D1/D2 Dopamine Receptor Interactions in Basal Ganglia Functions

  • John F. Marshall
  • David N. Ruskin
  • Gerald J. LaHoste
Part of the The Receptors book series (REC)


The classification by Kebabian and Calne (1) in 1979 of dopamine (DA) receptors into two subtypes (DI and D2) was based on differential linkages to adenylate cyclase as well as on distinct pharmacological profiles. At the time that this classification was proposed, several lines of evidence pointed to a role for D2, but not D1, receptors in the behavioral functions mediated by dopamine.* For instance, in vivo administration of D2 antagonists was known to block the motor stimulant and rewarding properties of agents such as amphetamine or cocaine (3, 4). Administration of D2 agonists produces locomotor activity and stereotyped movements (5). Also, the clinical potencies ofa series of antipsychotic drugs were found to correlate with their affinities for D2 receptors (6, 7). In retrospect, it seems clear that the slowness to recognize the importance of D1 receptor agonism to dopamine’s effects within basal ganglia occurred for two reasons. First, a lack of pharmacological agents specific for DI receptors precluded researchers from isolating the functions of this receptor. Second, as we now appreciate, the influences of D1 receptors can be subtle to detect. The interactions between D1 and D2 receptors are profoundly changed by nigrostriatal injury; and, in intact animals, their interpretation depends on an appreciation of the role played by endogenous DA in providing tonic DI agonism.


Firing Rate Dopamine Receptor Dopamine Agonist Striatal Neuron Globus Pallidus Neuron 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kebabian, J. W. and Caine, D. B. (1979) Multiple receptors for dopamine. Nature 277, 93–96.PubMedCrossRefGoogle Scholar
  2. 2.
    Sibley, D. R. and Monsma, F. J., Jr. (1992) Molecular biology of dopamine receptors. Trends Pharmacol. Sci. 13, 61–69.PubMedCrossRefGoogle Scholar
  3. 3.
    Pijnenburg, A. J. J., Honig, W. M. M., and Rossum, J. M. V. (1975) Inhibition of d-amphetamine-induced locomotor activity by injection of haloperidol into the nucleus accumbens of the rat. Psychopharmacologia 41, 87–95.PubMedCrossRefGoogle Scholar
  4. 4.
    Yokel, R. A. and Wise, R. A. (1976) Attenuation of intravenous amphetamine reinforcement by central dopamine blockade in rats. Psychopharmacology 48, 311–318.PubMedCrossRefGoogle Scholar
  5. 5.
    Pijnenburg, A. J. J., Woodruff, G. N., and Rossum, J. M. V. (1973) Ergometrine induced locomotor activity following intracerebral injection into the nucleus accumbens. Brain Res. 59, 289–302.PubMedCrossRefGoogle Scholar
  6. 6.
    Creese, I., Burt, D. R., and Snyder, S. H. (1976) Dopamine receptor binding predicts clinical and pharmacological potencies of antischizophrenic drugs. Science 192, 481–483.PubMedCrossRefGoogle Scholar
  7. 7.
    Seeman, P., Lee, T., Chau-Wong, M., and Wong, K. (1976) Antipsychotic drug doses and neuroleptic/dopamine receptors. Nature 261, 717–719.Google Scholar
  8. 8.
    Setier, P. E., Sarau, H. M., Zirkle, C. L., and Saunders, H. L. (1978) The central effects of a novel dopamine agonist. Eur. J. Pharmacol. 50, 419–430.Google Scholar
  9. 9.
    brio, L. C., Barnett, A., Billard, W., and Gold, E. H. (1986) Benzazepines: structure—activity relationships between D, receptor blockade and selected pharmacological effects, in Neurobiology of Central D,-Dopamine Receptors ( Breese, G. R. and Creese, I., eds.), Plenum, New York, pp. 1–14.Google Scholar
  10. 10.
    Lewis, M. H., Widerlov, E., Knight, D. L, Kilts, C. D., and Mailman, R. B. (1983) N-oxides of phenothiazine antipsychotics: effects on in vivo and in vitro estimates of dopaminergic functions. J. Pharmacol. Exp. Ther. 225, 539–545.Google Scholar
  11. 11.
    Mailman, R. B., Schultz, D. W., Lewis, M. H., Staples, L., Rollema, H., and Dehaven, D. L. (1984) SCH 23390: a selective D, dopamine antagonist with potent D2 behavioral actions. Eur. J. Pharmacol. 101, 159, 160.Google Scholar
  12. 12.
    Walters, J. R., Bergstrom, D. A., Carlson, J. H., Chase, T. N., and Braun, A. R. (1987) D, dopamine receptor activation required for postsynaptic expression of D2 agonist effects. Science 236, 719–722.Google Scholar
  13. 13.
    White, F. J. and Wang, R. Y. (1986) Electrophysiological evidence for the existence of both D-1 and D-2 dopamine receptors in the rat nucleus accumbens. J. Neurosci. 6, 274–280.PubMedGoogle Scholar
  14. 14.
    Clark, D. and White, F. J. (1987) Review: D1 dopamine receptor-the search for a function: a critical evaluation of the Dl/D2 dopamine receptor classification and its functional implications. Synapse 1, 347–388.PubMedCrossRefGoogle Scholar
  15. 15.
    Gershanik, O., Heikkila, R. E., and Duvoisin, R. C. (1983) Behavioral correlations of dopamine receptor activation. Neurology 33, 1489–1492.PubMedCrossRefGoogle Scholar
  16. 16.
    LaHoste, G. J. and Marshall, J. F. (1992) Dopamine supersensitivity and Di/D2 synergism are unrelated to changes in striatal receptor density. Synapse 12, 14–26.PubMedCrossRefGoogle Scholar
  17. 17.
    Arnt, J., Hyttel, J., and Perregaard, J. (1987) Dopamine D-1 receptor agonists combined with the selective D-2 agonist quinpirole facilitate the expression of oral stereotyped behavior in rats. Eur. J. Pharmacol. 133, 137–145.Google Scholar
  18. 18.
    Braun, A. R. and Chase, T. N. (1986) Obligatory D-1/D-2 receptor interaction in the generation of dopamine agonist related behaviors. Eur. J. Pharmacol. 131, 301–306.PubMedCrossRefGoogle Scholar
  19. 19.
    Jackson, D. M. and Hashizume, M. (1986) Bromocriptine induces marked locomotor stimulation in dopamine-depleted mice when D-1 dopamine receptors are stimulated with SKF38393. Psychopharmacology 90, 147–149.PubMedGoogle Scholar
  20. 20.
    Mashurano, M. and Waddington, J. L. (1986) Stereotyped behaviour in response to the selective D-2 dopamine receptor agonist RU 24213 is enhanced by pretreatment with the selective agonist SKmalongxiangF 38393. Neuropharmacology 25, 947–949.PubMedCrossRefGoogle Scholar
  21. 21.
    Meller, E., Bordi, F., and Bohmaker, K. (1988) Enhancement by the D1 dopamine agonist SKF 38393 of specific components of stereotypy elicited by the D2 agonists LY 171555 and RU 24213. Life Sci. 42, 2561–2567.PubMedCrossRefGoogle Scholar
  22. 22.
    White, F. J., Bednarz, L. M., Wachtel, S. R., Hjorth, S., and Brooderson, R. J. (1988) Is stimulation of both DI and D2 receptors necessary for the expression of dopamine-mediated behaviors? Pharmacol. Biochem. Behay. 30, 189–193.Google Scholar
  23. 23.
    White, F. J. (1987) D-1 dopamine receptor stimulation enables the inhibition of nucleus accumbens neurons by a D-2 receptor agonist. Eur. J. Pharmacol. 135, 101–105.PubMedCrossRefGoogle Scholar
  24. 24.
    Wachtel, S. R., Hu, X.-T., Galloway, M. P., and White, F. J. (1989) D1 dopamine receptor stimulation enables the postsynaptic, but not autoreceptor, effects of D2 dopamine agonists in nigrostriatal and mesoaccumbens dopamine systems. Synapse 4, 327–346.Google Scholar
  25. 25.
    Hu, X.-T. and Wang, R. Y. (1988) Comparison of effects of D-1 and D-2 dopamine receptor agonists on neurons in the rat caudate putamen: an electrophysiological study. J. Neurosci. 8, 4340–4348.PubMedGoogle Scholar
  26. 26.
    Bordi, F. and Meller, E. (1989) Enhanced behavioral stereotypies elicited by intrastriatal injection of DI and D2 agonists in intact rats. Brain Res. 504, 276–283.PubMedCrossRefGoogle Scholar
  27. 27.
    Rosa-Kenig, A., Puotz, J. K., and Rebec, G. V. (1993) The involvement of DI and D2 dopamine receptors in amphetamine-induced changes in striatal unit activity in behaving rats. Brain Res. 619, 347–351.PubMedCrossRefGoogle Scholar
  28. 28.
    Wang, Z. and Rebec, G. V. (1993) Neuronal and behavioral correlates of intrastriatal infusions of amphetamine in freely moving rats. Brain Res. 627, 79–88.PubMedCrossRefGoogle Scholar
  29. 29.
    Calabresi, P., Maj, R., Mercuri, N. B., and Bernardi, G. (1992) Coactivation of DI and DZ dopamine receptors is required for long-term synaptic depression in the striatum. Neurosci. Lett. 142, 95–99.PubMedCrossRefGoogle Scholar
  30. 30.
    Calabresi, P. Pisani, A., Mercuri, N. B. and Bernardi, G. (1994) Post-receptor mechanisms underlying striatal long-term depression. J. Neurosci. 14 4871–4881.Google Scholar
  31. 31.
    Carlson, J. H., Bergstrom, D. A., Demo, S. D., and Walters, J. R. (1988) Acute reduction of dopamine levels alters responses of basal ganglia neurons to selective D-1 and D-2 dopamine receptor stimulation. Eur. J. Pharmacol. 152, 289–300.Google Scholar
  32. 32.
    Carlson, J. H., Bergstrom, D. A., Demo, S.D., and Walters, J. R. (1990) Nigrostriatal lesion alters neurophysiological responses to selective and nonselective D-1 and D-2 dopamine agonists in rat globus pallidus. Synapse 5, 83–93.PubMedCrossRefGoogle Scholar
  33. 33.
    Yang, C. R. and Mogenson, G. J. (1989) Ventral pallidal neuronal responses to dopamine receptor stimulation in the nucleus accumbens. Brain Res. 489, 237–246.PubMedCrossRefGoogle Scholar
  34. 34.
    Waszczak, B. L., Lee, E. K., Ferraro, T., Hare, T. A., and Walters, J. R. (1984) Single unit responses of substantia nigra pars reticulata neurons to apomorphine: effects of striatal lesions and anesthesia. Brain Res. 306, 307–318.PubMedCrossRefGoogle Scholar
  35. 35.
    Walters, J. R., Kelland, M. D., Huang, K.-X., and Bergstrom, D. A. (1992) Effects of dopamine agonists on neuronal activity in the basal ganglia of normal and dopamine-denervated rats, in Progress in Parkinson’s Disease-2 (Hefti, F. and Weiner, W. J.), Futura Publishing, Mount Kisco, NY, pp. 229–257.Google Scholar
  36. 36.
    Kadekaro, M., Crane, A. M., and Sokoloff, L. (1985) Differential effects of electrical stimulation of sciatic nerve on metabolic activity in spinal cord and dorsal root ganglion in the rat. Proc. Natl. Acad. Sci. USA 82, 6010–6013.PubMedCrossRefGoogle Scholar
  37. 37.
    Brown, L. L. and Wolfson, L. I. (1978) Apomorphine increases glucose utilization in the substantia nigra, subthalamic nucleus and corpus striatum of rat. Brain Res. 140, 188–193.Google Scholar
  38. 38.
    Trugman, J. M. and James, C. L. (1993) D1 dopamine agonist and antagonist effects on regional cerebral glucose utilization in rats with intact dopaminergic innervation. Brain Res. 607, 270–274.PubMedCrossRefGoogle Scholar
  39. 39.
    Brown, L. L. and Wolfson, L. I. (1983) A dopamine-sensitive striatal efferent system mapped with [14C]deoxyglucose in the rat. Brain Res. 261, 213–299.PubMedCrossRefGoogle Scholar
  40. 40.
    Patel, S., Slater, P., and Crossman, A. R. (1985) A lesioning and 2-deoxyglucose study of the hyperactivity produced by an intra-accumbens dopamine agonist. Naunyn-Schmiedeberg’s Arch. Pharmacol. 331, 334–340.Google Scholar
  41. 41.
    Graybiel, A. M., Moratalla, R., and Robertson, H. A. (1990) Amphetamine and cocaine induce drug-specific activation of the c-fos gene in striosome-matrix compartments and limbic subdivisions of the striatum. Proc. Natl. Acad. Sci. USA 87, 6912–6916.PubMedCrossRefGoogle Scholar
  42. 42.
    Young, S. T., Porrino, L. J., and Iadarola, M. J. (1991) Cocaine induces striatal c-Fos-immunoreactive proteins via dopaminergic D1 receptors. Proc. Natl. Acad. Sci. USA 88, 1291–1295.PubMedCrossRefGoogle Scholar
  43. 43.
    Robertson, G. S., Vincent, S. R., and Fibiger, H. C. (1992) D 1 and D2 dopamine receptors differentially regulate c-fos expression in striatonigral and striatopallidal neurons. Neuroscience 49, 285–296.Google Scholar
  44. 44.
    Cenci, M. A., Campbell, K., Wictorin, K., and Bjorklund, A. (1992) Striatal c-fos induction by cocaine or apomorphine occurs preferentially in output neurons projecting to the substantia nigra. Eur. J. Neurosci. 41, 376–380.CrossRefGoogle Scholar
  45. 45.
    Johansson, B. Lindstrom, K., and Fredholm, B. B. (1994) Differences in the regional and cellular localization of c-fos messenger RNA induced by amphetamine, cocaine and caffeine in the rat. Neuroscience 59 837–849.Google Scholar
  46. 46.
    Ruskin, D. N. and Marshall, J. F. (1994) Amphetamine-and cocaine-induced Fos in the rat striatum depends on D2 dopamine receptor activation. Synapse 18, 233–240.PubMedCrossRefGoogle Scholar
  47. 47.
    LaHoste, G. J., Yu, J., and Marshall, J. F. (1993) Striatal Fos expression is indicative of dopamine DI/D2 synergism and receptor supersensitivity. Proc Natl. Acad. Sci. USA 90, 7451–7455.PubMedCrossRefGoogle Scholar
  48. 48.
    Marshall, J. F., Cole, B. N., and LaHoste, G. J. (1993) Dopamine D2 receptor control of pallidal fos expression: comparisons between intact and 6-hydroxydopamine-treated hemispheres. Brain Res. 632, 308–313.PubMedCrossRefGoogle Scholar
  49. 49.
    Zilles, K. (1985) The Cortex of the Rat, Springer-Verlag, New York.CrossRefGoogle Scholar
  50. 50.
    LaHoste, G. J., Ruskin, D. N., and Marshall, J. F. (1996) Cerebrocortical Fos expression following dopaminergic stimulation: D1/D2 synergism and its breakdown. Brain Res.,in press.Google Scholar
  51. 51.
    Gerfen, C. R. and Young, W. S., III (1988) Distribution of striatonigral and striatopallidal peptidergic neurons in both patch and matrix compartments: an in situ hybridization histochemistry and fluorescent retrograde tracing study. Brain Res. 460, 161–167.Google Scholar
  52. 52.
    Reiner, A. and Anderson, K. D. (1990) The patterns of neurotransmitter and neuropeptide co-occurrence among striatal projections neurons: conclusions based on recent findings. Brain Res. Rev. 15, 251–265.PubMedCrossRefGoogle Scholar
  53. 53.
    Engber, T. M., Boldly, R. C., Kuo, S., and Chase, T. N. (1992) Dopaminergic modulation of striatal neuropeptides: differential effects of D, and D2 receptor stimulation on somatostatin, neuropeptide Y, neurotensin, dynorphin and enkephalin. Brain Res. 581, 261–268.PubMedCrossRefGoogle Scholar
  54. 54.
    Gerfen, C. R., Engber, T. M., Mahan, L. C., Susel, Z., Chase, T. N., Monsma, F. J., Jr., and Sibley, D. R. (1990) D, and D2 dopamine receptor-regulated gene expression of striatonigral and striatopallidal neurons. Science 250, 1429–1432.PubMedCrossRefGoogle Scholar
  55. 55.
    Jiang, H.-K., McGinty, J. F., and Hong, J. S. (1990) Differential modulation of striatonigral dynorphin and enkephalin by dopamine receptor subtypes. Brain Res. 507, 57–64.PubMedCrossRefGoogle Scholar
  56. 56.
    Gerfen, C. R., McGinty, J. F., and Young, W. S., III (1991) Dopamine differentially regulates dynorphin, substance P, and enkephalin expression in striatal neurons: in situ hybridization histochemical analysis. J. Neurosci. 11, 1016–1031.PubMedGoogle Scholar
  57. 57.
    Steiner, H. and Gerfen, C. R. (1993) Cocaine-induced c-fos messenger RNA is inversely related to dynorphin expression in striatum. J. Neurosci. 13, 5066–5081.PubMedGoogle Scholar
  58. 58.
    Smith, A. J. W. and McGinty, J. F. (1994) Acute amphetamine or methamphetamine alters opioid peptide mRNA expression in rat striatum. Mol. Brain Res. 21, 359–362.PubMedCrossRefGoogle Scholar
  59. 59.
    Haverstick, D. M., Rubenstein, A., and Bannon, M. J. (1989) Striatal tachykinin gene expression regulated by interaction of D-1 and D-2 dopamine receptors. J. Pharmacol. Exp. Ther. 248, 858–862.PubMedGoogle Scholar
  60. 60.
    Schoenfeld, R. and Uretsky, N. (1972) Altered response to apomorphine in 6-hydroxydopamine-treated rats. Eur. J. Pharmacol. 19, 115–118.PubMedCrossRefGoogle Scholar
  61. 61.
    Ungerstedt, U. (1971) Postsynaptic supersensitivity after 6-hydroxydopamine induced degeneration of the nigro-striatal dopamine system. Acta Physiol. Scand. 367, 68–91.Google Scholar
  62. 62.
    Mandel, R. J. and Randall, P. K. (1985) Quantification of lesion-induced dopaminergic supersensitivity using the rotational model in the mouse. Brain Res. 330, 358–363.PubMedCrossRefGoogle Scholar
  63. 63.
    Marshall, J. F. and Ungerstedt, U. (1977) Supersensitivity to apomorphine following destruction of the ascending dopamine neurons: quantification using the rotational model. Eur. J. Pharmacol. 41, 361–367.PubMedCrossRefGoogle Scholar
  64. 64.
    Amt, J. (1985) Behavioural stimulation is induced by separate dopamine D-1 and D-2 receptor sites in reserpine-pretreated but not normal rats. Eur. J. Pharmacol. 113, 79–88.CrossRefGoogle Scholar
  65. 65.
    Creese, I., Burt, D. R., and Snyder, S. H. (1977) Dopamine receptor binding enhancement accompanies lesion-induced behavioral supersensitivity. Science 197, 596–598.PubMedCrossRefGoogle Scholar
  66. 66.
    Neve, K. A., Neve, R. L., Fidel, S., Janowsky, A., and Higgins, G. A. (1991) Increased abundance of alternatively spliced forms of D2 dopamine receptor mRNA after denervation. Proc. Natl. Acad. Sci. USA 88, 2802–2806.PubMedCrossRefGoogle Scholar
  67. 67.
    Staunton, D. A., Wolfe, B. B., Groves, P. M., and Molinoff, P. B. (1981) Dopamine receptor changes following destruction of the nigrostriatal pathway: lack of a relationship to rotational behavior. Brain Res. 211, 315–327.PubMedCrossRefGoogle Scholar
  68. 68.
    Brene, S., Lindefors, N., Herrera-Marschitz, M., and Persson, H. (1990) Expression of dopamine D2 receptor and choline acetyltransferase mRNA in the dopamine deafferented rat caudate-putamen. Exp. Brain Res. 83, 96–104.PubMedCrossRefGoogle Scholar
  69. 69.
    LaHoste, G. J. and Marshall, J. F. (1996) Dopamine receptor interactions in the brain, in CNSNeurotransmitters and Neuromodulators: Dopamine (Stone, T. W., ed.), CRC Press, Boca Raton, FL, in press.Google Scholar
  70. 70.
    Fomaretto, M. G., Caccia, C., Caron, M. G., and Fariello, R. G. (1993) Dopamine receptor status after unilateral nigral 6-OHDA lesions. Autoradiographic and in situ hybridization study. Mol. Chem. Neuropathol. 19, 147–162.CrossRefGoogle Scholar
  71. 71.
    Marshall, J. F., Navarette, R., and Joyce, J. N. (1989) Decreased striatal D1 binding density following mesotelencephalic 6-hydroxydopamine injections: an autoradiographic analysis. Brain Res. 493, 247–257.PubMedCrossRefGoogle Scholar
  72. 72.
    Amt, J. (1985) Hyperactivity induced by stimulation of separate dopamine D-1 and D-2 receptors in rats with bilateral 6-OHDA lesions. Life Sci. 37 717–723.Google Scholar
  73. 73.
    Breese, G. R. and Mueller, R. A. (1985) SCH-23390 antagonism of a D-2 dopamine agonist depends upon catecholaminergic neurons. Eur. J. Pharmacol. 113, 109–114.PubMedCrossRefGoogle Scholar
  74. 74.
    Amt, J. and Hyttel, J. (1984) Differential inhibition by dopamine D-1 and D-2 antagonists of circling behavior induced by dopamine agonists in rats with unilateral 6-hydroxydopamine lesions. Eur. J. Pharmacol. 102, 349–354.CrossRefGoogle Scholar
  75. 75.
    Amt, J. and Hyttel, J. (1985) Differential involvement of dopamine D-1 and D-2 receptors in the circling behavior induced by apomorphine, SKmalongxiangF 38393, pergolide and LY 171555. Psychopharmacology 85, 346–352.CrossRefGoogle Scholar
  76. 76.
    Hu, X.-T., Wachtel, S. R., Galloway, M. P., and White, F. J. (1990) Lesions of the nigrostriatal dopamine projection increase the inhibitory effects of DI and D2 dopamine agonists on caudate-putamen neurons and relieve D, receptors from the necessity of D receptor stimulation. J. Neurosci. 10, 2318–2329.PubMedGoogle Scholar
  77. 77.
    Weick, B. G. and Walters, J. R. (1987) Effects of D1 and D2 dopamine receptor stimulation on the activity of substantia nigra pars reticulata neurons in 6-hydroxydopamine lesioned rats: D1/D, coactivation induces potentiated responses. Brain Res. 405, 234–246.PubMedCrossRefGoogle Scholar
  78. 78.
    Engber, T. M., Anderson, J. J., Boldry, R. C., Papa, S. M., Kuo, S., and Chase, T. N. (1994) Excitatory amino acid receptor antagonists modify regional cerebral metabolic responses to levodopa in 6-hydroxydopamine-lesioned rats. Neuroscience 59, 389–399.Google Scholar
  79. 79.
    Trugman, J. M. and Wooten, G. F. (1987) Selective D, and D2 dopamine agonists differentially alter basal ganglia glucose utilization in rats with unilateral 6-hydroxydopamine substantia nigra lesions. J. Neurosci. 7, 2927–2935.PubMedGoogle Scholar
  80. 80.
    Trugman, J. M. and James, C. L. (1992) Rapid development of dopaminergic supersensitivity in reserpine-treated rats demonstrated with 14C-2-deoxyglucose autoradiography. J. Neurosci. 12, 2875–2879.PubMedGoogle Scholar
  81. 81.
    Robertson, H. A., Peterson, M. R., Murphy, K., and Robertson, G. S. (1989) D,-dopamine receptor agonists selectively activate striatal c-l’os independent of rotational behavior. Brain Res. 503, 346–349.PubMedCrossRefGoogle Scholar
  82. 82.
    Paul, M. L., Graybiel, A. M., David, J.-C., and Robertson, H. A. (1992) D 1-like and D2-like dopamine receptors synergistically activate rotation and c-f’os expression in the dopamine-depleted striatum in a rat model of Parkinson’s disease. J. Neurosci. 12, 3729–3742.PubMedGoogle Scholar
  83. 83.
    LaHoste, G. J. and Marshall, J. F. (1994) Rapid development ofD, and D2 dopamine receptor supersensitivity as indicated by striatal and pallidal Fos expression. Neurosci. Lett. 179, 153–156.PubMedCrossRefGoogle Scholar
  84. 83a.
    Ruskin, D. R. and Marshall, J. F. (1995) D, dopamine receptors influence Fos immunoreactivity in the globus pallidus and subthalamic nucleus of intact and nigrostriatal-lesioned rats. Brain Res. 703, 156–164.PubMedCrossRefGoogle Scholar
  85. 84.
    LaHoste, G. J. and Marshall, J. F. (1993) The role of dopamine in the maintenance and breakdown of D,/D, synergism. Brain Res. 611, 108–116.PubMedCrossRefGoogle Scholar
  86. 85.
    Hu, X.-T. and White, F. J. (1994) Loss of D,/D, dopamine receptor synergisms following repeated administration of D, or D2 receptor selective antagonists: electrophysiological and behavioral studies. Synapse 17, 43–61.PubMedCrossRefGoogle Scholar
  87. 86.
    LaHoste, G. J. and Marshall, J. F. (1991) Chronic eticlopride and dopamine denervation induce equal nonadditive increases in striatal D2 receptor density: autoradiographic evidence against the dual mechanism hypothesis. Neuroscience 41, 473–781.PubMedCrossRefGoogle Scholar
  88. 87.
    Albin, R. L., Young, A. B., and Penney, J. B. (1989) The functional anatomy of basal ganglia disorders. Trends Neurosci. 12, 366–375.PubMedCrossRefGoogle Scholar
  89. 88.
    Alexander, G. E. and Crutcher, M. D. (1990) Functional architecture of basal ganglia circuits: neural substrates of parallel processing. Trends Neurosci. 13, 266–270.PubMedCrossRefGoogle Scholar
  90. 89.
    Scheel-Kruger, J. (1986) Dopamine—GABA interactions: evidence that GABA transmits, modulates and mediates dopaminergic functions in the basal ganglia and the limbic system. Acta Neurol. Scand. Suppl. 107, 1–54.PubMedGoogle Scholar
  91. 90.
    Lester, J., Fink, S., Aronin, N., and DiFiglia, M. (1993) Colocalization of D, and D2 dopamine receptor mrnas in striatal neurons. Brain Res. 621, 106–110.PubMedCrossRefGoogle Scholar
  92. 91.
    Meador-Woodruff, J. H., Mansour, A., Healy, D. J., Kuehn, R., Zhou, Q. Y., Bunzow, J. R., Akil, H., Civelli, O., and Watson, S. J. (1991) Comparisons of the distributions of D, and D2 dopamine receptor mRNAs in rat brain. Neuropsychopharmacology 5, 231–242.Google Scholar
  93. 92.
    Surmeier, D. J., Eberwine, J., Wilson, C. J., Cao, Y., Stefani, A., and Kitai, S. T. (1992) Dopamine receptor subtypes colocalize in rat striatonigral neurons. Proc. Natl. Acad. Sci. USA 89, 10,178–10, 182.Google Scholar
  94. 93.
    Ariano, M. A., Stromski, C. J., Smyk-Randall, E. M., and Sibley, D. R. (1992) D2 dopamine receptor localization on striatonigral neurons. Neurosci. Lett. 144, 215–220.Google Scholar
  95. 94.
    Larson, E. R. and Ariano, M. A. (1994) Dopamine receptor binding on identified striatonigral neurons. Neurosci. Lett. 172, 101–106.PubMedCrossRefGoogle Scholar
  96. 95.
    Bertorello, A. M., Hopfield, J. F., Aperia, A., and Greengard, P. (1990) Inhibition by dopamine of (Na* + K’)Atpase activity in neostriatal neurons through D1 and D2 dopamine receptor synergism. Nature 347, 386–388.PubMedCrossRefGoogle Scholar
  97. 96.
    Seeman, P., Sunahara, R. K., and Niznik, H. B. (1994) Receptor-receptor link in membranes revealed by ligand competition: example for dopamine D1 and D2 receptors. Synapse 17, 62–64.PubMedCrossRefGoogle Scholar
  98. 97.
    Onali, P., Olianas, M. C., and Gessa, G. L. (1984) Selective blockade of dopamine D-1 receptors by SCH 23390 discloses striatal dopamine D-2 receptors mediating the inhibition of adenylate cyclase. Eur. J. Pharmacol. 99, 127, 128.Google Scholar
  99. 98.
    Pizzi, M., Prada, M. D., Valerio, A., Memo, M., Spano, P. F., and Haefely, W. E. (1988) Dopamine D2 receptor stimulation inhibits inositol phosphate generating system in rat striatal slices. Brain Res. 456, 235–240.PubMedCrossRefGoogle Scholar
  100. 99.
    Undie, A. S. and Friedman, E. (1990) Stimulation of a dopamine D1 receptor enhances inositol phosphates formation in rat brain. J. Pharmacol. Exp. Ther. 253, 987–992.PubMedGoogle Scholar
  101. 100.
    Schinelli, S., Paolillo, M., and Corona, G. L. (1994) Opposing actions of D1- and D2-dopamine receptors on arachidonic acid release and cyclic AMP production in striatal neurons. J. Neurochem. 62, 944–949.PubMedCrossRefGoogle Scholar
  102. 101.
    Groves, P. M. (1983) A theory of the functional organization of the neostriatum and the neostriatal control of voluntary movement. Brain Res. Rev. 5, 109–132.CrossRefGoogle Scholar
  103. 102.
    Parent, A. and Hazrati, L.-N. (1995) Functional anatomy of the basal ganglia. I. The cortico-basal ganglia-thalamo-cortical loop. Brain Res. Rev. 20, 91–127.PubMedCrossRefGoogle Scholar
  104. 103.
    Le Moine, C., Normand, E., and Bloch, B. (1991) Phenotypical characterization of the rat striatal neurons expressing the DI dopamine receptor gene. Proc. Natl. Acad. Sci. USA 88, 4205–4209.PubMedCrossRefGoogle Scholar
  105. 104.
    Le Moine, C., Normand, E., Guitteny, A. F., Fouque, B., Teoule, R., and Bloch, B. (1990) Dopamine receptor gene expression by enkephalin neurons in rat forebrain. Proc. Natl. Acad. Sci. USA 87, 230–234.PubMedCrossRefGoogle Scholar
  106. 105.
    Jaeger, D., Kita, H., and Wilson, C. J. (1994) Surround inhibition among projection neurons is weak or nonexistent in the rat neostriatum. J. Neurophysiol. 72, 2555–2558.Google Scholar
  107. 106.
    Wilson, C. J., Kita, H., and Kawaguchi, Y. (1989) Gabaergic interneurons, rather than spiny cell axon collaterals, are responsible for the Ipsp responses to afferent stimulation in neostriatal spiny neurons. Soc. Neurosci. Abst. 15, 901.Google Scholar
  108. 107.
    Bennett, B. D. and Bolam, J. P. (1994) Synaptic input and output of parvalbuminimmunoreactive neurons in the neostriatum of the rat. Neuroscience 62, 707–719.PubMedCrossRefGoogle Scholar
  109. 108.
    Kita, H. (1993) Gabaergic circuits of the striatum. Prog. Brain Res. 99, 51–72.PubMedCrossRefGoogle Scholar
  110. 109.
    Di Chiara, G. and Morelli, M. (1993) Dopamine-acetylcholine-glutamate interactions in the striatum a working hypothesis, inAdvances in Neurology (Narabayashi, H., Nagatsu, T., Yanagisawa, N., and Mizuno, Y.), Raven, New York, pp. 102–106.Google Scholar
  111. 110.
    Le Moine, C., Tison, F., and Bloch, B. (1990) D2 dopamine receptor gene expression by cholinergic neurons in the rat striatum. Neurosci. Lett. 117, 248–252.PubMedCrossRefGoogle Scholar
  112. 111.
    Weiner, D. M., Levey, A. I., Sunahara, R. K., Niznik, H. B., O’Dowd, B. F., Seeman, P., and Brann, M. R. (1991) Di and D, dopamine receptor mRNA in rat brain. Proc. Natl. Acad. Sci. USA 88, 1859–1863.PubMedCrossRefGoogle Scholar
  113. 112.
    Bolam, J. P. and Izzo, P. N. (1988) The postsynaptic targets of substance P-immunoreactive terminals in the rat neostriatum with particular reference to identified spiny striatonigral neurons. Exp. Brain Res. 70, 361–377.PubMedCrossRefGoogle Scholar
  114. 113.
    Izzo, P. N. and Bolam, J. P. (1988) Cholinergic synaptic input to different parts of spiny striatonigral neurons in the rat. J. Comp. Neurol. 269, 219–234.PubMedCrossRefGoogle Scholar
  115. 114.
    De Boer, P. and Westerink, B. H. (1994) Gabaergic modulation of striatal cholinergie interneurons: an in vivo microdialysis study. J. Neurochem. 62, 70–75.CrossRefGoogle Scholar
  116. 115.
    Damsma, G., Robertson, G. S., Tham, C. S., and Fibiger, H. C. (1991) Dopaminergic regulation of striatal acetylcholine release: importance of D1 and N-methylD-aspartate receptors. J. Pharmacol. Exp. Ther. 259, 1064–1072.PubMedGoogle Scholar
  117. 116.
    De Boer, P., Abercrombie, E. D., Heeringa, M., and Westerink, B. H. C. (1993) Differential effect of systemic administration of bromocriptine and L-DOPA on the release of acetylcholine from striatum of intact and 6-OHDA-treated rats. Brain Res. 608, 198–203.CrossRefGoogle Scholar
  118. 117.
    Nauta, W. J. H. and Domesick, V. B. (1984) Afferent and efferent relationships of the basal ganglia, in Functions of the Basal Ganglia ( Evered, D. and O’Connor, M., eds.), Pitman, Newark, NJ, pp. 3–29.Google Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • John F. Marshall
  • David N. Ruskin
  • Gerald J. LaHoste

There are no affiliations available

Personalised recommendations