle Scholar
  122. 121.
    Bannon, M. J., Reinhard, J. F. J., Bunney, E. B., and Roth, R. H. (1982) Mesocortical dopamine neurons: unique response to antipsychotic drugs explained by absence of terminal autoreceptors. Nature 296, 444–446.PubMedCrossRefGoogle Scholar
  123. 122.
    Matsumoto, T., Uchimura, H., Hirano, M., Kim, J. S., Yokoo, H., Shimomura, M., Nakahara, T., Inoue, K., and Oomagari, K. (1983) Differential effects of acute and chronic administration of haloperidol on homovanillic acid levels in discrete dopaminergic areas of rat brain. Eur. J. Pharmacol. 89, 27–33.PubMedCrossRefGoogle Scholar
  124. 123.
    Scatton, B. (1977) Differential regional development of tolerance to increase dopamine turnover upon repeated neuroleptic administration. Eur. J. Pharmacol. 46, 363–369.PubMedCrossRefGoogle Scholar
  125. 124.
    Nowycky, M. and Roth, R. H. (1978) Dopaminergic neurons: role of presynaptic receptors in the regulation of transmitter biosynthesis. Prog. Neuro-Psychopharmacol. 2, 139–158.CrossRefGoogle Scholar
  126. 125.
    King, G. R., Ellinwood, E. H. J., Silvia, C., Joyner, C. M., Xue, Z., Caron, M. G., and Lee, T. H. (1994) Withdrawal from continuous or intermittent cocaine administration: changes in D2 receptor function. J. Pharmacol. Exp. Ther. 269, 743–749.PubMedGoogle Scholar
  127. 126.
    Post, R. M. (1977) Progressive changes in behavior and seizures following chronic cocaine administration: relationship to kindling and psychosis, in Advances in Behavioral Biology: Cocaine and Other Stimulants (Ellinw000d, E. H. and Kilbey, M. M., eds.), Plenum, New York, pp. 353–372.Google Scholar
  128. 127.
    Robinson, T. E. and Berridge, K. C. (1993) The neural basis of drug craving: an incentive-sensitization theory of addiction. Brain Res. Rev. 18, 247–291.PubMedCrossRefGoogle Scholar
  129. 128.
    Seutin, V., Verbanck, P., Massotte, L., and Dresse, A. (1991) Acute amphetamine-induced subsensitivity of A10 dopamine autoreceptors in vitro. Brain Res. 558, 141–144.PubMedCrossRefGoogle Scholar
  130. 129.
    Antelman, S. M. and Chiodo, L. A. (1981) Dopamine autoreceptor subsensitivity: a mechanism common to the treatment of depression and the induction of amphetamine psychosis. Biol. Psychiatry 16, 717–727.PubMedGoogle Scholar
  131. 130.
    Henry, D. J., Margaret, A. G., and White, F. J. (1989) Electrophysiological effects of cocaine in the mesoaccumbens dopamine system: repeated administration. J. Pharmacol. Exp. Ther. 251, 833–839.PubMedGoogle Scholar
  132. 131.
    Kamata, K. and Rebec, G. V. (1984) Long-term amphetamine treatment attenuates or reverses the depression of neuronal activity produced by dopamine agonists in the ventral tegmental area. Life Sci. 34, 2419–2427.PubMedCrossRefGoogle Scholar
  133. 132.
    White, F. J. and Wang, R. Y. (1984) Electrophysiological evidence for A10 dopamine autoreceptor subsensitivity following chronic D-amphetamine treatment. Brain Res. 309, 283–292.PubMedCrossRefGoogle Scholar
  134. 133.
    Ackerman, J. M. and White, F. J. (1990) A10 somatodendritic dopamine autoreceptor sensitivity following withdrawal from repeated cocaine treatment. Neuroscience Lett. 117, 181–187.CrossRefGoogle Scholar
  135. 134.
    Yamada, S., Yokoo, H., and Nishi, S. (1991) Changes in sensitivity of dopamine autoreceptors in rat striatum after subchronic treatment with methamphetamine. Eur. J. Pharmacol. 205, 43–47.PubMedCrossRefGoogle Scholar
  136. 135.
    Harsing, L. G. J., Sershen, H., and Lajtha, A. (1992) Dopamine efflux from striatum after chronic nicotine: evidence for autoreceptor desensitization. J. Neurochem. 59, 48–54.PubMedCrossRefGoogle Scholar
  137. 136.
    Yi, S.-J. and Johnson, K. M. (1990) Chronic cocaine treatment impairs the regulation of synaptosomal 3H-DA release by D2 autoreceptors. Pharmacol. Biochem. Behay. 36, 457–461.CrossRefGoogle Scholar
  138. 137.
    Fitzgerald, J. L. and Reid, J. J. (1991) Chronic cocaine treatment does not alter rat striatal D2 autoreceptor sensitivity to pergolide. Brain Res. 541, 327–333.PubMedCrossRefGoogle Scholar
  139. 138.
    Gifford, A. N. and Johnson, K. M. (1992) Effect of chronic cocaine treatment on D2 receptors regulating the release of dopamine and acetylcholine in the nucleus accumbens and striatum. Pharmacol. Biochem. Behay. 41, 841–846.CrossRefGoogle Scholar
  140. 139.
    Dwoskin, L. P., Penis, J., Yasuda, R. P., Philpott, K., and Zahniser, N. R. (1988) Repeated cocaine administration results in supersensitivity of striatal D2 dopamine autoreceptors to pergolide. Life Sci. 42, 255–262.PubMedCrossRefGoogle Scholar
  141. 140.
    Baumann, M. H. and Rothman, R. B. (1993) Effects of acute and chronic cocaine on the activity of tuberoinfundibular dopamine neurons in the rat. Brain Res. 608, 175–179.Google Scholar
  142. 141.
    Galloway, M. P. (1990) Regulation of dopamine and serotonin synthesis by acute administration of cocaine. Synapse 6, 63–72.PubMedCrossRefGoogle Scholar
  143. 142.
    Jeziorski, M. and White, F. J. (1989) Dopamine agonists at repeated “autoreceptorselective” doses: effects upon the sensitivity of A10 dopamine autoreceptors. Synapse 4, 267–280.PubMedCrossRefGoogle Scholar
  144. 143.
    Anden, N.-E., Golembiowska-Nikitin, K., and Thornström, U. (1982) Selective stimulation of dopamine and noradrenaline autoreceptors by B-HT920 and B-HT933, respectively. Naunyn Schmiedeberg’sArch. Pharmacol. 321, 100–104.PubMedCrossRefGoogle Scholar
  145. 144.
    Clemens, J. A., Fuller, R. W., Phebus, L. A., Smalstig, E. B., and Hynes, M. D. (1984) Stimulation of presynaptic dopamine autoreceptors by 4-(2-di-n-propylaminoethyl)indol (DPAI). Life Sci. 34, 1015–1022.PubMedCrossRefGoogle Scholar
  146. 145.
    Seyfried, C. A., Fuxe, K., Wolf, H.-P., and Agnati, L. F. (1982) Demonstration of a new type of dopamine receptor agonist: an indolyl-3-butylamine. Actions at intact versus supersensitive dopamine receptors in the rat forebrain. Acta Physiol. Scand. 116, 465–468.PubMedCrossRefGoogle Scholar
  147. 146.
    Hjorth, S., Svensson, K., Carlsson, A., Wikstrom, H., and Andersson, B. (1986) Central dopaminergic properties of HW-165 and its enantiomers; transoctahydrobenzo(f)quinoline cogeners of 3-PPP. Naunyn-Schmiedeberg’s Arch. Pharmacol. 333, 205–218.PubMedCrossRefGoogle Scholar
  148. 147.
    Yasuda, Y., Kikuchi, T., Suzuki, S., Tsutsui, M., Yamada, K., and Hiyama, T. (1988) 7-[3-(4-[2,3-Dimethylphenyl]piperazinyl)propoxy]-2(1H)-quinoline (OPC-4392), a presynaptic dopamine autoreceptor agonist and postsynaptic D2 receptor antagonist. Life Sci. 42, 1941–1954.Google Scholar
  149. 148.
    Pugsley, T. A., Christofferson, C. L., Corbin, A., DeWald, H. A., Demattos, S., Meltzer, L. T., et al. (1992) Pharmacological characterization of PD 118717, a putative piperazinyl benzopyranone dopamine autoreceptor agonist. J. Pharmacol. Exp. Ther. 263, 1147–1158.PubMedGoogle Scholar
  150. 149.
    Jaen, J. C., Wise, L. D., Heffner, T. G., Pugsley, T. A., and Meltzer, L. T. (1992) Dopamine autoreceptor agonists as potential antipsychotics. 2. (Aminoalkoxy)4H-1-benzopyran-4-ones. J. Med. Chem. 34, 248–256.CrossRefGoogle Scholar
  151. 150.
    Wright, J. L., Caprathe, B. W., Downing, D. M., Glase, S. A., Heffner, T. G., Jaen, J. C., et al. (1994) The discovery and structure—activity relationships of 1,2,3,6tetrahydro-4-phenyl-1-[(arylcyclohexenyl)alkyl]pyridines. Dopamine autoreceptor agonists and potential antipsychotic agents. J. Med. Chem. 37, 3523–3533.PubMedCrossRefGoogle Scholar
  152. 151.
    Meltzer, L. T., Caprathe, B. W., Christoffersen, C. L., Corbin, A. E., Jaen, J. C., Ninteman, F. W., et al. (1993) Pharmacological profile of the dopamine partial agonist, (±)-PD 128483 and its enantiomers. J. Pharmacol. Exp. Ther. 266, 1177–1189.PubMedGoogle Scholar
  153. 152.
    Caprathe, B. W., Jaen, J. C., Wise, L. D., Heffner, T. G., Pugsley, T. A., Meltzer, L. T., and Parvez, M. (1991) Dopamine autoreceptor agonists as potential antipsychotics. 3. 6-Propyl-4,5,5a,6,7,8-hexahydrothiazolo [4,5-f]quinolin-2- amine. J. Med. Chem. 34, 2736–2746.PubMedCrossRefGoogle Scholar
  154. 153.
    Hjorth, S., Carlsson, A., Wikström, H., Lindberg, P., Sanchez, D., Hacksell, U., Arvidsson, L.-E., Svensson, U., and Nilsson, J. L. G. (1981) 3-PPP, a new centrally acting DA-receptor agonist with selectivity for autoreceptors. Life Sci. 28, 1225–1238.Google Scholar
  155. 154.
    Nisoli, E., Tonello, C., Imhof, R., Scherschlicht, R., da Prada, M., and Carruba, M. O. (1993) Neurochemical and behavioral evidence that Ro 41–9067 is a selective presynaptic dopamine receptor agonist. J. Pharmacol. Exp. Ther. 266, 97–105.PubMedGoogle Scholar
  156. 155.
    Coward, D. M., Dixon, A. K., Urwyler, S., White, T. G., Enz, A., Karobath, M., and Shearman, G. (1990) Partial dopamine-agonistic and atypical neuroleptic properties of the amino-ergolines SDZ 208–911 and SDZ 208–912. J. Pharmacol. Exp. Ther. 252, 279–285.PubMedGoogle Scholar
  157. 156.
    Mierau, J. and Bechtel, W. D. (1988) SND 919 inhibits dopamine release in vivo and in vitro. Psychopharmacology 96, S338.Google Scholar
  158. 157.
    Kehr, W. (1984) Transdihydrolisuride, a partial dopamine receptor antagonist: effects on monoamine metabolism. Eur. J. Pharmacol. 97, 111–119.PubMedCrossRefGoogle Scholar
  159. 158.
    Goodale, D. B., Rusterholz, D. B., Long, J. P., Flynn, J. R., Walsh, B., Cannon, J. G., and Lee, T. (1980) Neurochemical and behavioral evidence for a selective presynaptic receptor agonist. Science 210, 1141–1143.PubMedCrossRefGoogle Scholar
  160. 159.
    Lahti, R. A., Evans, D. L., Figur, L. M., Huff, R. M., and Moon, M. W. (1993) Pre- and postsynaptic dopaminergic activities of U-86170F. Naunyn-Schmiedeberg ‘s Arch. Pharmacol. 344, 509–513.Google Scholar
  161. 160.
    Piercey, M. F., Broderick, P. A., Hoffmann, W. E., and Vogelsang, G. D. (1990) U-66444B and U-68553B, potent autoreceptor agonists at dopaminergic cell bodies and terminals. J Pharmacol. Exp. Ther. 254, 369–374.PubMedGoogle Scholar
  162. 161.
    Svensson, K., Johansson, A. M., Magnusson, T., and Carlsson, A. (1986) (+)-AJ 76 and (+)-UH 232: central stimulants acting as preferential dopamine autoreceptor antagonists. Naunyn-Schmiedeberg’s Arch. Pharmacol. 334, 234–245.Google Scholar
  163. 162.
    Bischoff, S., Baumann, P., Krauss, J., Maître, L., Vassout, A., Storni, A., and Chouinard, G. (1994) CGP 25454A, a novel and selective presynaptic dopamine autoreceptor antagonist. Naunyn-Schmiedeberg ‘s Arch. Pharmacol. 350, 230–238.CrossRefGoogle Scholar
  164. 163.
    Sonesson, C., Lin, C.-H., Hansson, L., Waters, N., Svensson, K., Carlsson, A., Smith, M. W., and Wilkström, H. (1994) Substituted (S)-phenylpiperidines and rigid congeners as preferred dopamine autoreceptor antagonists: synthesis and structure-activity relationships. J. Med. Chem. 37, 2735–2753.PubMedCrossRefGoogle Scholar
  165. 164.
    Kling-Petersen, T., Ljung, E., Wollter, L., and Svensson, K. (1995) Effects of the dopamine D3- and autoreceptor preferring antagonist (-)-DS 121 on locomotor activity, conditioned place preference and intracranial self-stimulation in the rat. Behay. Pharmacol. 6, 107–115.CrossRefGoogle Scholar
  166. 165.
    Seeman, P., George, S., and Watanabe, M. (1984) Presynaptic dopamine receptors operate in the high affinity state for dopamine. Postsynaptic ones work in low-affinity state. Soc. Neurosci. Abstr. 10, 278.Google Scholar
  167. 166.
    Carlsson, A. (1983) Dopamine receptor agonists: intrinsic activity vs. state of receptor. J. Neural Transmiss. 57, 309–315.CrossRefGoogle Scholar
  168. 167.
    Meller, E., Bohmaker, K., Namba, Y., Friedhoff, A. J., and Goldstein, M. (1987) Relationship between receptor occupancy and response at striatal dopamine autoreceptors. Mol. Pharmacol. 31, 592–598.PubMedGoogle Scholar
  169. 168.
    Cox, R. F. and Waszczak, B. L. (1989) Differences in dopamine receptor reserve for N-n-propylnorapomorphine enantiomers: single unit recording studies after partial inactivation of receptors by N-ethoxycarbonyl-2-ethoxy-1,2-dihydroquinoline. Mol. Pharmacol. 35, 125–131.PubMedGoogle Scholar
  170. 169.
    Yokoo, H., Goldstein, M., and Meller, E. (1988) Receptor reserve at striatal dopamine receptors modulating the release of [31I]dopamine. Eur. J. Pharmacol. 155, 323–327.PubMedCrossRefGoogle Scholar
  171. 170.
    Cox, R. F. and Waszczak, B. L. (1990) Irreversible receptor inactivation reveals differences in dopamine receptor reserve between A9 and A10 dopamine systems: an electrophysiological analysis. Brain Res. 534, 273–282.PubMedCrossRefGoogle Scholar
  172. 171.
    Meller, E., Enz, A., and Goldstein, M. (1988) Absence of receptor reserve at striatal dopamine receptors regulating cholinergic neuronal activity. Eur. J. Pharmacol. 155, 151–154.PubMedCrossRefGoogle Scholar
  173. 172.
    Bohmaker, K., Puza, T., Goldstein, M., and Meller, E. (1989) Absence of spare autoreceptors regulating dopamine agonist inhibition of tyrosine hydroxylation in slices of rat striatum. J. Pharmacol. Exp. Ther. 248, 97–103.PubMedGoogle Scholar
  174. 173.
    Seyfried, C. A. (1988) Comparison of EMD 38362, (+)3-PPP, (–)3-PPP and BHT 920 in pre- and postsynaptic models for D2-activity: discrepancies between in vivo and in vitro results, in Pharmacology and Functional Regulation of Dopaminergic Neurons ( Beart, P. M., Woodruff, G. N., and Jackson, D. M., eds.), MacMillan, London, pp. 187–190.Google Scholar
  175. 174.
    Clark, D. and White, F. J. (1987) D, dopamine receptor—the search for a function: a critical evaluation of the D1/D2 dopamine receptor classification and its functional implications. Synapse 1, 347–388.PubMedCrossRefGoogle Scholar
  176. 175.
    Wachtel, S. R., Hu, X. T., Galloway, M. P., and White, F. J. (1989) D, dopamine receptor stimulation enables the postsynaptic, but not autoreceptor, effects of D2 dopamine agonists in nigrostriatal and mesoaccumbens dopamine systems. Synapse 4, 327–346.PubMedCrossRefGoogle Scholar
  177. 176.
    Tamminga, C. A., Gotta, M. D., Thaker, G. K., Alphs, L. D., and Foster, N. L. (1986) Dopamine agonist treatment of schizophrenia with N-propylnorapomorphine. Arch. Gen. Psychiat. 43, 398–402.PubMedCrossRefGoogle Scholar
  178. 177.
    Benkert, O., Grunder, G., and Wetzel, H. (1992) Dopamine autoreceptor agonists in the treatment of schizophrenia and major depression. Pharmacopsychiatry 25, 254–260.PubMedCrossRefGoogle Scholar
  179. 178.
    Wetzel, H., Hillert, A., Grunder, G., and Benkert, O. (1994) Roxindole, a dopamine autoreceptor agonist, in the treatment ofpositive and negative schizophrenic symptoms. Am. J. Psychiat. 151, 1499–1502.PubMedGoogle Scholar
  180. 179.
    Mierau, J. and Schingnitz, G. (1992) Biochemical and pharmacological studies on pramipexole, a potent and selective dopamine D2 receptor agonist. Eur. J. Pharmacol. 215, 161–170.PubMedCrossRefGoogle Scholar
  181. 180.
    Svensson, K., Eriksson, E., and Carlsson, A. (1993) Partial dopamine receptor agonists reverse behavioral, biochemical and neuroendocrine effects ofneuroleptics in the rat: potential treatment of extrapyramidal side effects. Neuropharmacology 32, 1037–1045.PubMedCrossRefGoogle Scholar
  182. 181.
    Richard, M. G. and Bennett, J. P. J. (1994) Regulation by D2 dopamine receptors of in vivo dopamine synthesis in striata of rats and mice with experimental parkinsonism. Exp. Neurol. 129, 57–63.PubMedCrossRefGoogle Scholar
  183. 182.
    Kling-Petersen, T., Ljung, E., and Svensson, K. (1994) The preferential dopamine autoreceptor antagonist (+)-UH 232 antagonizes the positive reinforcing effects of cocaine and d-amphetamine in the ICSS paradigm. Pharmacol. Biochem. Behay. 49, 345–351.CrossRefGoogle Scholar
  184. 183.
    Piercey, M. F., Lum, J. T., Hoffmann, W. E., Carlsson, A., Ljung, E., and Svensson, K. (1992) Antagonism of cocaine’s pharmacological effects by the stimulant dopaminergic antagonists, (+)-AJ 76 and (+)-UH 232. Brain Res. 588, 217–222.PubMedCrossRefGoogle Scholar
  185. 184.
    Richardson, N. R., Piercey, M. F., Svensson, K., Collins, R. J., Myers, J. E., and Roberts, D. C. (1993) Antagonism of cocaine self-administration by the preferential dopamine autoreceptor antagonist, (+)-AJ 76. Brain Res. 619, 15–21.PubMedCrossRefGoogle Scholar
  186. 185.
    Clark, D., Exner, M., Furmidge, L. J., Svensson, K., and Sonesson, C. (1995) Effects of the dopamine autoreceptor antagonist (—)-DS 121 on the discriminative properties of d-amphetamine and cocaine. Eur. J. Pharmacol. 275, 67–74.PubMedCrossRefGoogle Scholar
  187. 186.
    Vanover, K. E. and Woolverton, W. L. (1994) Behavioral effects of the dopamine autoreceptor agonist PD 128483 alone in combination with cocaine. J. Pharmacol. Exp. Ther. 270, 1049–1056.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • John D. Elsworth
  • Robert H. Roth

There are no affiliations available

Personalised recommendations