Regulation of Dopamine Receptor Function and Expression

  • David R. Sibley
  • Kim A. Neve
Part of the The Receptors book series (REC)


Regulation of receptor responsiveness by neurotransmitters and hormones is a well-recognized phenomenon that has been demonstrated for most receptor systems (1). Such regulation can involve desensitization, the tendency of receptor responsiveness to wane over time despite the presence of a stimulus of constant intensity; or amplification, in which the receptor system becomes supersensitive to agonist stimulation. Regulation of receptor function and expression may limit the efficacy of numerous pharmacological agents, and thus the investigation of such phenomena may have a major impact in refining and developing therapeutic agents.


Dopamine Receptor Receptor mRNA Receptor mRNA Level Dopamine Receptor Subtype Receptor Upregulation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Sibley, D. R. and Houslay, M. D., eds. (1994) Molecular Pharmacology of Cell Regulation, Vol. 3: Regulation of Cellular Signal Transduction Pathways by Desensitization and Amplification. Wiley, Chichester, UK.Google Scholar
  2. 2.
    Liggett, S. B. and Lefkowitz, R. J. (1994) Adrenergic receptor-coupled adenylyl cyclase systems: regulation of receptor function by phosphorylation, sequestration and down-regulation, in Molecular PharmacologyofCellRegulation, Vol. 3: Regulation of Cellular Signal Transduction Pathways by Desensitization and Amplification ( Sibley, D. R. and Houslay, M. D., eds.), Wiley, Chichester, UK, pp. 71–98.Google Scholar
  3. 3.
    Bahouth, S. and Malbon, C. C. (1994) Genetic transcriptional and post-transcriptional regulation of G-protein-linked receptor expression, in Molecular Pharmacology of Cell Regulation, Vol. 3: Regulation of Cellular Signal Transduction Pathways by Desensitization and Amplification (Sibley, D. R. and Houslay, M. D., eds.), Wiley, Chichester, UK, pp. 99–112.Google Scholar
  4. 4.
    Seeman, P. (1987) Dopamine receptors in human brain diseases, in Receptor Biochemistry and Methodology, Vol. 8: Dopamine Receptors ( Creese, I. and Fraser, C. M., eds.), Liss, New York, pp. 233–245.Google Scholar
  5. 5.
    Mouradian, M. M., Juncos, J. L., Fabbrini, G., Schlegel, J., Bartko, J. J., and Chase, T. N. (1988) Motor fluctuations in Parkinson’s disease: central pathophysiological mechanisms. Ann. Neurol. 24, 372–378.Google Scholar
  6. 6.
    Creese, I. and Sibley, D. R. (1981) Receptor adaptations to centrally acting drugs. Annu. Rev. Pharmacol. Toxicol. 21, 357–391.PubMedCrossRefGoogle Scholar
  7. 7.
    Baker, G. B. and Greenshaw, A. J. (1989) Effects of long-term administration of antidepressants and neuroleptics on receptors in the central nervous system. Cell. Mol. Neurobiol. 9, 1–44.Google Scholar
  8. 8.
    Kostrzewa, R. M. (1995) Dopamine receptor supersensitivity. Neurosci. Biobehay. Rev. 19, 1–17.CrossRefGoogle Scholar
  9. 9.
    LaHoste, G. J. and Marshall, J. F. (1993) New concepts in dopamine receptor plasticity. Ann. NYAcad. Sci. 702, 183–196.CrossRefGoogle Scholar
  10. 10.
    Srivastava, L. K. and Mishra, R. K. (1994) Dopamine receptor gene expression: effects of neuroleptics, denervation, and development, in Dopamine Receptors and Transporters (Niznik, H. B., ed.), Dekker, New York, pp. 401–415.Google Scholar
  11. 11.
    Meador-Woodruff, J. H., Mansour, A., Grandy, D. K., Damask, S. P., Civelli, O., and Watson, S. J., Jr. (1992) Distribution of D5 dopamine receptor mRNA in rat brain. Neurosci. Lett. 145, 209–212.PubMedCrossRefGoogle Scholar
  12. 12.
    Tiberi, M., Jarvie, K. R., Silvia, C., Falardeau, P., Gingrich, J. A., Godinot, N., Bertrand, L., Yang-Feng, T. L., Fremeau, R. T., Jr., and Caron, M. G. (1991) Cloning, molecular characterization, and chromosomal assignment of a gene encoding a second D, dopamine receptor subtype: differential expression pattern in rat brain compared with the D IA receptor. Proc. Natl. Acad. Sci. USA 88, 7491–7495.Google Scholar
  13. 13.
    Barnett, J. V. and Kuczenski, R. (1986) Desensitization of rat striatal dopamine-stimulated adenylate cyclase after acute amphetamine administration. J. Pharmacol. Exp. Ther. 237, 820–825.PubMedGoogle Scholar
  14. 14.
    Roseboom, P. H. and Gnegy, M. E. (1989) Acute in vivo amphetamine produces a homologous desensitization of dopamine receptor-coupled adenylyl cyclase activities and decreases agonist binding to the DI site. J. Pharmacol. Exp. Ther. 34, 148–156.Google Scholar
  15. 15.
    Wilner, K. D., Butler, I. J., Seifert, W. E., Jr., and Clement-Cormier, Y. C. (1980) Biochemical alterations of dopamine receptor responses following chronic L-DOPA therapy. Biochem. Pharmacol. 29, 701–706.PubMedCrossRefGoogle Scholar
  16. 16.
    Mishra, R. K., Wong, Y.-W., Varmuza, S. L., and Tuff, L. (1978) Chemical lesion and drug induced supersensitivity and subsensitivity of caudate dopamine receptors. Life Sci. 23, 443–446.PubMedCrossRefGoogle Scholar
  17. 17.
    Neisewander, J. L., Lucki, I., and McGonigle, P. (1991) Behavioral and neurochemical effects of chronic administration of reserpine and SKF-38393 in rats. J. Pharmacol. Exp. Ther. 257, 850–860.PubMedGoogle Scholar
  18. 18.
    Subramanium, S., Lucki, I., and McGonigle, P. (1992) Effects of chronic treatment with selective agonists on the subtypes of dopamine receptors. Brain Res. 571, 313–322.CrossRefGoogle Scholar
  19. 19.
    Hess, E. J., Albers, L. J., Le, H., and Creese, I. (1986) Effects of chronic SCH23390 treatment on the biochemical and behavioral properties of DI and D2 dopamine receptors: potentiated behavioral responses to a D2 dopamine agonist after selective DI dopamine receptor up-regulation. J. Pharmacol. Exp. Ther. 238, 846–854.PubMedGoogle Scholar
  20. 20.
    Hess, E. J., Norman, A. B., and Creese, I. (1988) Chronic treatment with dopamine receptor antagonists: behavioral and pharmacological effects on DI and D2 dopamine receptors. J. Neurosci. 8, 2361–2370.PubMedGoogle Scholar
  21. 21.
    McGonigle, P., Boyson, S. J., Reuter, S., and Molinoff, P. B. (1989) Effects of chronic treatment with selective and nonselective antagonists on the subtypes of dopamine receptors. Synapse 3, 74–82.PubMedCrossRefGoogle Scholar
  22. 22.
    Parashos, S. A., Barone, P., Tucci, I., and Chase, T. N. (1987) Attenuation of D-1 antagonist-induced D-1 receptor upregulation by concomitant D-2 receptor blockade. Life Sci. 41, 2279–2284.PubMedCrossRefGoogle Scholar
  23. 23.
    Schettini, G., Ventra, C., Florio, T., Grimaldi, M., Meucci, O., and Marino, A. (1992) Modulation by GTP of basal and agonist-stimulated striatal adenylate cyclase activity following chronic blockade of DI and D2 dopamine receptors: involvement of G proteins in the development of receptor supersensitivity. J. Neurochem. 59, 1667–1674.PubMedCrossRefGoogle Scholar
  24. 24.
    Porceddu, M. L., DeMontis, G., Mele, S., Ongini, E., and Biggio, G. (1987) DI dopamine receptors in the rat retina: effect of dark adaptation and chronic blockade by SCH23390. Brain Res. 424, 264–271.PubMedCrossRefGoogle Scholar
  25. 25.
    Creese, I., Sibley, D. R., and Xu, S. X. (1992) Expression of rat striatal DI and D2 dopamine receptor mRNAs: ontogenetic and pharmacological studies. Neurochem. Int. 20, S45 — S48.CrossRefGoogle Scholar
  26. 26.
    Buckland, P. R., O’Donovan, M. C., and McGuffin, P. (1992) Changes in dopamine D1, D2, and D3 receptor mRNA levels in rat brain following antipsychotic treatment. Psychopharmacology 106, 479–488.PubMedCrossRefGoogle Scholar
  27. 27.
    Buckland, P. R., O’Donovan, M. C., and McGuffin, P. (1993) Clopazine and sulpiride up-regulate dopamine D3 receptor mRNA levels. Neuropharmacology 32, 901–907.PubMedCrossRefGoogle Scholar
  28. 28.
    Hornykiewicz, O. (1973) Parkinson’s disease: from brain homogenate to treatment. Fed. Proc. 32, 183–190.PubMedGoogle Scholar
  29. 29.
    Lee, T., Seeman, P., Rajput, A., Farley, I. J., and Hornykiewicz, O. (1978) Receptor basis for dopaminergic supersensitivity in Parkinson’s disease. Nature 273, 59–61.PubMedCrossRefGoogle Scholar
  30. 30.
    Seeman, P., Bzowej, N. H., Guan, H. C., Bergeron, C., Reynolds, G. P., Bird, E. D., Riederer, P., Jellinger, K., and Tourtellotte, W. W. (1987) Human brain Di and DZ dopamine receptors in schizophrenia, Alzheimer’s, Parkinson’s, and Huntington’s diseases. Neuropsychopharmacology 1, 5–15.PubMedCrossRefGoogle Scholar
  31. 31.
    Rinne, J. 0., Laihinen, A., Lönnberg, P., Marjamäki, P., and Rinne, U. K. (1991) A post-mortem study on striatal dopamine receptors in Parkinson’s disease. Brain Res. 556, 117–122.PubMedCrossRefGoogle Scholar
  32. 32.
    Rinne, J. O., Laihinen, A., Nâgren, K., Bergman, J., Solin, O., Haaparanta, M., Ruotsalainen, U., and Rinne, U. K. (1990) PET demonstrates different behaviour of striatal dopamine D-1 and D-2 receptors in early parkinson’s disease. J. Neurosci. Res. 27, 494–499.PubMedCrossRefGoogle Scholar
  33. 33.
    Rinne, U. K., Laihinen, A., Rinne, J. O., Nâgren, K., Bergman, J., and Ruotsalainen, U. (1990) Positron emission tomography demonstrates dopamine D2 receptor supersensitivity in the striatum of patients with early Parkinson’s disease. Movement Disorders 5, 55–59.PubMedCrossRefGoogle Scholar
  34. 34.
    Ungerstedt, U. (1971) Postsynaptic supersensitivity after 6-hydroxydopamine induced degeneration of the nigro-striatal system. Acta Physiol. Scand. 367 (Suppl.), 69–93.Google Scholar
  35. 35.
    Krueger, B. K., Forn, J., Walters, J. R., Roth, R. H., and Greengard, P. (1976) Stimulation by dopamine of adenosine cyclic 3’,5’-monophosphate formation in rat caudate nucleus: effect of lesions of the nigroneostriatal pathway. Mol. Pharmacol. 12, 639–648.PubMedGoogle Scholar
  36. 36.
    Mishra, R. K., Gardner, E. L., Katzman, R., and Makman, M. H. (1974) Enhancement of dopamine-stimulated adenylate cyclase activity in rat caudate after lesions in substantia nigra: evidence for denervation supersensitivity. Proc. Natl. Acad. Sci. USA 71, 3883–3887.PubMedCrossRefGoogle Scholar
  37. 37.
    Billard, W., Ruperto, V., Crosby, G., Iorio, L. C., and Barnett, A. (1984) Characterization of the binding of 3H-SCH 23390, a selective D-1 receptor antagonist ligand, in rat striatum. Life Sci. 35, 1885–1893.Google Scholar
  38. 38.
    Buonamici, M., Caccia, C., Carpentieri, L., Pegrassi, L., Rossi, A. C., and Di Chiara, G. (1986) D-1 receptor supersensitivity in the rat striatum after unilateral 6-hydroxydopamine lesions. Eur. J. Pharmacol. 126, 347, 348.Google Scholar
  39. 39.
    Porceddu, M. L., Giorgi, 0., De Montis, G., Mele, S., Cocco, L., Ongini, E., and Biggio, G. (1987) 6-Hydroxydopamine-induced degeneration of nigral dopamine neurons: differential effect on nigral and striatal D-1 dopamine receptors. Life Sci. 41, 697–706.Google Scholar
  40. 40.
    Butkerait, P. and Friedman, E. (1993) Repeated reserpine increases striatal dopamine receptor and guanine nucleotide binding protein RNA. J. Neurochem. 60, 566–571.PubMedCrossRefGoogle Scholar
  41. 41.
    Missale, C., Nisoli, E., Liberini, P., Rizzonelli, P., Memo, M., Buonamici, M., Rossi, A., and Spano, P. F. (1989) Repeated reserpine administration up-regulates the transduction mechanisms of DI receptors without changing the density of [3H]SCH 23390 binding. Brain Res. 438, 117–122.CrossRefGoogle Scholar
  42. 42.
    Rubinstein, M., Muschietti, J. P., Gershanik, O., Flawia, M. M., and Stefano, F. J. E. (1990) Adaptive mechanisms of striatal D1 and D2 dopamine receptors in response to a prolonged reserpine treatment in mice. J. Pharmacol. Exp. Ther. 252, 810–816.PubMedGoogle Scholar
  43. 43.
    Graham, W. C., Crossman, A. R., and Woodruff, G. N. (1990) Autoradiographic studies in animal models of hemi-parkinsonism reveal dopamine D, but not D, receptor supersensitivity. I. 6-OHDA lesions of ascending mesencephalic dopaminergic pathways in the rat. Brain Res. 514, 93–102.PubMedCrossRefGoogle Scholar
  44. 44.
    Jongen-Rêlo, A. L., Docter, G. J., Jonker, A. J., Vreugdenhil, E., Groenewegen, H. J., and Voorn, P. (1994) Differential effects of dopamine depletion on the binding and mRNA levels of dopamine receptors in the shell and core of the rat nucleus accumbens. Mol. Brain Res. 25, 333–343.PubMedCrossRefGoogle Scholar
  45. 45.
    Joyce, J. N. (1991) Differential response of striatal dopamine and muscarinic cholinergic receptor subtypes to the loss of dopamine. II. Effects of 6-hydroxydopamine or colchicine microinjections into the VTA or reserpine treatment. Exp. Neurol. 113, 277–290.PubMedCrossRefGoogle Scholar
  46. 46.
    Joyce, J. N. (1991) Differential response of striatal dopamine and muscarinic cholinergic receptor subtypes to the loss of dopamine. I. Effects of intranigral or intracerebroventricular 6-hydroxydopamine lesions of the mesostriatal dopamine system. Exp. Neurol. 113, 261–276.PubMedCrossRefGoogle Scholar
  47. 47.
    Marshall, J. F., Navarrete, R., and Joyce, J. N. (1989) Decreased striatal D, binding density following mesotelencephalic 6-hydroxydopamine injections: an autoradiographic analysis. Brain Res. 493, 247–257.PubMedCrossRefGoogle Scholar
  48. 48.
    Gerfen, C. R., Engber, T. M., Mahan, L. C., Susel, Z., Chase, T. N., Monsma, F. J., and Sibley, D. R. (1990) D, and D2 dopamine receptor-regulated gene expression of striatonigral and striatopallidal neurons. Science 250, 1429–1432.PubMedCrossRefGoogle Scholar
  49. 49.
    Qin, Z.-H., Chen, J. F., and Weiss, B. (1994) Lesions of mouse striatum induced by 6-hydroxydopamine differentially alter the density, rate of synthesis, and level of gene expression of D, and DZ dopamine receptors. J. Neurochem. 62, 411–420.PubMedCrossRefGoogle Scholar
  50. 50.
    Memo, M., Lovenberg, W., and Hanbauer, I. (1982) Agonist-induced sub-sensitivity of adenylate cyclase coupled with a dopamine receptor in slices from rat corpus striatum. Proc. Natl. Acad. Sci. USA 79, 4456–4460.PubMedCrossRefGoogle Scholar
  51. 51.
    Ofori, S., Bugnon, O., and Schorderet, M. (1993) Agonist-induced desensitization of dopamine D-1 receptors in bovine retina and rat striatum. J. Pharmacol. Exp. Ther. 266, 350–357.PubMedGoogle Scholar
  52. 52.
    Chneiweiss, H., Glowinski, J., and Premont, J. (1990) Dopamine-induced homologous and heterologous desensitizations of adenylate cyclase-coupled receptors on striatal neurons. Eur. J. Pharmacol. 189, 287–292.PubMedCrossRefGoogle Scholar
  53. 53.
    Trovero, F., Marin, P., Tassin, J.-P., Premont, J., and Glowinski, J. (1994) Accelerated resensitization of the D, dopamine receptor-mediated response in cultured cortical and striatal neurons from the rat: respective role of a,-adrenergic and N-methyl-o-aspartate receptors. J. Neurosci. 14, 6280–6288.Google Scholar
  54. 54.
    Barton, A. and Sibley, D. R. (1990) Agonist-induced desensitization of D,-dopamine receptors linked to adenylyl cyclase activity in cultured NS20Y neuroblastoma cells. Mol. Pharmacol. 38, 531–541.PubMedGoogle Scholar
  55. 55.
    Balmforth, A. J., Warburton, P., and Ball, S. G. (1990) Homologous desensitization of the D, dopamine receptor. J. Neurochem. 55, 2111–2116.Google Scholar
  56. 56.
    Steffey, M. E., Snyder, G. L., Barrett, R. W., Fink, J. S., Ackerman, M., Adams, P., Bhatt, R., Gomez, E., and MacKenzie, R. G. (1991) Dopamine D, receptor stimulation of cyclic AMP accumulation in COS-1 cells. Eur. J. Pharmacol. 207, 311–317.PubMedCrossRefGoogle Scholar
  57. 57.
    Bates, M. D., Caron, M. G., and Raymond, J. R. (1991) Desensitization of DA1 dopamine receptors coupled to adenylyl cyclase in opossum kidney cells. Am. J. Physiol. 260, F937 — F945.PubMedGoogle Scholar
  58. 58.
    Zhou, X.-M., Sidhu, A., and Fishman, P. H. (1991) Desensitization of the human Di dopamine receptor: evidence for involvement of both cyclic AMP-dependent and receptor-specific protein kinases. Mol. Cell. Neurosci. 2, 464–472.PubMedCrossRefGoogle Scholar
  59. 59.
    Gupta, S. K. and Mishra, R. K. (1994) Up-regulation of Di dopamine receptors in SK-N-MC cells after chronic treatment with SCH 23390. Neurosci. Res. Comm. 15, 157–166.Google Scholar
  60. 60.
    Black, L. E., Smyk-Randall, E. M., and Sibley, D. R. (1994) Cyclic AMP-mediated desensitization of DI dopamine receptor-coupled adenylyl cyclase in NS20Y neuroblastoma cells. Mol. Cell. Neurosci. 5, 567–575.PubMedCrossRefGoogle Scholar
  61. 61.
    Bates, M. D., Olsen, C. L., Becker, B. N., Albers, F. J., Middleton, J. P., Mulheron, J. G., Jin, S.-L. C., Conti, M., and Raymond, J. R. (1993) Elevation of cAMP is required for down-regulation, but not agonist-induced desensitization, of endogenous dopamine DI receptors in opossum kidney cells. J. Biol. Chem. 268, 14,757–14, 763.Google Scholar
  62. 62.
    Gupta, S. K. and Mishra, R. K. (1993) Desensitization of DI dopamine receptors down-regulates the Gs alpha subunit of G protein in SK-N-MC neuroblastoma cells. J. Mol. Neurosci. 4, 117–123.PubMedCrossRefGoogle Scholar
  63. 63.
    Minowa, M. T., Minowa, T., Monsma, F. J., Jr., Sibley, D. R., and Mouradian, M. M. (1992) Characterization of the 5’-flanking region of the human D IA dopamine receptor gene. Proc. Natl. Acad. Sci. USA. 89, 3045–3049.PubMedCrossRefGoogle Scholar
  64. 64.
    Kennelly, P. J. and Krebs, E. G. (1991) Consensus sequences as substrate specificity determinants for protein kinases and protein phosphatases. J. Biol. Chem. 266, 15,555–15, 558.Google Scholar
  65. 65.
    Yasunari, K., Kohno, M., Murakawa, K.-I., Yokokawa, K., Horio, T., and Takeda, T. (1993) Interaction between a phorbol ester and dopamine DA/ receptors on vascular smooth muscle. Am. J. Physiol. 264, F24 — F30.PubMedGoogle Scholar
  66. 66.
    Zamanillo, D., Casanova, E., Alonso-Llamazares, A., Ovalle, S., Chinchetru, M. A., and Calvo, P. (1995) Identification of a cyclic adenosine 3’, 5’-monophosphatedependent protein kinase phosphorylation site in the carboxy terminal tail of the human DI dopamine receptor. Neurosci. Lett. 188, 183–186.Google Scholar
  67. 67.
    Inglese, J., Freedman, N. J., Koch, W. J., and Lefkowitz, R. J. (1993) Structure and mechanism of the G protein-coupled receptor kinases. J. Biol. Chem. 268, 23,735–23,738.Google Scholar
  68. 68.
    Onorato, J. J., Palczewski, K., Regan, J. W., Caron, M. G., Lefkowitz, R. J., and Benovic, J. L. (1991) Role of acidic amino acids in peptide substrates of the f3-adrenergic kinase and rhodopsin kinase. Biochemistry 30, 5118–5125.Google Scholar
  69. 69.
    Atkinson, B. N., Burgess, L. H., and Sibley, D. R. (1994) Regulation of the DIA and D18 dopamine receptors in stably transfected chinese hamster ovary cells. Soc. Neurosci. Abstr. 20, 521.Google Scholar
  70. 70.
    Machida, C. A., Searles, R. P., Nipper, V., Brown, J. A., Kozell, L. B., and Neve, K. A. (1992) Molecular cloning and expression of the rhesus macaque D, dopamine receptor gene. Mol. Pharmacol. 41, 652–659.Google Scholar
  71. 71.
    Neve, K. A. and Kozell, L. B. (1993) Desensitization of recombinant dopamine D1 receptors. Soc. Neurosci. Abstr. 19, 734.Google Scholar
  72. 72.
    Olson, M. F., and Schimmer, B. P. (1992) Heterologous desensitization of the human dopamine D, receptor in Y1 adrenal cells in a desensitization-resistant Y 1 mutant. Mol. Endocrinol. 6, 1095–1102.PubMedCrossRefGoogle Scholar
  73. 73.
    Ng, G. Y. K., Mouillac, B., George, S. R., Caron, M., Dennis, M., Bouvier, M., and O’Dowd, B. F. (1994) Desensitization, phosphorylation and palmitoylation of the human dopamine D, receptor. Eur. J. Pharmacol. 267, 7–19.Google Scholar
  74. 74.
    Trogadis, J. E., Ng, G. Y.-K., O’Dowd, B., George, S. G., and Stevens, J. K. (1995) Dopamine Di receptor distribution in Sf9 cells imaged by confocal microscopy: a quantitative evaluation. J. Histochem. Cytochem. 43, 497–506.Google Scholar
  75. 75.
    Tiberi, M., Bertrand, L., Nash, S. R., and Caron, M. G. (1994) Cellular expression of G protein-coupled receptor kinase augments the agonist-dependent phosphorylation and desensitization of dopamine DIA receptors. Soc. Neurosci. Abstr. 20, 19.Google Scholar
  76. 76.
    Frail, D. E., Manelli, A. M., Witte, D. G., Lin, C. W., Steffey, M. E., and MacKenzie, R. G. (1993) Cloning and characterization of a truncated dopamine D, receptor from goldfish retina: stimulation of cyclic AMP production and calcium mobilization. Mol. Pharmacol. 44, 1113–1118.Google Scholar
  77. 77.
    Buckland, P. R., O’Donovan, M. C., and McGuffin, P. (1992) Lack of effect of chronic antipsychotic treatment on dopamine D5 receptor mRNA level. Eur. Neuropsychopharm. 2, 405–409.CrossRefGoogle Scholar
  78. 78.
    Jarvie, K. R., Tiveri, M., Silvia, C., Gingrich, J. A., and Caron, M. G. (1993) Molecular cloning, stable expression and desensitization of the human dopamine D1B/D5 receptor. J. Recept. Res. 13, 573–590.PubMedGoogle Scholar
  79. 79.
    Tiberi, M. and Caron, M. (1994) High agonist-independent activity is a distinguishing feature of the dopamine DAB receptor subtype. J Biol. Chem. 269, 27,925–27, 931.Google Scholar
  80. 80.
    Pei, G., Samama, P., Lohse, M., Wang, M., Codina, J., and Lefkowitz, R. J. (1994) A constitutively active mutant 32 adrenergic receptor is constitutively desensitized and phosphorylated. Proc. Natl. Acad. Sci. USA. 91, 2699–2702.PubMedCrossRefGoogle Scholar
  81. 81.
    Beischlag, T. V., Marchese, A., Meador-Woodruff, J., Damask, S. P., O’Dowd, B. F., Tyndale, R. F., Van Tol, H. H. M., Seeman, P., and Niznik, H. (1995) The human dopamine D5 receptor gene: cloning and characterization of the 5’-flanking and promoter region. Biochemistry 34, 5960–5970.Google Scholar
  82. 82.
    De Jesus, O. T., Van Moffart, G. J. C., Dinerstein, R. J., and Friedman, A. M. (1986) Exogenous L-DOPA alters spiroperidol binding, in vivo, in the mouse striatum. Life Sci. 39, 341–349.PubMedCrossRefGoogle Scholar
  83. 83.
    List, S. J. and Seeman, P. (1979) Dopamine agonists reverse the elevated 3H-neuroleptic binding in neuroleptic-pretreated rats. Life Sci. 24, 1447–1452.PubMedCrossRefGoogle Scholar
  84. 84.
    Rouillard, C. Bedard, P. J., Falardeau, P., and DiPaulo, T. (1987) Behavioral and biochemical evidence for a different effect of repeated administration of L-DOPA and bromocriptine on denervated versus non-denervated dopamine receptors. Neuropharmacology 26, 1601–1606.PubMedCrossRefGoogle Scholar
  85. 85.
    Quick, M. and Iversen, L. L. (1978) Subsensitivity of the rat striatal dopaminergic system after treatment with bromocriptine: effects on [3H]spiperone binding and dopamine-stimulated cyclic AMP formation. Nauyn-Schmied. Arch. Pharm. 304, 141–145.CrossRefGoogle Scholar
  86. 86.
    Wei-Dong, L.. Xiao-Da, Z., and Guo-Zhang, J. (1988) Enhanced stereotypic behavior by chronic treatment with bromocriptine accompanies increase of D-1 receptor binding. Life Sci. 42, 1841–1845.Google Scholar
  87. 87.
    Nisoli, E., Memo, M., Missale, C., Carruba, M. O. and Spana, P. F. (1990) Repeated administration of lisuride down-regulates dopamine D2 receptor function in mesostriatal and in mesolimbocortical rat brain regions. Eur. J. Pharmacol. 176, 85–90.PubMedCrossRefGoogle Scholar
  88. 88.
    Autelitano, D. J., Snyder, L., Sealfon, S. C., and Roberts, J. L. (1989) Dopamine D2-receptor messenger RNA is differentially regulated by dopaminergic agents in rat anterior and neurointermediate pituitary. Mol. Cell. Endocrinol. 67, 101–105.PubMedCrossRefGoogle Scholar
  89. 89.
    Chronwall, B. M., Dickerson, D. S., Huerter, B. S., Sibley, D. R., and Millington, W. R. (1994) Regulation of heterogeneity in D2 dopamine receptor gene expression among individual melanotropes in the rat pituitary intermediate lobe. Mol. Cell. Neurosci. 5, 35–45.PubMedCrossRefGoogle Scholar
  90. 90.
    Chen, J. F., Aloyo, V. J., and Weiss, B. (1993) Continuous treatment with the D2 dopamine receptor agonist quinpirole decreases D2 dopamine receptors, D2 dopamine receptor messenger RNA and proenkephalin messenger RNA, and increases mu opioid receptors in mouse striatum. Neuroscience 54, 669–680.PubMedCrossRefGoogle Scholar
  91. 91.
    Klawans, H. L. and McKendall, R. (1971) Observations on the effect of L-dopa on tardive lingual-facial-buccal dyskinesia. J. Neurol. Sci. 14, 189–192.PubMedCrossRefGoogle Scholar
  92. 92.
    Muller, P. and Seeman, P. (1977) Brain neurotransmitter receptors after long-term haloperidol: dopamine, acetylcholine, serotonin, a-noradrenergic and naloxone receptors. Life Sci. 21, 1751–1758.PubMedCrossRefGoogle Scholar
  93. 93.
    Clow, A., Jenner, P., Theodorou, A., and Marsden, C. D. (1979) Striatal dopamine receptors become supersensitive while rats are given trifluoperazine for six months. Nature 278, 59–61.Google Scholar
  94. 94.
    Muller, P. and Seeman, P. (1978) Dopaminergic supersensitivity after neuroleptics: time-course and specificity. Psychopharmacology 60, 1–11.Google Scholar
  95. 95.
    Tarsy, D. and Baldessarini, R. J. (1974) Behavioral supersensitivity to apomorphine following chronic treatment with drugs which interfere with the synaptic function of catecholamines. Neuropharmacology 13, 927–940.PubMedCrossRefGoogle Scholar
  96. 96.
    Baldessarini, R. J. and Tarsy, D. (1976) Mechanisms underlying tardive dyskinesia, in The Basal Ganglia ( Yahr, M. D., ed.), Raven, New York, pp. 433–446.Google Scholar
  97. 97.
    Casey, D. E. (1995) Tardive dyskinesia: pathophysiology, in Psychopharmacology: The Fourth Generation of Progress ( Bloom, F. E. and Kupfer, D. J., eds.), Raven, New York, pp. 1497–1502.Google Scholar
  98. 98.
    Crow, T. J., Cross, A. J., Johnstone, E. C., Owen, F., Owens, D. G. C., and Waddington, J. L. (1982) Abnormal involuntary movements in schizophrenia: are they related to the disease process or its treatment? Are they associated with changes in dopamine receptors? J. Clin. Psychopharmacol. 2, 336–340.PubMedCrossRefGoogle Scholar
  99. 99.
    Wolf, M. E., Bowie, L., Keener, S., and Mosnaim, A. D. (1982) Prolactin response in tardive dyskinesia. Biol. Psychiat. 17, 485–490.PubMedGoogle Scholar
  100. 100.
    Burt, D. R., Creese, I., and Snyder, S. H. (1977) Antischizophrenic drugs: chronic treatment elevates dopamine receptor binding in brain. Science 196, 326–328.Google Scholar
  101. 101.
    Laruelle, M., Jaskiw, G. E., Lipska, B. K., Kolachana, B., Casanova, M. F., Kleinman, J. E., and Weinberger, D. R. (1992) Di and D2 receptor modulation in rat striatum and nucleus accumbens after subchronic and chronic haloperidol treatment. Brain Res. 575, 47–56.PubMedCrossRefGoogle Scholar
  102. 102.
    Memo. M., Pizzi, M., Missale, C., Carruba, M. O., and Spano, P. F. (1987) Modification of the function of DI and D2 dopamine receptors in striatum and nucleus accumbens of rats chronically treated with haloperidol. Neuropharmacology 267, 477–480.Google Scholar
  103. 103.
    Staunton, D. A., Magistretti, P. J., Koob, G. F., Shoemaker, W. J., and Bloom, F. E. (1982) Dopaminergic supersensitivity induced by denervation and chronic receptor blockade is additive. Nature 299, 72–74.PubMedCrossRefGoogle Scholar
  104. 104.
    Wilmot, C. A. and Szczepanik, A. M. (1989) Effects of acute and chronic treatments with clozapine and haloperidol on serotonin (5-HT2) and dopamine (D2) receptors in the rat brain. Brain Res. 487, 288–298.PubMedCrossRefGoogle Scholar
  105. 105.
    Janowsky, A., Neve, K. A., Kinzie, J. M., Taylor, B., de Paulis, T., and Belknap, J. K. (1992) Extrastriatal dopamine D2 receptors: distribution, pharmacological characterization, and region-specific regulation by clozapine. J. Pharmacol. Exp. Ther. 261, 1282–1290.PubMedGoogle Scholar
  106. 106.
    Kazawa, T., Mikuni, M., Higuchi, T., Arai, I., Takahashi, K., and Yamauchi, T. (1990) Characterization of sulpiride-displaceable 3H-YM-091512–2 binding sites in rat frontal cortex and the effects of subchronic treatment with haloperidol on cortical D-2 dopamine receptors. Life Sci. 47, 531–537.Google Scholar
  107. 107.
    MacLennan, A. J., Atmadja, S., Lee, N., and Fibiger, H. C. (1988) Chronic haloperidol administration increases the density of D2 dopamine receptors in the medial prefrontal cortex of the rat. Psychopharmacology 95, 255–257.PubMedCrossRefGoogle Scholar
  108. 108.
    Memo, M., Pizzi, M., Nisoli, E., Missale, C., Carruba, M. O., and Spano, P. (1987) Repeated administration of (—)sulpiride and SCH 23390 differentially up-regulate D-1 and D-2 dopamine receptor function in rat mesostriatal areas but not in cortical-limbic brain regions. Eur. J. Pharmacol. 138, 45–51.PubMedCrossRefGoogle Scholar
  109. 109.
    Olianas, M. C. and Onali, P. (1987) Supersensitivity of striatal D2 dopamine receptors mediating inhibition of adenylate cyclase and stimulation of guanosine triphosphatase following chronic administration of haloperidol in mice. Neurosci. Lett. 78, 349–354.PubMedCrossRefGoogle Scholar
  110. 110.
    Consolo, S., Ladinsky, H., Samanin, R., Bianchi, S., and Ghezzi, D. (1978) Super-sensitivity of the cholinergic response to apomorphine in the striatum following denervation or disuse supersensitivity of dopaminergic receptors in the rat. Brain Res. 155, 45–54.PubMedCrossRefGoogle Scholar
  111. 111.
    Cubeddu, L. X., Hoffmann, I. S., James, M. K., and Niedzwiecki, D. M. (1983) Changes in the sensitivity to apomorphine of dopamine receptors modulating dopamine and acetylcholine release after chronic treatment with bromocriptine or haloperidol. J. Pharmacol. Exp. Ther. 226, 680–685.PubMedGoogle Scholar
  112. 112.
    Miller, J. C. and Friedhoff, A. J. (1979) Dopamine receptor-coupled modulation of the K’-depolarized overflow of 3H-acetylcholine from rat striatal slices: alteration after chronic haloperidol and alpha-methyl-p-tyrosine pretreatment. Life Sci. 25, 1249–1256.PubMedCrossRefGoogle Scholar
  113. 113.
    Gianutsos, G., Hynes, M. D., and Lal, H. (1975) Enhancement of apomorphine-induced inhibition of striatal dopamine-turnover following chronic haloperidol. Biochem. Pharmacol. 24, 581, 582.Google Scholar
  114. 114.
    Lal, H., Brown, W., Drawbaugh, R., Hynes, M., and Brown, G. (1977) Enhanced prolactin inhibition following chronic treatment with haloperidol and morphine. Life Sci. 20, 101–106.PubMedCrossRefGoogle Scholar
  115. 115.
    Bannon, M. J., Bunney, E. B., Zigun, J. R., Skirboll, L. R., and Roth, R. H. (1980) Presynaptic dopamine receptors: insensitivity to kainic acid and the development of supersensitivity following chronic haloperidol. Naunyn-Schmiedeberg ‘s Arch. Pharmacol. 312, 161–165.CrossRefGoogle Scholar
  116. 116.
    Stock, G., Steinbrenner, J., and Kummer, P. (1980) Supersensitivity of dopamineautoreceptors: the effect of gammabutyrolactone in long-term haloperidol treated rats. J. Neur. Transm. 47, 145–151.CrossRefGoogle Scholar
  117. 117.
    Mereu, G., Lilliu, V., Vargiu, P., Muntoni, A. L., Diana, M., and Gessa, G. L. (1995) Depolarization inactivation of dopamine neurons: an artifact ? J. Neurosci. 15, 1144–1149.PubMedGoogle Scholar
  118. 118.
    Casey, D. E. (1989) Clozapine: neuroleptic-induced EPS and tardive dyskinesia. Psychopharmacology 99, S47 - S53.PubMedCrossRefGoogle Scholar
  119. 119.
    Kane, J., Honigfeld, G., Singer, J., and Meltzer, H. (1988) Clozapine for the treatment-resistant schizophrenic. Arch. Gen. Psychiat. 45, 789–796.PubMedCrossRefGoogle Scholar
  120. 120.
    Boyson, S. J., McGonigle, P., Luthin, G. R., Wolfe, B. B., and Molinoff, P. B. (1988) Effects of chronic administration ofneuroleptic and anticholinergic agents on densities of D2 dopamine and muscarinic cholinergic receptors in rat striatum. J. Pharmacol. Exp. Ther. 244, 987–993.PubMedGoogle Scholar
  121. 121.
    O’Dell, S. J., La Hoste, G. J., Widmark, C. B., Shapiro, R. M., Potkin, S. G., and Marshall, J. F. (1990) Chronic treatment with clozapine or haloperidol differentially regulates dopamine and serotonin receptors in rat brain. Synapse 6, 146–153.PubMedCrossRefGoogle Scholar
  122. 122.
    Rupniak, N. M. J., Hall, M. D., Mann, S., Fleminger, S., Kilpatrick, G., Jenner, P., and Marsden, C. D. (1985) Chronic treatment with clozapine, unlike haloperidol, does not induce changes in striatal D-2 receptor function in the rat. Biochem. Pharmacol. 34, 2755–2763.PubMedCrossRefGoogle Scholar
  123. 123.
    Seeger, T. F., Thal, L., and Gardner, E. L. (1982) Behavioral and biochemical aspects of neuroleptic-induced dopaminergic supersensitivity: studies with chronic clozapine and haloperidol. Psychopharmacology 76, 182–187.PubMedCrossRefGoogle Scholar
  124. 124.
    Severson, J. A., Robinson, H. E., and Simpson, G. M. (1984) Neuroleptic-induced striatal dopamine receptor supersensitivity in mice: relationship to dose and drug. Psychopharmacology 84, 115–119.PubMedCrossRefGoogle Scholar
  125. 125.
    Deutch, A. Y. (1995) Mechanisms of action of clozapine in the treatment of neuroleptic-resistant and neuroleptic-intolerant schizophrenia. Eur. Psychiat. 10 (Suppl. 1), 39S - 46S.CrossRefGoogle Scholar
  126. 126.
    Robertson, G. S. and Fibiger, H. C. (1991) Neuroleptics increase c-fos expression in the forebrain: contrasting effects of haloperidol and clozapine. Neuroscience 46, 315–328.CrossRefGoogle Scholar
  127. 126a.
    Pich, E. M., Benfenati, F., Farabegoli, C., Fuxe, K., Meller, E., Aronsson, M., Goldstein, M., and Agnati, L. F. (1987) Chronic haloperidol affects striatal D2-dopamine receptor reappearance after irreversible blockade. Brain Res. 435, 147–152.PubMedCrossRefGoogle Scholar
  128. 127.
    Bunzow, J. R., Van Tol, H. H. M., Grandy, D. K., Albert, P., Salon, J., Christie, M., Machida, C. A., Neve, K. A., and Civelli, O. (1988) Cloning and expression of a rat D2 dopamine receptor cDNA. Nature 336, 783–787.PubMedCrossRefGoogle Scholar
  129. 128.
    Fox, C. A., Mansour, A., and Watson, S. J., Jr. (1994) The effects of haloperidol on dopamine receptor gene expression. Exp. Neurol. 130, 288–303.PubMedCrossRefGoogle Scholar
  130. 129.
    Matsunaga, T., Ohara, K., Natsukari, N., and Fujita, M. (1991) Dopamine D2-receptor mRNA level in rat striatum after chronic haloperidol treatment. Neurosci. Res. 12, 440–445.PubMedCrossRefGoogle Scholar
  131. 130.
    Qin, Z.-H., Zhou, L.-W., and Weiss, B. (1994) D2 dopamine receptor messenger RNA is altered to a greater extent by blockade of glutamate receptors than by blockade of dopamine receptors. Neuroscience 60, 97–114.PubMedCrossRefGoogle Scholar
  132. 131.
    Srivastava, L. K., Morency, M. A., Bajwa, S. B., and Mishra, R. K. (1990) Effect of haloperidol on expression of dopamine D2 receptor mRNAs in rat brain. J. Mol. Neurosci. 2, 155–161.PubMedCrossRefGoogle Scholar
  133. 132.
    Van Tol, H. H. M., Riva, M., Civelli, O., and Creese, I. (1990) Lack of effect of chronic dopamine receptor blockade on D2 dopamine receptor mRNA level. Neurosci. Lett. 111, 303–308.PubMedCrossRefGoogle Scholar
  134. 133.
    Xu, S., Monsma, F. J., Sibley, D. R., and Creese, I. (1991) Regulation of DIA and D2 dopamine receptor mRNA during ontogenesis, lesion and chronic antagonist treatment. Life Sci. 50, 383–396.CrossRefGoogle Scholar
  135. 134.
    Angulo, J. A., Coirini, H., Ledoux, M., and Schumacher, M. (1991) Regulation by dopaminergic neurotransmission of dopamine D2 mRNA and receptor levels in the striatum and nucleus accumbens of the rat. Mol. Brain Res. 11, 161–166.Google Scholar
  136. 135.
    Bernard, V., Le Moine, C., and Bloch, B. (1991) Striatal neurons express increased level of dopamine D2 receptor mRNA in response to haloperidol treatment: a quantitative in situ hybridization study. Neuroscience 45, 117–126.PubMedCrossRefGoogle Scholar
  137. 136.
    Buckland, P. R., O’Donovan, M. C., and McGuffin, P. (1993) Both splicing variants of the dopamine D2 receptor mRNA are up-regulated by antipsychotic drugs. Neurosci. Lett. 150, 25–28.PubMedCrossRefGoogle Scholar
  138. 137.
    Chen, J. F., Aloyo, V. J., Qin, Z.-H., and Weiss, B. (1994) Irreversible blockade of D2 dopamine receptors by fluphenazine-N-mustard increases D2 dopamine receptor mRNA and proenkephalin mRNA and decreases D, dopamine receptor mRNA and mu and delta opioid receptors in rat striatum. Neurochem. Int. 25, 355–366.PubMedCrossRefGoogle Scholar
  139. 138.
    Fishburn, C. S., David, C., Carmon, S., and Fuchs, S. (1994) The effect of haloperidol on D2 dopamine receptor subtype mRNA levels in the brain. FEBS Lett. 339, 63–66.PubMedCrossRefGoogle Scholar
  140. 139.
    Lévesque, D., Martres, M.-P., Diaz, J., Griffon, N., Lammers, C. H., Sokoloff, P., and Schwartz, J.-C. (1995) A paradoxical regulation of the dopamine D3 receptor expression suggests the involvement of an anterograde factor from dopamine neurons. Proc. Natl. Acad. Sci. USA 92, 1719–1723.PubMedCrossRefGoogle Scholar
  141. 140.
    Martres, M. P., Sokoloff, P., Giros, B., and Schwartz, J. C. (1992) Effects of dopaminergic transmission interruption on the D2 receptor isoforms in various cerebral tissues. J. Neurochem. 58, 673–679.Google Scholar
  142. 141.
    Rogue, P., Hanauer, A., Zwiller, J., Malviya, A. N., and Vincendon, G. (1991) Up-regulation of dopamine D2 receptor mRNA in rat striatum by chronic neuroleptic treatment. Eur. J. Pharmacol—Mol. Pharm. 207, 165–168.CrossRefGoogle Scholar
  143. 142.
    Qin, Z.-H. and Weiss, B. (1994) Dopamine receptor blockade increases dopamine D2 receptor and glutamic acid decarboxylase mRNAs in mouse substantia nigra. Eur. J. Pharmacol. Mol. Pharmacol. 269, 25–33.CrossRefGoogle Scholar
  144. 143.
    Arnauld, E., Arsaut, J., and Demotes-Mainard, J. (1991) Differential plasticity of the dopaminergic D2 receptor mRNA isoforms under haloperidol treatment, as evidenced by in situ hybridization in rat anterior pituitary. Neurosci. Lett. 130, 12–16.PubMedCrossRefGoogle Scholar
  145. 144.
    MacKenzie, R. G. and Zigmond, M. J. (1985) Chronic neuroleptic treatment increases D-2 but not D-1 receptors in rat striatum. Eur. J. Pharmacol. 113, 159–165.PubMedCrossRefGoogle Scholar
  146. 145.
    Marin, C. and Chase, T. N. (1993) Dopamine DI receptor stimulation but not dopamine D2 receptor stimulation attenuates haloperidol-induced behavioral supersensitivity and receptor up-regulation. Eur. J. Pharmacol. 231, 191–196.PubMedCrossRefGoogle Scholar
  147. 146.
    Falardeau, P., Bouchard, S., Bédard, P. J., Boucher, R., and Di Paolo, T. (1988) Behavioral and biochemical effects of chronic treatment with D-1 and/or D-2 dopamine agonists in MPTP monkeys. Eur. J. Pharmacol. 150, 59–66.PubMedCrossRefGoogle Scholar
  148. 147.
    Cameron, D. L. and Crocker, A. D. (1988) Stimulation of D-1 dopamine receptors facilitates D-2 dopamine receptor recovery after irreversible receptor blockade. Neuropharmacology 27, 447–450.PubMedCrossRefGoogle Scholar
  149. 148.
    Mandel, R. J., Wilcox, R. E., and Randall, P. K. (1992) Behavioral quantification of striatal dopaminergic supersensitivity after bilateral 6-hydroxydopamine lesions in the mouse. Pharmacol. Biochem. Behay. 41, 343–347.CrossRefGoogle Scholar
  150. 149.
    Marshall, J. F. and Ungerstedt, U. (1977) Supersensitivity to apomorphine following destruction of the ascending dopamine neurons: quantification using the rotational model. Eur. J. Pharmacol. 41, 361–367.PubMedCrossRefGoogle Scholar
  151. 150.
    Schultz, W. and Ungerstedt, U. (1978) Striatal cells supersensitivity to apomorphine in dopamine-lesioned rats correlated to behavior. Neuropharmacology 17, 349–353.PubMedCrossRefGoogle Scholar
  152. 151.
    Enz, A., Goldstein, M., and Meller, E. (1990) Dopamine agonist-induced elevation of striatal acetylcholine: relationship between receptor occupancy and response in normal and denervated rat striatum. Mol. Pharmacol. 37, 560–565.PubMedGoogle Scholar
  153. 152.
    Fibiger, H. C. and Grewaal, D. S. (1974) Neurochemical evidence for denervation supersensitivity: the effect of unilateral substantia nigra lesions on apomorphine-induced increases in neostriatal acetylcholine levels. Life Sci. 15, 57–63.PubMedCrossRefGoogle Scholar
  154. 153.
    Kozlowski, M. R. and Marshall, J. F. (1980) Plasticity of [14C]2-deoxy-n-glucose incorporation into neostriatum and related structures in response to dopamine neuron damage and apomorphine replacement. Brain Res. 197, 167–183.PubMedCrossRefGoogle Scholar
  155. 154.
    Creese, I., Burt, D. R., and Snyder, S. H. (1977) Dopamine receptor binding enhancement accompanies lesion-induced behavioral supersensitivity. Science 197, 596–598.PubMedCrossRefGoogle Scholar
  156. 155.
    Chen, S. D., Zhou, X. D., Xu, D. L., Zhu, C. M., Zheng, J. X., Kuang, Q. F., Guo, Y. Z., and Li, B. (1993) “In-vivo” visualization by SPECT of the ipsilateral striatal dopamine D2 receptor supersensitivity occurring in MPTP-induced hemiparkinsonism in primates. Neurodegeneration 2, 147–151.Google Scholar
  157. 156.
    Graham, W. C., Clarke, C. E., Boyce, S., Sambrook, M. A., Crossman, A. R., and Woodruff, G. N. (1990) Autoradiographic studies in animal models of hemiparkinsonism reveal D2 but not D1 receptor supersensitivity. II. Unilateral intracarotid infusion of MPTP in the monkey (Macaca fascicularis). Brain Res. 514, 103–110.PubMedCrossRefGoogle Scholar
  158. 157.
    Joyce, J. N., Marshall, J. F., Bankiewicz, K. S., Kopin, I. J., and Jacobowicz, D. M. (1986) Hemiparkinsonism in a monkey after unilateral internal carotid artery infusion of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) is associated with regional ipsilateral changes in striatal dopamine D2 receptor density. Brain Res. 382, 360–364.PubMedCrossRefGoogle Scholar
  159. 158.
    Waddington, J. L., Cross, A. J., Longden, A., Owen, F., and Poulter, M. (1979) Apomorphine-induced rotation in the unilateral 6-OHDA-lesioned rat: relationship to changes in striatal adenylate cyclase activity and 3H-spiperone binding. Neuropharmacology 18, 643–645.PubMedCrossRefGoogle Scholar
  160. 159.
    Neve, K. A., Kozlowski, M. R., and Marshall, J. F. (1982) Plasticity of neostriatal dopamine receptors after nigrostriatal injury: relationship to recovery of sensorimotor functions and behavioral supersensitivity. Brain Res. 242, 33–44.CrossRefGoogle Scholar
  161. 160.
    Staunton, D. A., Wolfe, B. B., Groves, P. M., and Molinoff, P. B. (1981) Dopamine receptor changes following destruction of the nigrostriatal pathway: lack of a relationship to rotational behavior. Brain Res. 211, 315–327.PubMedCrossRefGoogle Scholar
  162. 161.
    Breese, G. R., Duncan, G. E., Napier, T. C., Bondy, S. C., Iorio, L. C., and Mueller, R. A. (1987) 6-Hydroxydopamine treatments enhance behavioral responses to intracerebral microinjection of D1- and D2-dopamine agonists into nucleus accumbens and striatum without changing dopamine antagonist binding. J. Pharmacol. Exp. Ther. 240, 167–176.Google Scholar
  163. 162.
    Mileson, B. E., Lewis, M. H., and Mailman, R. B. (1991) Dopamine receptor supersensitivity’ occurring without receptor up-regulation. Brain Res. 561,1–10.Google Scholar
  164. 163.
    LaHoste, G. J. and Marshall, J. F. (1991) Chronic eticlopride and dopamine denervation induce equal nonadditive increases in striatal D2 receptor density: auto-radiographic evidence against the dual mechanism hypothesis. Neuroscience 41, 473–481.Google Scholar
  165. 164.
    Neve, K. A. and Marshall, J. F. (1984) The effects of denervation and chronic haloperidol treatment on neostriatal dopamine receptor density are not additive. Neurosci. Lett. 46, 77–83.Google Scholar
  166. 165.
    LaHoste, G. J. and Marshall, J. F. (1993) The role of dopamine in the maintenance and breakdown of D1/D2 synergism. Brain Res. 611, 108–116.PubMedCrossRefGoogle Scholar
  167. 166.
    LaHoste, G. J. and Marshall, J. F. (1992) Dopamine supersensitivity and D1/D2 synergism are unrelated to changes in striatal receptor density. Synapse 12, 14–26.Google Scholar
  168. 167.
    Randall, P. K. (1985) Quantification of dopaminergic supersensitivity using apomorphine-induced behaviors in the mouse. Life Sci. 37, 1419–1423.PubMedCrossRefGoogle Scholar
  169. 168.
    Reches, A., Wagner, R. H., Jackson, V., Yablonskaya-Alter, E., and Fahn, S. (1983) Dopamine receptors in the denervated striatum: further supersensitivity by chronic haloperidol treatment. Brain Res. 275, 183–185.PubMedCrossRefGoogle Scholar
  170. 169.
    LaHoste, G. J. and Marshall, J. F. (1989) Non-additivity of D2 receptor proliferation induced by dopamine denervation and chronic selective antagonist administration: evidence from quantitative autoradiography indicates a single mechanism of action. Brain Res. 502, 223–232.PubMedCrossRefGoogle Scholar
  171. 170.
    Neve, K. A., Loeschen, S., and Marshall, J. F. (1985) Denervation accelerates the reappearance of neostriatal D-2 receptors after irreversible receptor blockade. Brain Res. 329, 225–231.PubMedCrossRefGoogle Scholar
  172. 171.
    Norman, A. B., Battaglia, G., and Creese, I. (1987) Differential recovery rates of rat D2 dopamine receptors as a function of aging and chronic reserpine treatment following irreversible modification: a key to receptor regulatory mechanisms. J. Neurosci. 7, 1484–1491.PubMedGoogle Scholar
  173. 172.
    Brené, S., Lindefors, N., Herrera-Marschitz, M., and Persson, H. (1990) Expression of dopamine D2 receptor and choline acetyltransferase mRNA in the dopamine deafferented rat caudate-putamen. Exp. Brain Res. 83, 96–104.PubMedCrossRefGoogle Scholar
  174. 172a.
    Lisovoski, F., Haby, C., Borrelli, E., Schleef, C., Revel, M. O., Hindelang, C., and Zwiller, J. (1992) Induction of D2 dopamine receptor mRNA synthesis in a 6-hydroxydopamine parkinsonian rat model. Brain Res. Bull. 28, 697–701.PubMedCrossRefGoogle Scholar
  175. 173.
    Chen, J. F., Qin, Z. H., Szele, F., Bai, G., and Weiss, B. (1991) Neuronal localization and modulation of the D2 dopamine receptor mRNA in brain of normal mice and mice lesioned with 6-hydroxydopamine. Neuropharmacology 30, 927–941.PubMedCrossRefGoogle Scholar
  176. 174.
    Inoue, A., Ueda, H., Nakata, Y., and Misu, Y. (1994) Supersensitivity of quinpirole-evoked GTPase activation without changes in gene expression of D2 and G, protein in the striatum of hemi-dopaminergic lesioned rats. Neurosci. Lett. 175, 107–110.PubMedCrossRefGoogle Scholar
  177. 175.
    Neve, K. A., Neve, R. L., Fidel, S., Janowsky, A., and Higgins, G. A. (1991) Increased abundance of alternatively spliced forms of D-2 receptor mRNA after denervation. Proc. Natl. Acad. Sci. USA 88, 2802–2806.PubMedCrossRefGoogle Scholar
  178. 176.
    Reches, A., Wagner, H. R., Jackson-Lewis, V., Yablonskaya-Alter, E., and Fahn, S. (1984) Chronic levodopa or pergolide administration induces down-regulation of dopamine receptors in denervated striatum. Neurology 34, 1208–1212.PubMedCrossRefGoogle Scholar
  179. 177.
    Agui, T., Amlaiky, N., Caron, M. G., and Kebabian, J. W. (1988) Agonist-induced desensitization of the D-2 dopamine receptor in the intermediate lobe of the rat pituitary gland. J. Biochem. 103, 436–441.PubMedGoogle Scholar
  180. 178.
    Drukarch, B., Schepens, E., and Stoof, J. C. (1991) Sustained activation does not desensitize the dopamine D2 receptor-mediated control of evoked in vitro release of radiolabeled acetylcholine from rat striatum. Eur. J. Pharmacol. 196, 209–212.PubMedCrossRefGoogle Scholar
  181. 179.
    Maus, M., Vernier, P., Valdenaire, O., Homburger, V., Bockaert, J., Glowinski, J., and Mallet, J. (1993) D2-dopaminergic agonist quinpirole and 8-bromo-cAMP have opposite effects on Goa GTP-binding protein mRNA without changing D2 dopamine receptor mRNA levels in striatal neurones in primary culture. J. Recept. Res. 13, 1–4.Google Scholar
  182. 180.
    Barton, A. C., Black, L. E., and Sibley, D. R. (1991) Agonist-induced desensitization of D2 dopamine receptors in human Y-79 retinoblastoma cells. Mol. Pharmacol. 39, 650–658.PubMedGoogle Scholar
  183. 181.
    Ng, G. Y. K., O’Dowd, B. F, Caron, M., Dennis, M., Brann, M. R., and George, S. R. (1994) Phosphorylation and palmitoylation of the human D2L dopamine receptor in Sf9 cells. J. Neurochem. 63, 1589–1595.Google Scholar
  184. 182.
    Elazar, Z. and Fuchs, S. (1991) Phosphorylation by cyclic AMP-dependent protein kinase modulates agonist binding to the D2 dopamine receptor. J. Neurochem. 56, 75–80.PubMedCrossRefGoogle Scholar
  185. 183.
    Rogue, P., Zwiller, J., Malviya, A. N., and Vincendon, G. (1990) Phosphorylation by protein kinase C modulates agonist binding to striatal dopamine D2 receptors. Biochem. Int. 22, 575–582.Google Scholar
  186. 184.
    Cubeddu, L. X., Lovenberg, T. W., Hoffman, I. S., and Talmaciu, R. K. (1989) Phorbol esters and D2 dopamine receptors. J. Pharmacol. Exp. Ther. 251, 687–693.PubMedGoogle Scholar
  187. 185.
    Ivins, K. J., Luedtke, R. R., Artymyshyn, R. P., and Molinoff, P. B. (1991) Regulation of dopamine D2 receptors in a novel cell line. Mol. Pharmacol. 39, 531–539.Google Scholar
  188. 186.
    Johnston, J. M., Wood, D. F., Read, S., and Johnston, D. G. (1993) Dopamine regulates D2 receptor gene expression in normal but not in tumorous rat pituitary cells. Mol. Cell. Endocrinol. 92, 63–68.PubMedCrossRefGoogle Scholar
  189. 187.
    Bates, M. D., Senogles, S. E., Bunzow, J. R., Liggett, S. B., Civelli, O., and Caron, M. G. (1988) Regulation of responsiveness at D2 dopamine receptors by receptor desensitization and adenylyl cyclase sensitization. Mol. Pharmacol. 39, 55–63.Google Scholar
  190. 188.
    Johansson, M. H. and Westlind-Danielson, A. (1994) Forskolin-induced up-regulation and functional supersensitivity of dopamine D2 long receptors expressed by Ltk-cells. Eur. J. Pharmacol. Mol. Pharmacol. 269, 149–155.CrossRefGoogle Scholar
  191. 189.
    Liu, Y. F., Civelli, O., Grandy, D. K., and Albert, P. R. (1992) Differential sensitivity of the short and long human dopamine D2 receptor subtypes to protein kinase C. J. Neurochem. 59, 2311–2317.PubMedCrossRefGoogle Scholar
  192. 190.
    Zhang, L.-J., Lachowicz, J. E., and Sibley, D. R. (1994) The Des and D2L dopamine receptor isoforms are differentially regulated in chinese hamster ovary cells. Mol. Pharmacol. 45, 878–889.PubMedGoogle Scholar
  193. 191.
    Di Marzo, V., Vial, D., Sokoloff, P., Schwartz, J. C. (1993) Selection of alternative Gi-mediated signaling pathways at the dopamine D2 receptor by protein kinase C. J. Neurosci. 13, 4846–4853.PubMedGoogle Scholar
  194. 192.
    Kanterman, R. Y., Mahan, L. C., Briley, E. M., Monsma, F. J., Jr., Sibley, D. R., Axelrod, J., and Felder, C. C. (1991) Transfected D2 dopamine receptors mediate the potentiation of arachidonic acid release in chinese hamster ovary cells. Mol. Pharmacol. 39, 364–369.PubMedGoogle Scholar
  195. 193.
    Piomelli, D. and Di Marzo, V. (1993) Dopamine D2 receptor signaling via the arachidonic acid cascade: modulation by cAMP-dependent protein kinase A and prostaglandin E2. J. Lipid Mediat. 6, 433–443.PubMedGoogle Scholar
  196. 194.
    Filtz, T. M., Artymshyn, R. P., Guan, W., and Molinoff, P. B. (1993) Paradoxical regulation of dopamine receptors in transfected 293 cells. Mol. Pharmacol. 44, 371–379.Google Scholar
  197. 195.
    Filtz, T. M., Guan, W., Artymyshyn, R. P., Pacheco, M., Ford, C. and Molinoff, P. B. (1994) Mechanisms of up-regulation of D2L dopamine receptors by agonists and antagonists in transfected HEK-293 cells. J. Pharmacol. Exp. Ther. 271, 1574–1582.Google Scholar
  198. 196.
    Starr, S., Kozell, L. B., and Neve, K. A. (1995) Drug-induced up-regulation of dopamine D2 receptors on cultured cells. J. Neurochem. 65, 569–577.PubMedCrossRefGoogle Scholar
  199. 197.
    Fornaretto, M. G., Caccia, C., Caron, M. G., and Fariello, R. G. (1993) Dopamine receptors status after unilateral nigral 6-OHDA lesion. Mol. Chem. Neuropathol. 19, 147–162.PubMedCrossRefGoogle Scholar
  200. 198.
    Seabrook, G. R., Kemp, J. A., Freedman, S. B., Patel, S., Sinclair, H. A., and McAllister, G. (1994) Functional expression of human D3 dopamine receptors in differentiated neuroblastoma X glioma NG108–15 cells. Br. J. Pharmacol. 111, 391–393.PubMedCrossRefGoogle Scholar
  201. 199.
    Cox, B. A., Rosser, M. P., Kozlowski, M. R., Duwe, K. M., Neve, R. L., and Neve, K. A. (1995) Regulation and functional characterization of a rat recombinant dopamine D3 receptor. Synapse 21, 1–9.Google Scholar
  202. 200.
    Schoots, O., Seeman, P., Guan, H.-C., Paterson, A. D., and Van Tol, H. H. M. (1995) Long-term haloperidol elevates dopamine D4 receptors by 2-fold in rats. Eur. J. Pharmacol. Mol. Pharmacol. 289, 67–72.Google Scholar
  203. 201.
    Asghari, V., Schoots, O., Van Kats, S., Ohara, K., Jovanovic, V., Guan, H.-C., Bunzow, J. R., Petronis, A., and Van Tol, H. H. M. (1994) Dopamine D4 receptor repeat: analysis of different native and mutant forms of the human and rat genes. Mol. Pharmacol. 46, 364–373.PubMedGoogle Scholar
  204. 202.
    Asghari, V., Sanyal, S., Buchwaldt, S., Paterson, S., Jovanovic, V., and Van Tol, H. H. M. (1995) Modulation of intracellular cyclic AMP levels by different human dopamine D4 receptor variants. J. Neurochem. 65, 1157–1165.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • David R. Sibley
  • Kim A. Neve

There are no affiliations available

Personalised recommendations