Dopamine Receptor-Mediated Gene Regulation in the Pituitary

  • James L. Roberts
  • Stuart C. Sealfon
  • Jean Philippe Loeffler
Part of the The Receptors book series (REC)


A common regulatory mechanism in the endocrine and neuroendocrine system is the coupling of secretion with the biosynthesis of a hormone. Factors that regulate hormone release also regulate its biosynthesis. This provides a cellular mechanism to ensure a ready supply of the protein or peptide. Thus, for any cell type in which secretion is regulated by dopamine via a dopamine receptor, it might be expected that dopamine would also have a significant effect on expression of the genes encoding the peptide/protein hormones themselves and/or those genes encoding the proteins involved in hormone production. Indeed, this linkage has been demonstrated in the first studies of regulation of prolactin and pro-opiomelanocortin (POMC) gene expression performed in model pituitary cell culture systems. Since these pituitary hormone-encoding genes were some of the first to be cloned in the early days of recombinant DNA technology, their regulation by dopamine has been well characterized but, surprisingly, some aspects of the underlying mechanisms have not been elucidated. In this chapter we discuss what is known about the expression of different dopamine receptor subtypes in the pituitary gland; their mechanisms of intracellular signaling; and processes by which the activation of these receptors interdicts the gene expression of two major pituitary peptide/protein hormone genes, prolactin and POMC.


Dopamine Receptor Pituitary Cell Anterior Pituitary Cell Intermediate Lobe Receptor mRNA Level 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Mansour, A., Meador, W. J., Bunzow, J. R., Civelli, O., Akil, H., and Watson, S. J. (1990) Localization of dopamine D2 receptor mRNA and D1 and D2 receptor binding in the rat brain and pituitary: an in situ hybridization-receptor autoradio-graphic analysis. J. Neurosci 10, 2587–2600.Google Scholar
  2. 2.
    Schoors, D. F., Vauquelin, G. P., De Vos, H., Smets, G., Velkeniers, B., Vanhaelst, L., and Dupont, A. G. (1991) Identification of a D1 dopamine receptor, not linked to adenylate cyclase, on lactotroph cells. Br. J. Pharmacol 103, 1928–1934.PubMedCrossRefGoogle Scholar
  3. 3.
    Goldsmith, P. C., Cronin, M. J., and Weiner, R. I. (1979) Dopamine receptor sites in the anterior pituitary. J. Histochem. Cytochem 27, 1205–1207.PubMedCrossRefGoogle Scholar
  4. 4.
    Mudrick-Donnon, L. A., Williams, P. J., Pittman, Q. J., and Mac Vicar, B. A. (1993) Postsynaptic potentials mediated by GABA and dopamine evoked in stellate glial cells of the pituitary pars intermedia. J. Neurosci 13, 4660–4668.Google Scholar
  5. 5.
    Valerio, A., Alberici, A., Inti, C., Spano, P., and Memo, M. (1994) Antisense strategy unravels a dopamine receptor distinct from the D2 subtype, uncoupled with adenylyl cyclase, inhibiting prolactin release from rat pituitary cells. J. Neurochem 62, 1260–1266.PubMedCrossRefGoogle Scholar
  6. 6.
    Snyder, L. A., Roberts, J. L., and Sealfon, S. C. (1991) Distribution of dopamine D2 receptor mRNA splice variants in the rat by solution hybridization/protection assay. Neurosci. Lett 122, 37–40.PubMedCrossRefGoogle Scholar
  7. 7.
    Sokoloff, P., Giros, B., Martres, M. P., Bouthenet, M. L., and Schwartz, J. C. (1990) Molecular cloning and characterization of a novel dopamine receptor (D3) as a target for neuroleptics. Nature 347, 146–151.PubMedCrossRefGoogle Scholar
  8. 8.
    Levesque, D., Diaz, J., Pilon, C., Martres, M. P., Giros, B., Souil, E., Schott, D., Morgat, J. L., Schwartz, J. C., and Sokoloff, P. (1992) Identification, characterization, and localization of the dopamine D3 receptor in rat brain using 7-[3H]hydroxyN,N-di-n-propyl-2-aminotetralin. Proc. Natl. Acad. Sci. USA 89, 8155–8159.Google Scholar
  9. 9.
    Freedman, J. E., Waszczak, B. L., Cox, R. F., Liu, J. C., and Greif, G. J. (1994) The dopamine D3 receptor and 7-OH-DPAT [letter]. Trends Pharmacol. Sci. 15, 173, 174.Google Scholar
  10. 10.
    Large, C. H. and Stubbs, C. M. (1994) The dopamine D3 receptor: Chinese hamsters or Chinese whispers? [letter]. Trends Pharmacol. Sci. 15, 46, 47.Google Scholar
  11. 11.
    Monsma, F. J., Mahan, L. C., McVittie, L. D., Gerfen, C. R., and Sibley, D. R. (1990) Molecular cloning and expression of a D1 dopamine receptor linked to adenylyl cyclase activation. Proc. Natl. Acad. Sci. USA 87, 6723–6727.PubMedCrossRefGoogle Scholar
  12. 12.
    Sunahara, R. K., Niznik, H. B., Weiner, D. M., Stormann, T. M., Brann, M. R., Kennedy, J. L., Gelernter, J. E., Rozmahel, R., Yang, Y., Israel, Y., Seeman, P., and O’Dowd, B. F. (1990) Human dopamine D1 receptor encoded by an intronless gene on chromosome 5. Nature 347, 80–83.CrossRefGoogle Scholar
  13. 13.
    Porter, T. E., Grandy, D., Bunzow, J.. Wiles, C. D., Civelli, O., and Frawley, L. S. (1994) Evidence that stimulatory dopamine receptors may be involved in the regulation of prolactin secretion. Endocrinology 134, 1263–1268.Google Scholar
  14. 14.
    Pizzi, M., Valerio, A., Benarese, M., Missale, C., Carruba, M., Memo, M., and Spano, P. F. (1990) Selective stimulation of a subtype of dopamine D-2 receptor by the azeprine derivative BHT 920 in rat pituitary. Mol. Neuropharmacol 1, 37–42.Google Scholar
  15. 15.
    Memo, M., Pizzi, M., Belloni, M., Benarese, M., and Spano, P. (1992) Activation of dopamine D2 receptors linked to voltage-sensitive potassium channels reduces forskolin-induced cyclic AMP formation in rat pituitary cells. J. Neurochem 59, 1829–1835.PubMedCrossRefGoogle Scholar
  16. 16.
    DalToso, R., Sommer, B., Ewert, M., Herb, A., Pritchett, D. B., Bach, A., Shivers, B. D., and Seeburg, P. H. (1989) The dopamine D2 receptor: two molecular forms generated by alternative splicing. EMBO J. 8, 4025–4034.Google Scholar
  17. 17.
    Giros, B., Sokoloff, P., Martres, M. P., Riou, J. F., Emorine, L. J., and Schwartz, J. C. (1989) Alternative splicing directs the expression of two D2 dopamine receptor isoforms. Nature 342, 923–926.PubMedCrossRefGoogle Scholar
  18. 18.
    Montmayeur, J. P., Bausero, P., Amlaiky, N., Maroteaux, L., Hen, R., and Borrelli, E. (1991) Differential expression of the mouse D2 dopamine receptor isoforms. FEES Lett. 278, 239–243.CrossRefGoogle Scholar
  19. 19.
    O’Malley, K. L., Mack, K. J., Gandelman, K. Y., and Todd, R. D. (1990) Organization and expression of the rat D2A receptor gene: identification of alternative transcripts and a variant donor splice site. Biochemistry 29, 1367–1371.PubMedCrossRefGoogle Scholar
  20. 20.
    Chronwall, B. M., Dickerson, D. S., Huerter, B. S., Sibley, D. R., and Millington, W. R. (1994) Regulation of heterogeneity in D2 dopamine receptor gene expression among individual melanotropes in the rat pituitary intermediate lobe. Mol. Cell. Neurosci 5, 35–45.PubMedCrossRefGoogle Scholar
  21. 21.
    Kukstas, L. A., Domec, C., Bascles, L., Bonnet, J., Verrier, D., Israel, J.-M., and Vincent, J.-D. (1991) Different expression of the two dopaminergic D2 receptors, D2415 and D2444, in two types of lactotroph each characterized by their response to dopamine, and modification of expression by sex steroids. Endocrinology 129, 1101–1103.PubMedCrossRefGoogle Scholar
  22. 22.
    Kazemzadeh, M., Velkeniers, B., Herregodts, P., Collumbien, R., Finne, E., Derde, M. P., Vanhaelst, L., and Hooghe-Peters, E. L. (1992) Differential dopamine-induced prolactin mRNA levels in various prolactin-secreting cell (sub)populations. J. Endocrinol 132, 401–409.PubMedCrossRefGoogle Scholar
  23. 23.
    Lledo, P. M., Guerineau, N., Mollard, P., Vincent, J. D., and Israel, J. M. (1991) Physiological characterization of two functional states in subpopulations of prolactin cells from lactating rats. J. Physiol 437, 477–494.Google Scholar
  24. 24.
    Heiman, M. L. and Ben-Jonathan, N. (1982) Dopaminergic receptors in the rat anterior pituitary change during the estrous cycle. Endocrinology 111, 37–41.PubMedCrossRefGoogle Scholar
  25. 25.
    Pasqualini, C., Lenoir, V., El Abed, A., and Kerdelhue, B. (1984) Anterior pituitary dopamine receptors during the rat estrous cycle. A detailed analysis of proestrus changes. Neuroendocrinology 38, 39–44.PubMedCrossRefGoogle Scholar
  26. 26.
    Pazos, A., Stoeckel, M. E., Hindelang, C., and Palacios, J. M. (1985) Autoradio-graphic studies on dopamine D2 receptors in rat pituitary: influence of hormonal states. Neurosci. Lett 59 1–7 Google Scholar
  27. 27.
    Zabavnik, J., Wu, W. X., Eidne, K. A., and McNeilly, A. S. (1993) Dopamine D2 receptor mRNA in the pituitary during the oestrous cycle, pregnancy and lactation in the rat. Mol. Cell. Endocrinol 95, 121–128.PubMedCrossRefGoogle Scholar
  28. 28.
    Ali, S. F. and Peck, E. J. (1985) Modulation of anterior pituitary dopamine receptors by estradiol 17–13: dose—response relationship. J. Neurosci. Res 13, 497–507.PubMedCrossRefGoogle Scholar
  29. 29.
    Pasqualini, C., Bojda, F., and Kerdelhue, B. (1986) Direct effect of estradiol on the number of dopamine receptors in the anterior pituitary of ovariectomized rats. Endocrinology 119, 2484–2489.PubMedCrossRefGoogle Scholar
  30. 30.
    Di Paolo, R. and Falardeau, P. (1985) Modulation of brain and pituitary dopamine receptors by estrogens and prolactin. Prog. Neuro-Psychopharmacol 9, 473–480.CrossRefGoogle Scholar
  31. 31.
    Bression, D., Brandi, A. M., LeDafniet, M., Cesselin, F., Hamon, M., Martinet, M., Kerdelhue, B., and Peillon, F. (1983) Modifications of the high and low affinity pituitary domperidone-binding sites in chronic estrogenized rats. Endocrinology 113, 1799–1805.PubMedCrossRefGoogle Scholar
  32. 32.
    Andre, J., Marchisio, A. M., Morel, Y., and Collu, R. (1982) Dopamine receptors in the rat pituitary and the transplantable pituitary tumor MtTF4: effect of chronic treatment with oestradiol. Biochem. Biophys. Res. Commun 106, 229–235.PubMedCrossRefGoogle Scholar
  33. 33.
    Levesque, D Gagne, B., Barden, N., and Di Paolo, T. (1992) Chronic estradiol treatment increases anterior pituitary but not striatal D2 dopamine receptor mRNA levels in rats. Neurosci. Lett 140 5–8.Google Scholar
  34. 34.
    Heiman, M. L. and Ben-Jonathan, N. (1982) Rat anterior pituitary dopaminergic receptors are regulated by estradiol and during lactation. Endocrinology 111, 1057–1060.PubMedCrossRefGoogle Scholar
  35. 35.
    Arnauld, E., Arsaut, J., and Demotes-Mainard, J. (1991) Differential plasticity of the dopaminergic D2 receptor mRNA isoforms under haloperidol treatment, as evidenced by in situ hybridization in rat anterior pituitary. Neurosci. Lett 130, 12–16.PubMedCrossRefGoogle Scholar
  36. 36.
    Autelitano, D. J., Snyder, L., Sealfon, S. C., and Roberts, J. L. (1989) Dopamine D2-receptor messenger RNA is differentially regulated by dopaminergic agents in rat anterior and neurointermediate pituitary. Mol. Cell. Endo 67, 101–105.CrossRefGoogle Scholar
  37. 37.
    Jaber, M., Tison, F., Fournier, M. C., and Bloch, B. (1994) Differential influence of haloperidol and sulpiride on dopamine receptors and peptide mRNA levels in the rat striatum and pituitary. Brain Res. Mol. Brain Res 23, 14–20.PubMedCrossRefGoogle Scholar
  38. 38.
    Johnston, J M., Wood, D. F., Read, S., and Johnston, D. G. (1993) Dopamine regulates D2 receptor gene expression in normal but not in tumorous rat pituitary cells. Mol. Cell. Endocrinol 92 63–68.Google Scholar
  39. 39.
    von Euler, G., Meister, B., Hokfelt, T., Eneroth, P., and Fuxe, K. (1990) Intraventricular injection of neurotensin reduces dopamine D2 agonist binding in rat forebrain and intermediate lobe of the pituitary gland. Relationship to serum hormone levels and nerve terminal coexistence. Brain Res. 531, 253–262.Google Scholar
  40. 40.
    Brandi, A. M., Joannidis, S., Peillon, F., and Joubert, D. (1990) Changes of prolactin response to dopamine during the rat estrous cycle. Neuroendocrinology 51, 449–454.PubMedCrossRefGoogle Scholar
  41. 41.
    Givuere, V., Meunier, H., Veilleux, R., and Labrie, F. (1992) Direct effects of sex steroids on prolactin release at the anterior pituitary level: interactions with dopamine, thyrotropin-releasing hormone, and isobutylmethylxanthine. Endocrinology 111, 857–862.Google Scholar
  42. 42.
    Nansel, D. D., Gudelsky, G. A., Reymond, M. J., and Porter, J. C. (1981) Estrogen alters the responsiveness of the anterior pituitary gland to the actions of dopamine on lysosomal enzyme activity and prolactin release. Endocrinology 108, 903–907.PubMedCrossRefGoogle Scholar
  43. 43.
    Borgundvaag, B. and George, S. R. (1985) Dopamine inhibition of anterior pituitary adenylate cyclase is mediated through the high-affinity state of the D2 receptor. Life Sci. 37, 379–386.PubMedCrossRefGoogle Scholar
  44. 44.
    Munemura, M., Agui, T., and Sibley, D. R. (1989) Chronic estrogen treatment promotes a functional uncoupling of the D2 dopamine receptor in rat anterior pituitary gland. Endocrinology 124, 346–355.PubMedCrossRefGoogle Scholar
  45. 45.
    Cronin, M. J., Myers, G. A., Mac Leod, R. M., and Hewlett, E. L. (1983) Pertussis toxin uncouples dopamine agonist inhibition of prolactin release. Am. J. Physiol 244, 499–504.Google Scholar
  46. 46.
    De Camilli, P., Macconi, D., and Spada, A. (1979) Dopamine inhibits adenylate cyclase in human prolactin-secreting pituitary adenomas. Nature 278, 252–254.PubMedCrossRefGoogle Scholar
  47. 47.
    Enjalbert, A. and Bockaert, J. (1983) Pharmacological characterization of the D2 dopamine receptor negatively coupled with adenylate cyclase in rat anterior pituitary. Mol. Pharmacol 23, 576–584.PubMedGoogle Scholar
  48. 48.
    Enjalbert, A., Guilion, G., Mouiliac, B., Audinot, V., Rasolonjanahary, R., Kordon, C., and Bockaert, J. (1990) Dual mechanisms of inhibition by dopamine of basal and thyrotropin-releasing hormone-stimulated inositol phosphate production in anterior pituitary cells. J. Biol. Chem. 265, 18,816–18, 822.Google Scholar
  49. 49.
    Musset, F., Bertrand, P., Kordon, C., and Enjalbert, A. (1990) Differential coupling with pertussis toxin-sensitive G proteins of dopamine and somatostatin receptors involved in regulation of adenohypophyseal secretion. Mol. Cell. Endocrinol 73, 1–10.PubMedCrossRefGoogle Scholar
  50. Senogles, S. E., Amlaiky, N., Falardeau, P and Caron, M. G. (1988) Purification and characterization of the D2-dopamine receptor from bovine anterior pituitary. J. Biol. Chem 263 18,996–19,002.Google Scholar
  51. 51.
    Simmonds, S. H. and Strange, P. G. (1985) Inhibition of inositol phospholipid breakdown by D2 dopamine receptors in dissociated bovine anterior pituitary cells. Neurosci. Lett 60, 267–272.PubMedCrossRefGoogle Scholar
  52. 52.
    Jarvis, W. D., Judd, A. M., and Mac Leod, R. M. (1988) Attenuation of anterior pituitary phosphoinositide phosphorylase activity by the D2 dopamine receptor. Endocrinology 123, 2793–2799.PubMedCrossRefGoogle Scholar
  53. 53.
    Vallar, L. and Meldolesi, J. (1989) Mechanisms of signal transduction at the dopamine D2 receptor. Trends Pharmacol. Sci 10, 74–77.PubMedCrossRefGoogle Scholar
  54. 54.
    Vallar, L., Vicentini, L. M., and Meldolesi, J. (1988) Inhibition of inositol phosphate production is a late, Cat+-dependent effect of D2 dopaminergic receptor activation in rat lactotroph cells. J. Biol. Chem. 263, 10,127–10, 134.Google Scholar
  55. 55.
    Canonico, P. L. (1989) D-2 dopamine receptor activation reduces free [’H] arachidonate release induced by hypophysiotropic peptides in anterior pituitary cells. Endocrinology 125, 1180–1186.PubMedCrossRefGoogle Scholar
  56. 56.
    Florio, T., Pan, M. G., Newman, B., Hershberger, R. E., Civelli, O., and Stork, P. J. (1992) Dopaminergic inhibition of DNA synthesis in pituitary tumor cells is associated with phosphotyrosine phosphatase activity. J. Biol. Chem. 267, 24,169–24, 172.Google Scholar
  57. 57.
    Einhorn, L. C., Gregerson, K. A., and Oxford, G. S. (1991) D2 dopamine receptor activation of potassium channels in identified rat lactotrophs: whole-cell and single-channel recording. J. Neurosci 11, 3727–3737.PubMedGoogle Scholar
  58. 58.
    Israel, J. M., Kirk, C., and Vincent, J. D. (1987) Electrophysiological responses to dopamine ofrat hypophysial cells in lactotroph-enriched primary cultures. J. Physiol. 390, 1–22.PubMedGoogle Scholar
  59. 59.
    Lledo, P. M., Legendre, P., Zhang, J., Israel, J. M., and Vincent, J. D. (1990) Effects of dopamine on voltage-dependent potassium currents in identified rat lactotroph cells. Neuroendocrinology 52, 545–555.PubMedCrossRefGoogle Scholar
  60. 60.
    Malgaroli, A., Vallar, L., Elahi, F. R., Pozzan, T., Spada, A., and Meldolesi, J. (1987) Dopamine inhibits cytosolic Ca“ increases in rat lactotroph cells. Evidence of a dual mechanism of action. J. Biol. Chem. 262, 13,920–13, 927.Google Scholar
  61. 61.
    Lledo, P. M., Legendre, P., Israel, J. M., and Vincent, J. D. (1990) Dopamine inhibits two characterized voltage-dependent calcium currents in identified rat lactotroph cells. Endocrinology 127, 990–1001.PubMedCrossRefGoogle Scholar
  62. 62.
    Lledo, P. M., Homburger, V., Bockaert, J., and Vincent, J. D. (1992) Differential G protein-mediated coupling of D2 dopamine receptors to K’ and Ca“ currents in rat anterior pituitary cells. Neuron 8, 455–463.PubMedCrossRefGoogle Scholar
  63. 63.
    Rendt, J. and Oxford, G. S. (1994) Absence of coupling between D2 dopamine receptors and calcium channels in lactotrophs from cycling female rats. Endocrinology 135, 501–508.PubMedCrossRefGoogle Scholar
  64. 64.
    Williams, P. J., Mac Vicar, B. A., and Pittman, Q. J. (1990) Synaptic modulation by dopamine of calcium currents in rat pars intermedia. J. Neurosci 10, 757–763.PubMedGoogle Scholar
  65. 65.
    Seabrook, G. R., Knowles, M., Brown, N., Myers, J., Sinclair, H., Patel, S., Freedman, S. B., and McAllister, G. (1994) Pharmacology of high-threshold calcium currents in GH4C1 pituitary cells and their regulation by activation of human D2 and D4 dopamine receptors. Br. J. Pharmacol 112, 728–734.PubMedCrossRefGoogle Scholar
  66. 66.
    Maurer, R. A. (1980) Dopaminergic inhibition of prolactin synthesis and prolactin messenger RNA accumulation in cultured pituitary cells. J. Biol. Chem 255, 8092.PubMedGoogle Scholar
  67. 67.
    Maurer, R. A. (1981) Transcriptional regulation of the prolactin gene by ergocryptine and cyclic AMP. Nature 294, 94.PubMedCrossRefGoogle Scholar
  68. 68.
    Keech, C. A. and Gutierrez-Hartmann, A. (1989) Analysis of rat prolactin promoter sequences that mediate pituitary-specific and 3’,5’-cyclic adenosine monophosphate-regulated gene expression in vivo. Mol. Endocrinol 3, 832–839.PubMedCrossRefGoogle Scholar
  69. 69.
    Day, R. N. and Maurer, R. A. (1989) The distal enhancer region of the prolactin gene contains elements conferring responses to multiple hormones. Mol. Endocrinol 3, 3–9.PubMedCrossRefGoogle Scholar
  70. 70.
    Elzholtz, H. P., Mangalum, H. J., Potter, E., Albert, V. R., Supowit, S., Evans, R. M., and Rosenfeld, M. G. (1986) Two different cis-active elements transfer the transcriptional effects of both EGF and phorbol esters. Science 234, 1552–1557.Google Scholar
  71. 71.
    Lufkin, T. and Bancroft, C. (1987) Identification by cell fusion of gene sequences that interact with positive trans-acting factors. Science 237, 283–286.PubMedCrossRefGoogle Scholar
  72. 72.
    Nelson, C., Crenshaw, E. B., III, Franco, R., Lira, S. A., Albert, V. R, Evans, R. M., and Rosenfeld, M. G. (1986) Discrete cis-active genomic sequences dictate the pituitary cell type-specific expression of rat prolactin and growth hormone genes. Nature 322, 557–562.PubMedCrossRefGoogle Scholar
  73. 73.
    McChesney, R., Sealfon, S. C., Tsutsumi, M., Dong, K. W., Roberts, J. L., and Bancroft, C. (1991) Either isoform of the dopamine D2 receptor can mediate dopaminergic repression of the rat prolactin promoter. Mol. Cell. Endocrinol. 79, R 1 — R7.Google Scholar
  74. 74.
    Elsholtz, H. P., Lew, A. M., Albert, P. R., and Sundmark, V. C. (1991) Inhibitory control of prolactin and Pit-1 gene promoters by dopamine. J. Biol. Chem. 266, 22,919–22, 925.Google Scholar
  75. 75.
    Albert, P. R., Neve, K. A., Bunzow, J. R., and Civelli, O. (1990) Coupling of a cloned rat dopamine-D2 receptor in inhibition of adenylyl cyclase and prolactin secretion. J. Biol. Chem 265, 2098–2104.PubMedGoogle Scholar
  76. 76.
    White, B. A., Bauerle, L. R., and Bancroft, F. C. (1981) Calcium specifically stimulates prolactin synthesis and mRNA sequences in GH3 cells. J. Biol. Chem 256, 5942–5945.PubMedGoogle Scholar
  77. 77.
    Gick, G. G. and Bancroft, C. (1985) Regulation by calcium of prolactin and growth hormone mRNA sequences in primary cultures of rat pituitary cells. J. Biol. Chem 260, 7614–7618.PubMedGoogle Scholar
  78. 78.
    Jackson, A. E. and Bancroft, C. (1988) Proximal upstream flanking sequences direct regulation of the rat prolactin gene. Mol. Endocrinol 2, 1139–1144.PubMedCrossRefGoogle Scholar
  79. 79.
    Day, R. N. and Maurer, R. A. (1990) Pituitary calcium channel modulation and regulation of prolactin gene expression. Mol. Endocrinol 4, 736–742.PubMedCrossRefGoogle Scholar
  80. 80.
    Lew, A. M., Yao, H., and Elsholtz, H. P. (1994) G(i) alpha 2- and G(o) alpha-mediated signaling in the Pit-l-dependent inhibition of the prolactin gene promoter. Control of transcription by dopamine D2 receptors. J. Biol. Chem. 269, 12,007–12, 013.Google Scholar
  81. 81.
    Beaulieu, M., Goldman, M. E., Miyazaki, K., Frey, E. A., Eskay, R. L., Kebabian, J. W., and Cote, T. E. (1984) Bromocriptine-induced changes in the biochemistry, physiology and histology of the intermediate lobe of the rat pituitary gland. Endocrinology 114, 1871.PubMedCrossRefGoogle Scholar
  82. 82.
    Chronwall, B. M., Millington, W. R., Griffin, W. S. T., Unnerstall, J. R., and O’Donohue, T. L. (1987) Histological evaluation of the dopaminergic regulation of proopiomelanocortin gene expression in the intermediate lobe of the rat pituitary, involving in situ hybridization and [3H] thymidine uptake measurement. Endocrinology 120, 1201.PubMedCrossRefGoogle Scholar
  83. 83.
    Hollt, V., Haarmann, I., Seizinger, B. R., and Herz, A. (1982) Chronic haloperidol treatment increases the level of in vitro translatable messenger ribonucleic acid coding for the (3-endorphin/adrenocorticotropin precursor proopiomelanocortin in the pars intermedia of the rat pituitary. Endocrinology 110, 1885–1891.PubMedCrossRefGoogle Scholar
  84. 84.
    Chen, C. L. C., Dionne, F. T., and Roberts, J. L. (1983) Regulation of the proopiomelanocortin mRNA levels in rat pituitary by dopaminergic compounds. Proc. Natl. Acad. Sci. USA 80, 2211–2215.PubMedCrossRefGoogle Scholar
  85. 85.
    Pritchett, D. B. and Roberts, J. L. (1987) Dopamine regulates expression of glandular-type kallikrein gene at transcriptional level in pituitary. Proc. Natl. Acad. Sci. USA 84, 5545.PubMedCrossRefGoogle Scholar
  86. 86.
    Cote, T. E., Felder, R., Kebabian, J. W., Sekura, R. D., Reisine, T., and Affolter, H. U. (1986) D-2 dopamine receptor-mediated inhibition of pro-opiomelanocortin synthesis in rat intermediate lobe. J. Biol. Chem 261, 4555–4561.Google Scholar
  87. 87.
    Loeffler, J.-P., Demeneix, B. A., Kley, N. A., and Hollt, V. (1988) Dopamine inhibition of proopiomelanocortin gene expression in the intermediate lobe of the pituitary. Neuroendocrinology 47, 95–101.PubMedCrossRefGoogle Scholar
  88. 88.
    Loeffler, J.-P., Kley, N., Pittius, C. W., and Hollt, V. (1985) Corticotropin-releasing factor and forskolin increase proopiomelanocortin messenger RNA levels in rat anterior and intermediate cell in vitro. Neurosci. Lett 62, 383–387.PubMedCrossRefGoogle Scholar
  89. 89.
    Loeffler, J. P., Kley, N., Pittius, C. W., and Hollt, V. (1986) Calcium ion and cyclic adenosine 3’,5’-monophosphate regulate proopiomelanocortin messenger ribonucleic acid levels in rat intermediate and anterior pituitary lobes. Endocrinology 119, 2840–2847.PubMedCrossRefGoogle Scholar
  90. 90.
    May, V., Stoffers, D. A., and Eipper, B. A. (1989) Proadrenocorticotropin/endorphin production and messenger ribonucleic acid levels in primary intermediate pituitary cultures: effects of serum, isoproterenol, and dibutyryl adenosine 3’,5’monophosphate. Endocrinology 124 157–166 Google Scholar
  91. 91.
    Autelitano, D. J., Blum, M., Lopingco, M., Allen, R. G., and Roberts, J. L. (1990) Corticotropin-releasing factor differentially regulates anterior and intermediate pituitary lobe proopiomelanocortin gene transcription, nuclear precursor RNA and mature mRNA in vivo. Neuroendocrinology 51, 123–130.PubMedCrossRefGoogle Scholar
  92. 92.
    Eberwine, J. H., Jonassen, J. A., Evinger, M. J. Q., and Roberts, J. L. (1987) Complex transcriptional regulation by glucocorticoids and corticotropin-releasing hormone of proopiomelanocortin gene expression in rat pituitary cultures. DNA 6, 483–492.Google Scholar
  93. 93.
    Gagner, J. P. and Drouin, J. (1987) Tissue-specific regulation of pituitary proopiomelanocortin gene transcription by corticotropin-releasing hormone, 3’,5’-cyclic adenosine monophosphate, and glucocorticoids. Mol. Endocrinol 1, 677–682.Google Scholar
  94. 94.
    Roberts, J. L., Lundblad, J. R., Eberwine, J. H., Fremeau, R. T., Salton, S. R. J., and Blum, M. (1987) Hormonal regulation of proopiomelanocortin gene expression in the pituitary. Ann. NYAcad. Sci 512, 275–285.CrossRefGoogle Scholar
  95. 95.
    Therrien, M. and Drouin, J. (1991) Pituitary pro-opiomelanocortin gene expression requires synergistic interactions of several regulatory elements. Mol. Cell. Biol 11, 3492–3503.PubMedGoogle Scholar
  96. 96.
    Jin, W. D., Boutillier, A. L., Glucksman, M. J., Salton, S. R. J., Loeffler, J. P., and Roberts, J. L. (1994) Characterization of a corticotropin-releasing hormone-responsive element in the rat proopiomelanocortin gene promoter and molecular cloning of its binding protein. Mol. Endocrinol 8, 1377–1388.PubMedCrossRefGoogle Scholar
  97. 97.
    Boutillier, A. L., Sassone-Corsi, P., and Loeffler, J. P. (1991) The protooncogene c-fos is induced by corticotropin-releasing factor and stimulates proopiomelanocortin gene transcription in pituitary cells. Mol. Endocrinol 5, 1301–1310.PubMedCrossRefGoogle Scholar
  98. 98.
    Boutillier, A. L., Monnier, D., Lorang, D., Lundblad, J. R., Roberts, J. L., and Loeffler, J. P. (1995) CRH stimulates POMC transcription by cFos dependent and independent pathways: characterization of an AP 1 site in exon 1. Mol. Endocrinol 9, 745–755.Google Scholar
  99. 99.
    Samama, P Pei, G., Costa, T., Cotecchia, S., and Lefkantz, R. J. (1994) Negative antagonists promote an inactive conformation of the beta 2-adrenergic receptor. Mol. Pharmacol 45 390–394.Google Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • James L. Roberts
  • Stuart C. Sealfon
  • Jean Philippe Loeffler

There are no affiliations available

Personalised recommendations