Dopamine Receptor Modulation of Gene Expression in the Brain

  • Monique R. Adams
  • Raymond P. Ward
  • Daniel M. Dorsa
Part of the The Receptors book series (REC)


Numerous changes in neuronal activity have been documented to be under the control of dopaminergic systems. Prominent among these are changes in transcription of neurotransmitter genes which are expressed in dopamine receptor positive neurons throughout the brain. The dopamine receptors are subdivided in two subfamilies: the D1-like (D1, D5) and the D2-like (D2, D3, D4).* As described in Chapter 6, members of this class of receptors are either positively or negatively coupled to some of the most important signal transduction pathways involved in regulating gene transcription. Prominent among these is the adenylate cyclase—cyclic adenosine monophosphate (cAMP) system, in which the cascade of events leading to gene transcription has in large part been elucidated. Agonism of receptors positively or negatively coupled to adenylate cyclase alters the conversion of ATP to cAMP. Subsequent binding of this nucleotide to the regulatory subunit of protein kinase A (PKA) leads to activation of its catalytic domain which carries out phosphorylation of numerous neuronal proteins. Among these downstream, rapid signaling events is the phosphorylation of a protein termed the cAMP response element-binding protein or CREB. Phosphorylation on a serine residue in position 133 of this protein enhances its ability to promote gene transcription. CREB binds as a dimer to a canonical sequence of nucle-otides termed the cAMP response element (CRE) found in the upstream 5′ flanking region of numerous genes. Interestingly, this element is found in the promoter regions of genes encoding other transcriptional activators such as members of the immediate-early gene family, including c-fos. Thus agonism or antagonism of any given dopamine receptor can (as is described in Section 3.) and does lead to induction of a variety of factors capable of influencing transcription of neurotransmitter genes, such as those encoding the neuropeptides enkephalin and neurotensin.


Dopamine Receptor Nucleus Accumbens Antipsychotic Drug Gamma Amino Butyric Acid Dorsolateral Striatum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Heikkila, R. E., Orlansky, O. H., and Cohen, G. (1975) Studies on the distinction between uptake inhibition and release of 3H dopamine in rat brain slices. Biochem. Pharmacol. 24, 847–852.Google Scholar
  2. 2.
    Koe, B. K. (1976) Molecular geometry of inhibitors of the uptake of catecholamines and serotonin in synaptosomal preparations of rat brain. J. Pharmacol. Exp. Ther. 199, 649–661.PubMedGoogle Scholar
  3. 3.
    Moore, K. E., Chiueh, C. C., and Zeldes, G. (1977) Release of neurotransmitters from the brain in vivo by amphetamine methylphenidate and cocaine, in Cocaine and Other Stimulants ( Ellinwood, E. H. and Kilbey, M. M., eds.), Plenum, New York, pp. 143–160.CrossRefGoogle Scholar
  4. 4.
    Ross, S. F. and Renyi, A. L. (1967) Accumulation of tritiated 5-hydroxytryptamine in brain slices. Life Sci. 6, 1407–1415.PubMedCrossRefGoogle Scholar
  5. 5.
    Hertting, G., Axelrod, J., and Whitby, L. G. (1961) Effect of drugs on the uptake and metabolism of 3H norepinephrine. J. Pharmacol. Exp. Ther. 134, 146–153.Google Scholar
  6. 6.
    Weiner, N. (1972) Pharmacology of the central nervous system stimulants, in Drug Abuse: Proceedings of the International Conference ( Zarafonetis, C. J. D., ed.), Lea und Febiger, Philadelphia, pp. 243–251.Google Scholar
  7. 7.
    Seeman, P., Guan, H. C., Civelli, O., Van Tol, H. H. M., Sunahara, R. K., and Niznik, H. B. (1992) Eur. J. Pharmacol. 227 139–146.Google Scholar
  8. 8.
    Seeman, P., Niznik, H. B., and Guan, H. C. (1990) Elevation of dopamine D2 receptors in schizophrenia is underestimated by radioactive raclopride. Arch. Gen. Psychiatry 47, 1170–1172.PubMedCrossRefGoogle Scholar
  9. 9.
    Roth, B. L., Craigo, S. C., Choudhary, M. S., Uluer, A., Monsma, F. J., Jr., Shen, Y., Meltzer, H. Y., and Sibley, D. R. (1994) Binding of typical and atypical antipsychotic agents to 5-hydroxytryptamine-6 and 5-hydroxytryptamine-7 receptors. J. Pharmacol. Exp. Ther. 268, 1403–1410.PubMedGoogle Scholar
  10. 10.
    Becksted, R. M. and Kersey, K. S. (1985) Immunohistochemical demonstration of differential substance P-, met enkephalin, and glutamic acid decarboxylase-containing cell and axon distributions in the corpus striatum of the cat. J. Comp. Neurol. 232, 481–498.CrossRefGoogle Scholar
  11. 11.
    Gerfen, C. R. and Young, W. S., 3rd. (1988) Distribution of striatonigral and striatopallidal peptidergic neurons in both patch and matrix compartments: an in situ hybridization histochemistry and fluorescent retrograde tracing study. Brain Res. 460, 161–167.PubMedCrossRefGoogle Scholar
  12. 12.
    Kita, H. and Kitai, S. T. (1988) Glutamate decarboxylase immunoreactive neurons in the rat neostriatum: their morphological types and populations. Brain Res. 447 346–352.Google Scholar
  13. 13.
    Brownstein, M. J., Mroz, E. A., Tappaz, M. L., and Leeman, S. E. (1977) On the “origin of substance P and glutamic acid decorboxylase (GAD) in the substantia nigra. Brain Res. 135, 315–323.PubMedCrossRefGoogle Scholar
  14. 14.
    Vincent, S. R., Hokfelt, T., Christensson, I., and Terenius, L. (1982) Dynorphinimmunoreactive neurons in the central nervous system ofthe rat. Neurosci. Lett. 33, 185–190.Google Scholar
  15. 15.
    Voorn, P., Roest, G., and Groenewegen, H. J. (1987) Increase of enkephalin and decrease of substance P immunoreactivity in the dorsal and ventral striatum of the rat after midbrain 6-hydroxydopamine lesions. Brain Res. 412, 391–396.PubMedCrossRefGoogle Scholar
  16. 16.
    Young, W. S. D., Bonner, T. I., and Brann, M. R. (1986) Mesencephalic dopamine neurons regulate the expression of neuropeptide mRNAs in the rat forebrain. Proc. Natl. Acad. Sci. USA 83, 9827–9831.Google Scholar
  17. 17.
    Merchant, K. M., Dobie, D. J., and Dorsa, D. M. (1992) Expression of the proneurotensin gene in the rat brain and its regulation by antipsychotic drugs. Ann. NY Acad. Sci. 668, 54–69.PubMedCrossRefGoogle Scholar
  18. 18.
    Bannon, M. J., Elliot, P. J., and Bunney, E. B. (1987) Striatal tackykinin iosynthesis: regulation of mRNA and peptide levels by dopamine agonist and antagonist. Mol. Brain Res. 3, 31–37.CrossRefGoogle Scholar
  19. 19.
    Gerfen, C. R., Engber, T. M., Mahan, L. C., Susel, Z., Chase, T. N., Monsma, F. J. J., and Sibley, D. R. (1990) DI and D2 dopamine receptor-regulate gene expression of striatonigral and striatopallidal neurons. Science 250, 1429–1432.PubMedCrossRefGoogle Scholar
  20. 20.
    Gerfen, C. R., McGinty, J. F., and Young, W. S., 3rd (1991) Dopamine differentially regulates dynorphin, substance P, and enkephalin expression in striatal neurons: in situ hybridization histochemical analysis. J. Neurosci. 11, 1016–1031.PubMedGoogle Scholar
  21. 21.
    Hanson, G. R., Merchant, K. M., Letter, A. A., Bush, L., and Gibb, J. W. (1988) Characterization of methamphetamine effects on the striatal-nigral dynorphin system. Eur. J. Pharmacol. 144, 245, 246.Google Scholar
  22. 22.
    Li, S. J., Jiang, H. K., Stachowiak, M. S., Hudson, P. M., Owyang, V., and Nanry, K. (1990) Influence of nigrostriatal dopaminergic tone on the biosynthesis of dynorphin and enkephalin in rat striatum. Mol. Brain Res. 8, 219–225.PubMedCrossRefGoogle Scholar
  23. 23.
    O’Malley, K. L., Harmon, S., Tang, L., and Todd, R. D. (1992) The rat dopamine D4 receptor: sequence, gene structure, and demonstration of expression in the cardiovascular system. New Biol. 4, 137–146.PubMedGoogle Scholar
  24. 24.
    Meador Woodruff, J. H., Mansour, A., Grandy, D. K., Damask, S. P., Civelli, O., and Watson, S. J., Jr. (1992) Distribution of D5 dopamine receptor mRNA in rat brain. Neurosci. Lett. 145, 209–212.CrossRefGoogle Scholar
  25. 25.
    Herroelen, L., De Backer, J. P., Wilczak, N., Flamez, A., Vauquelin, G., and De Keyser, J. (1994) Autoradiographic distribution of D3-type dopamine receptors in human brain using [3H]7-hydroxy-N,N-di-n-propyl-2-aminotetralin. Brain Res. 648, 222–228.Google Scholar
  26. 26.
    Wallace, D. R. and Booze, R. M. (1995) Identification of D3 and sigma receptors in the rat striatum and nucleus accumbens using (+/-)-7-hydroxy-N,N-di-n[3H]propyl-2-aminotetralin and carbetapentane. J. Neurochem. 64, 700–710.PubMedCrossRefGoogle Scholar
  27. 27.
    Deutch, A., Lee, M. C., and Iadarola, M. (1992) Regionally specific effects of atypical antipsychotic drugs on striatal Fos expression: the nucleus accumbens shell as a locus of antipsychotic action. Mol. Cell. Neurosci. 3, 332–341.PubMedCrossRefGoogle Scholar
  28. 28.
    Dragunow, M., Robertson, G. S., Faull, R. L., Robertson, H. A., and Jansen, K. (1990) D2 dopamine receptor antagonists induce fos and related proteins in rat striatal neurons. Neuroscience 37, 287–294.PubMedCrossRefGoogle Scholar
  29. 29.
    Miller, J. C. (1990) Induction of c-fos mRNA expression in rat striatum by neuroleptic drugs. J. Neurochem. 54, 1453–1455.PubMedCrossRefGoogle Scholar
  30. 30.
    Nguyen, T. V., Kosofsky, B. E., Birnbaum, R., Cohen, B. M., and Hyman, S. E. (1992) Differential expression of c-fos and zif268 in rat striatum after haloperidol, clozapine, and amphetamine. Proc. Natl. Acad. Sci. USA 89, 4270–4274.PubMedCrossRefGoogle Scholar
  31. 31.
    Rogue, P. and Vincendon, G. (1992) Dopamine D2 receptor antagonists induce immediate early genes in the rat striatum. Brain Res. Bull. 29, 469–472.PubMedCrossRefGoogle Scholar
  32. 32.
    Robertson, G. S. and Fibiger, H. C. (1992) Neuroleptics increase c-fos expression in the forebrain: contrasting effects of haloperidol and clozapine. Neuroscience 46, 315–328.PubMedCrossRefGoogle Scholar
  33. 33.
    MacGibbon, G. A., Lawlor, P. A., Bravo, R., and Dragunow, M. (1994) Clozapine and haloperidol produce a differential pattern of immediate early gene expression in rat caudate-putamen, nucleus accumbens, lateral septum and islands of Calleja. Brain Res. Mol. Brain Res. 23, 21–32.PubMedCrossRefGoogle Scholar
  34. 34.
    Simpson, C. S. and Morris, B. J. (1994) Haloperidol and fluphenazine induce junB gene expression in rat striatum and nucleus accumbens. J. Neurochem. 63, 1955–1961.PubMedCrossRefGoogle Scholar
  35. 35.
    Conneely, O. M., Power, R. F., and O’Malley, B. W. (1992) Regulation of gene expression by dopamine: implications in drug addiction. NIDA Res. Monogr. 126, 84–97.PubMedGoogle Scholar
  36. 36.
    O’Donovan, M. C., Buckland, P. R., Spurlock, G., and McGuffin, P. (1992) Bidirectional changes in the levels of messenger RNAs encoding gamma-aminobutyric acid A receptor alpha subunits after flurazepam treatment. Eur. J. Pharmacol. 226, 335–341.PubMedCrossRefGoogle Scholar
  37. 37.
    Merchant, K. M., Figur, L. M., and Evans, D. L. (1995) Induction of c-fos mRNA in the rat medial prefrontal cortex by antipsychotic drugs: role of dopamine D2 and D3 receptors. Corebral Cortex, submitted.Google Scholar
  38. 38.
    Wirtshafter, D., Asin, K. E., and Pitzer, M. R. (1994) Dopamine agonists and stress produce different patterns of Fos-like immunoreactivity in the lateral habenula. Brain Res. 633, 21–26.PubMedCrossRefGoogle Scholar
  39. 39.
    Liu, J., Nickolenko, J., and Sharp, F. R. (1994) Morphine induces c-fos and junB in striatum and nucleus accumbens via D1 and N-methyl-D-aspartate receptors. Proc. Natl. Acad. Sci. USA 91, 8537–8541.PubMedCrossRefGoogle Scholar
  40. 40.
    Vaccarino, F. M., Hayward, M. D., Le, H. N., Hartigan, D. J., Duman, R. S., and Nestler, E. J. (1993) Induction of immediate early genes by cyclic AMP in primary culture of neurons from rat cerebral cortex. Mol. Brain Res. 19, 76–82.PubMedCrossRefGoogle Scholar
  41. 41.
    Matsunaga, T., Ohara, K., Natsukari, N., and Fujita, M. (1991) Dopamine D2-receptor mRNA level in rat striatum after chronic haloperidol treatment. Neurosci. Res. 12, 440–445.PubMedCrossRefGoogle Scholar
  42. 42.
    Paul, M. L., Graybiel, A. M., David, J. C., and Robertson, H. A. (1992) D 1-like and D2-like dopamine receptors synergistically activate rotation and c-fos expression in the dopamine-depleted striatum in a rat model of Parkinson’s disease. J. Neurosci. 12, 3729–3742.PubMedGoogle Scholar
  43. 43.
    Cole, A. J., Bhat, R. V., Patt, C., Worley, P. F., and Baraban, J. M. (1992) D1 dopamine receptor activation of multiple transcription factor genes in rat striatum. J. Neurochem. 58, 1420–1426.PubMedCrossRefGoogle Scholar
  44. 44.
    Cadet, J. L., Zhu, S. M., and Angulo, J. A. (1992) Quantitative in situ hybridization evidence for differential regulation of proenkephalin and dopamine D2 receptor mRNA levels in the rat striatum: effects of unilateral intrastriatal injections of 6hydroxydopamine. Brain Res. Mol. Brain Res. 12, 59–67.PubMedCrossRefGoogle Scholar
  45. 45.
    Persico, A. M., Schindler, C. W., O’Hara, B. F., Brannock, M. T., and Uhl, G. R. (1993) Brain transcription factor expression: effects of acute and chronic amphetamine and injection stress. Brain Res. Mol. Brain Res. 20, 91–100.PubMedCrossRefGoogle Scholar
  46. 46.
    Borgundvaag, B., Kudlow, J. E., Mueller, S. G., and George, S. R. (1992) Dopamine receptor activation inhibits estrogen-stimulated transforming growth factor-alpha gene expression and growth in anterior pituitary, but not in uterus. Endocrinology 130, 3453–3458.PubMedCrossRefGoogle Scholar
  47. 47.
    Hope, B., Kosofsky, B., Hyman, S. E., and Nestler, E. J. (1992) Regulation of immediate early gene expression and AP-1 binding in the rat nucleus accumbens by chronic cocaine. Proc. Natl. Acad. Sci. USA 89, 5764–5768.PubMedCrossRefGoogle Scholar
  48. 48.
    Bhat, R. V. and Baraban, J. M. (1993) Activation of transcription factor genes in striatum by cocaine: role of both serotonin and dopamine systems. J. Pharmacol. Exp. Ther. 267, 496–505.PubMedGoogle Scholar
  49. 49.
    Graybiel, A. M., Moratalla, R., and Robertson, H. A. (1990) Amphetamine and cocaine induce drug-specific activation of the c-fos gene in striosome-matrix compartments and limbic subdivisions of the striatum. Proc. Natl. Acad. Sci. USA 87, 6912–6916.PubMedCrossRefGoogle Scholar
  50. 50.
    Kosofsky, B. E., Genova, L. M., and Hyman, S. E. (1995) Postnatal age defines specificity of immediate early gene induction by cocaine in developing rat brain. J. Comp. Neurol. 351, 27–40.PubMedCrossRefGoogle Scholar
  51. 51.
    Moratalla, R., Vickers, E. A., Robertson, H. A., Cochran, B. H., and Graybiel, A. M. (1993) Coordinate expression of c-fos and jun B is induced in the rat striatum by cocaine. J. Neurosci. 13, 423–433.PubMedGoogle Scholar
  52. 52.
    Hope, B. T., Nye, H. E., Kelz, M. B., Self, D. W., Iadarola, M. J., Nakabeppu, Y., Duman, R. S., and Nestler, E. J. (1994) Induction of a long-lasting AP-1 complex composed of altered Fos-like proteins in brain by chronic cocaine and other chronic treatments. Neuron 13, 1235–1244.PubMedCrossRefGoogle Scholar
  53. 53.
    Bhat, R. V., Cole, A. J., and Baraban, J. M. (1992) Chronic cocaine treatment suppresses basal expression of zif268 in rat forebrain: in situ hybridization studies. J. Pharmacol. Exp. Ther. 263, 343–349.PubMedGoogle Scholar
  54. 54.
    Sebens, J. B., Koch, T., Ter Horst, G. J., and Korf, J. (1995) Differential Fos-protein induction in rat forebrain regions after acute and long-term haloperidol and clozapine treatment. Eur. J. Pharmacol. 273, 175–182.PubMedCrossRefGoogle Scholar
  55. 55.
    Dilts, R. P., Jr., Helton, T. E., and McGinty, J. F. (1993) Selective induction of Fos and FRA immunoreactivity within the mesolimbic and mesostriatal dopamine terminal fields. Synapse 13, 251–263.PubMedCrossRefGoogle Scholar
  56. 56.
    Pennypacker, K. R., Zhang, W. Q., Ye, H., and Hong, J. S. (1992) Apomorphine induction of Ap-1 DNA binding in the rat striatum after dopamine depletion. Mol. Brain Res. 15, 151–155.Google Scholar
  57. 57.
    Konradi, C., Kobierski, L. A., Nguyen, T. V., Heckers, S., and Hyman, S. E. (1993) The cAMP-response-element-binding protein interacts, but Fos protein does not interact, with the proenkephalin enhancer in rat striatum. Proc. Natl. Acad. Sci. USA 90, 7005–7009.PubMedCrossRefGoogle Scholar
  58. 58.
    Robertson, G. S., Matsumura, H., and Fibiger, H. C. (1994) Induction patterns of Fos-like immunoreactivity in the forebrain as predictors of atypical antipsychotic activity. J. Pharmacol. Exp. Ther. 271, 1058–1066.PubMedGoogle Scholar
  59. 59.
    Cole, D. G., Kobierski, L. A., Konradi, C., and Hyman, S. E. (1994) 6-Hydroxydopamine lesions of rat substantia nigra up-regulate dopamine-induced phosphorylation of the cAMP-response element-binding protein in striatal neurons. Proc. Natl. Acad. Sci. USA 91, 9631–9635.Google Scholar
  60. 60.
    Berretta, S., Robertson, H. A., and Graybiel, A. M. (1992) Dopamine and glutamate agonist stimulate neuron-specific expression of fos-like protein in the striatum. J. Neurophysiology 68, 767–777.Google Scholar
  61. 61.
    Cohen, B. M., Nguyen, T. V., and Hyman, S. E. (1991) Cocaine-induced changes in gene expression in rat brain. NIDA Res. Monogr. 105, 175–181.Google Scholar
  62. 62.
    Konradi, C., Cole, R. L., Heckers, S., and Hyman, S. E. (1994) Amphetamine regulates gene expression in rat striatum via transcription factor CREB. J. Neurosci. 14, 5623–5634.PubMedGoogle Scholar
  63. 63.
    Young, S. T., Porrino, L. J., and Iadarola, M. J. (1991) Cocaine induces striatal c-Fos-immunoreactive proteins via dopaminergic D1 receptors. Proc. Natl. Acad. Sci. USA 88, 1291–1295.PubMedCrossRefGoogle Scholar
  64. 64.
    Cohen, D. R. and Curran, T. (1988) fra-1: a serum-inducible, cellular immediate-early gene that encodes a fos-related antigen. Mol. Cell Biol. 8, 2063–2069.Google Scholar
  65. 65.
    Dobrzanski, P., Noguchi, T., Kovary, K., Rizzo, C. A., Lazo, P. S., and Bravo, R. (1991) Both products of fosB gene, FosB and its short form, FosB/SF, are transcriptional activators in fibroblasts. Mol. Cell. Biol. 11, 5470–5478.Google Scholar
  66. 66.
    Morgan, J. I. and Curran, T. (1991) Stimulus-transcription coupling in the nervous system: involvement of the inducible proto-oncogenes fos and jun. Ann. Rev. Neurosci. 14, 421–451.PubMedCrossRefGoogle Scholar
  67. 67.
    Nishina, H. Sato, H. Suzuki, T., Sato, M., and Iba, H. (1990) Isolation and characterisation of fra-2, an additional member of the fos gene family. Proc. Natl. Acad. Sci. USA 87 3619–3623.Google Scholar
  68. 68.
    Morgan, J. I. and Curran, T. (1989) Stimulus-transcription coupling neurons: role of cellular immediate early genes. Trends Neurosci. 12, 459–462.PubMedCrossRefGoogle Scholar
  69. 69.
    Sambucetti, L. C. and Curran, T. (1986) The fos protein is associated with DNA in isolated nuclei and binds to DNA cellulose. Science 234, 1417–1419.PubMedCrossRefGoogle Scholar
  70. 70.
    Zerial, M., Toschi, L., Ryseck, R.-P., Schuermann, M., Muller, R., and Brava, R. (1989) The product of a novel growth factor activated gene, fos B, interacts with JUN proteins enhancing their DNA binding activity. EMBO J. 8, 805–813.PubMedGoogle Scholar
  71. 71.
    Hirai, S.-I., Ryseck, R.-P., Mechta, F., Brava, R., and Yaniv, M. (1989) Characterisation ofjunD: a new member of the jun protooncogene family. EMBO J. 8, 1433–1439.PubMedGoogle Scholar
  72. 72.
    Ryder, K., Lau, L. F., and Nathans, D. (1988) Jun-D: a third member of the jun gene family. Proc. Natl. Acad. Sci. USA 86, 1487–1491.CrossRefGoogle Scholar
  73. 73.
    Vogt, P. K. and Bos, T. J. (1990) Jun: oncogene and transcription factor. Adv. Cancer Res. 55, 1–35.PubMedCrossRefGoogle Scholar
  74. 74.
    Nakabeppu, Y., Ryder, K., and Nathans, D. (1988) DNA binding activities of three murine Jun proteins: stimulation by Fos. Cell 55, 907–915.PubMedCrossRefGoogle Scholar
  75. 75.
    Angel, P., Hattori, K., Smeal, T., and Karin, M. (1988) The jun protooncogene is positively autoregulated by its own protein product, Jun/AP-1. Cell 55, 875–885.Google Scholar
  76. 76.
    Chiu, R., Angel, P., and Karin, M. (1989) JunB differs in its biological properties from and is a negative regulator of c-Jun. Cell 59, 979–986.Google Scholar
  77. 77.
    Nakabeuppu, Y. and Nathans, D. (1991) A naturally occurring truncated from of FosB that inhibits Fos/Jun transcriptional activity. Cell 64, 751–759.CrossRefGoogle Scholar
  78. 78.
    Robertson, G. S., Vincent, S. R., and Fibiger, H. C. (1990) Striatonigral projection neurons contain D1 dopamine receptor-activated c-fos. Brain Res. 523, 288–290.PubMedCrossRefGoogle Scholar
  79. 79.
    Marshall, J. F., Cole, B. N., and LaHoste, G. J. (1993) Dopamine D2 receptor control of pallidal fos expression: comparisons between intact and 6-hydroxydopamine-treated hemispheres. Brain Res. 632, 308–313.PubMedCrossRefGoogle Scholar
  80. 80.
    Merchant, K. M., Dobie, D. J., Filloux, F. M., Totzke, M., Aravagiri, M., and Dorsa, D. M. (1994) Effects of chronic haloperidol and clozapine treatment on neurotensin and c-fos mRNA in rat neostriatal subregions. J. Pharmacol. Exp. Ther. 271, 460–471.PubMedGoogle Scholar
  81. 81.
    Merchant, K. M. and Dorsa, D. M. (1993) Differential induction of neurotensin and c-fos gene expression by typical versus atypical antipsychotics. Proc. Natl. Acad. Sci. USA 90, 3447–3451.PubMedCrossRefGoogle Scholar
  82. 82.
    Carelli, R. M. and West, M. O. (1991) Representation of the body by single neurons in the dorsolateral striatum of the awake, unrestrained rat. J. Comp. Neurol. 309, 231–249.Google Scholar
  83. 83.
    Pisa, M. (1988) Motor functions of the striatum of the rat: critical role of the lateral region in tongue and forelimb reaching. Neuroscience 24, 453–463.PubMedCrossRefGoogle Scholar
  84. 84.
    West, M. O., Michael, A. J., Knowles, S. E., Chapin, J. K., and Woodard, D. J. (1987) Striatal unit activity and the linkage between sensory and motor events, in Basal ganglia and behavior: Sensory aspects of motor functioning(Schneider, J. S. and Lidsky, T., eds.), Hans Huber Hogrefe, Toronto, Canada, pp. 27–35.Google Scholar
  85. 85.
    Steiner, H. and Gerfen, C. R. (1993) Cocaine-induced c-fos messenger RNA is inversely related to dynorphin expression in striatum. J. Neurosci. 13, 5066–5081.PubMedGoogle Scholar
  86. 86.
    Merchant, K. M., Hanson, G. R., and Dorsa, D. M. (1994) Induction of neurotensin and c-fos mRNA in distinct subregions of rat neostriatum after acute methamphetamine: comparison with acute haloperidol effects. J. Pharmacol. Exp. Ther. 269, 806–812.PubMedGoogle Scholar
  87. 87.
    Couceyro, P., Pollock, K. M., and Douglas, J. (1994) Cocaine differentially regulates activator protein-1 mRNA levels and DNA-binding complexes in the rat striatum and cerebellum. Mol. Pharmacol. 49, 667–676.Google Scholar
  88. 88.
    Bannon, M. J., Lee, J. M., Giraud, P., Young, A., Affolter, H. U., and Bonner, T. I. (1986) Dopamine antagonist haloperidol decreases substance P, substance K, and preprotachykinin mRNAs in rat striatonigral neurons. J. Biol. Chem. 261, 6640–6642.PubMedGoogle Scholar
  89. 89.
    Schutte, J., Viallet, J., Nau, M., Segal, S., Fedorko, J., and Minna, J. (1989) JunB inhibits and c-fos stimulates the transforming and transactivating activities of c-jun. Cell 59, 987–997.Google Scholar
  90. 90.
    Kebabian, J. W. and Calane, D. B. (1979) Multiple receptors of dopamine. Nature 277, 93–96.PubMedCrossRefGoogle Scholar
  91. 91.
    Artalejo, C. R., Ariano, M. A., Perlaman, R. L., and Fox, A. P. (1990) Activation of facilitation calcium channels in chromaffin cells by D1 dopamine receptors through a cAMP/protein kinase A-dependent mechanism. Nature 348, 239–242.PubMedCrossRefGoogle Scholar
  92. 92.
    Bading, H. Ginty, D. D., and Greenburg, M. E. (1993) Regulation of gene expression in hippocampal neurons by distinct calcium signaling pathways. Science 260 181–186.Google Scholar
  93. 93.
    Hille, B. (1992)Ionic Channels of Excitable Membranes,Sinauer, Sutherland, MA.Google Scholar
  94. 94.
    Lerea, L. S., Butler, L. S., and McNamara, J. O. (1992) NMDA and non-NMDA receptor-mediated increase of c-fos mRNA in dentate gyms neurons involves calcium influx via different routes. J. Neurosci. 12, 2973–2981.PubMedGoogle Scholar
  95. 95.
    Gonzalez, G. A. and Montminy, M. R. (1989) Cyclic AMP stimulates somatostatin gene transcription by phosphorylation of CREB at serine 133. Cell 59, 675–680.PubMedCrossRefGoogle Scholar
  96. 96.
    Adams, M. R., Malouf, A., Unis, A., and Dorsa, D. M. (1994) Signal transduction effects of antipsychotic drugs in vivo and in organotypic cultures of rat brain striatum. Society Neurosci. Abstracts 18, 223.Google Scholar
  97. 97.
    Ginty, D. D., Kornhauser, J. M., Thompson, M. A., Bading, H., Mayo, K. E., Takahashi, J. S., and Greenburg, M. E. (1993) Regulation of CREB phosphorylation in the suprachiasmatic nucleus by light and circadian clock. Science 260, 238–241.Google Scholar
  98. 98.
    Milbrandt, J. (1987) A nerve growth factor-induced gene encodes a possible transcriptional regulatory factor. Science 238, 797–799.PubMedCrossRefGoogle Scholar
  99. 99.
    Chavrier, P., Zerial, M., Lemaire, P., Almendral, J., Bravo, R., and Charnay, P. (1988) A gene encoding a protein with zinc fingers if activated during Go/G1 transition in cultured cells. EMBOJ. 7, 29–35.Google Scholar
  100. 100.
    Sukhatme, V.P., Coa, X., Chang, L. C., Tsai-Morris, C., Stamenkovich, D., Ferreira, P. C. P., et al. (1988) A zinc finger-encoding gene coregulated with c-fos during growth and differentiation and after cellular depolarization. Cell 53, 37–43.PubMedCrossRefGoogle Scholar
  101. 101.
    Christy, B. A., Lau, L. F., and Nathans, D. (1988) A gene activated in mouse 3T3 cells by serum growth factors encodes a protein with “zinc fingers” sequences. Proc. Natl. Acad. Sci. USA 85, 7857–7861.PubMedCrossRefGoogle Scholar
  102. 102.
    Lemaire, P., Revelent, O., Bravo, R., and Charnay, P. (1988) Two mouse genes encoding potential transcription factors with identical DNA-binding domains are activated by growth factors in cultured cells. Proc. Natl. Acad. Sci. USA 85, 4691–4695.PubMedCrossRefGoogle Scholar
  103. 103.
    Bhat, R. V., Worley, P. F., Cole, A. J., and Baraban, J. M. (1992) Activation of the zinc finger encoding gene krox-20 in adult rat brain: comparison with zif268. Mol. Brain Res. 13, 263–266.PubMedCrossRefGoogle Scholar
  104. 104.
    Bhat, R. V., Cole, A. J., and Baraban, J. M. (1992) Role of monoamine systems in activation of zif268 by cocaine. J. Psychiatry Neurosci. 17, 94–102.PubMedGoogle Scholar
  105. 105.
    Angulo, J. A. and McEwen, B. S. (1994) Molecular aspects of neuropeptide regulation and function in the corpus striatum and nucleus accumbens. Brain Res. Brain Res. Rev. 19, 1–28.Google Scholar
  106. 106.
    Kislauskis, E. and Dobner, P. R. (1990) Mutually dependent response elements in the cis-regulatory region of the neurotensin/neuromedin N gene integrate environmental stimuli in PC12 cells. Neuron 4, 783–795.Google Scholar
  107. 107.
    MacArthur, L., Iacangelo, A. L., Hsu, C. M., and Eiden, L. E. (1992) Enkephalin biosynthesis is coupled to secretory activity via transcription of the proenkephalin A gene. J. Physiol. Paris 86, 89–98.PubMedCrossRefGoogle Scholar
  108. 108.
    Kaynard, A. H., McMurray, C. T., Douglass, J., Curry, T. E., Jr., and Melner, M. H. (1992) Regulation of prodynorphin gene expression in the ovary: distal DNA regulatory elements confer gonadotropin regulation of promoter activity. Mol. Endocrinol. 6, 2244–2256.Google Scholar
  109. 109.
    Naranjo, J. R., Mellstrom, B., Achaval, M., and Sassone Corsi, P. (1991) Molecular pathways of pain: Fos/Jun-mediated activation of a noncanonical AP-1 site in the prodynorphin gene. Neuron 6, 607–617.Google Scholar
  110. 110.
    Mendelson, S. C. and Quinn, J. P. (1993) Identification of potential regulatory elements within the rat preprotachykinin A promoter. Biochem. Soc. Trans. 21, 372S.PubMedGoogle Scholar
  111. 111.
    Quinn, J. P., Morrison, C., McAllister, J., and Mendelson, S. (1993) Evolution of enhancer domains within the preprotachykinin promoter. Biochem. Soc. Trans. 21, 371S.PubMedGoogle Scholar
  112. 112.
    Angulo, J. A. (1992) Involvement of dopamine D1 and D2 receptors in the regulation of proenkephalin mRNA abundance in the striatum and accumbens of the rat brain. J. Neurochem. 58, 1104–1109.PubMedCrossRefGoogle Scholar
  113. 113.
    Morris, B. J. and Hunt, S. P. (1991) Proenkephalin mRNA levels in rat striatum are increased and decreased, respectively, by selective D2 and DI dopamine receptor antagonists. Neurosci. Lett. 125, 201–204.PubMedCrossRefGoogle Scholar
  114. 114.
    Pollack, A. E. and Wooten, G. F. (1992) Differential regulation of striatal preproenkephalin mRNA by D1 and D2 dopamine receptors. Brain Res. Mol. Brain Res. 12, 111–119.PubMedCrossRefGoogle Scholar
  115. 115.
    Haverstick, D. M., Rubenstein, A., and Bannon, M. J. (1989) Striatal tachykinin gene expression regulated by interaction of D-1 and D-2 dopamine receptors. J. Pharmacol. Exp. Ther. 248, 858–862.PubMedGoogle Scholar
  116. 116.
    Engber, T. M., Boldry, R. C., Kuo, S., and Chase, T. N. (1992) Dopaminergic modulation of striatal neuropeptides: differential effects of DI and D2 receptor stimulation on somatostatin, neuropeptide Y, neurotensin, dynorphin and enkephalin. Brain Res. 581, 261–268.PubMedCrossRefGoogle Scholar
  117. 117.
    Taylor, M. D., de Ceballos, M. L., Jenner, P., and Marsden, C. D. (1991) Acute effects of D-1 and D-2 dopamine receptor agonist and antagonist drugs on basal ganglia [Mets]- and [Leu5]-enkephalin and neurotensin content in the rat. Biochem. Pharmacol. 41, 1385–1391.PubMedCrossRefGoogle Scholar
  118. 118.
    Nylander, I. and Terenius, L. H. (1987) Dopamine receptors mediate alterations in striato-nigral dynorphin and substance P pathways. Neuropharmacology 26, 1295–1302.PubMedCrossRefGoogle Scholar
  119. 119.
    Oblin, A., Zivkovic, B., and Bartholini, G. (1987) Selective antagonists of dopamine receptor subtypes differentially affect substance P levels in the striatum and substantia nigra. Brain Res. 421, 387–390.PubMedCrossRefGoogle Scholar
  120. 120.
    Jiang, H. K., McGinty, J. F., and Hong, J. S. (1990) Differential modulation of striatonigral dynorphin and enkephalin by dopamine receptor subtypes. Brain Res. 507, 57–64.PubMedCrossRefGoogle Scholar
  121. 121.
    Singh, N. A., Bush, L. G., Gibb, J. W., and Hanson, G. R. (1992) Role of N-methylD-aspartate receptors in dopamine D1-, but not D2-, mediated changes in striatal and accumbens neurotensin systems. Brain Res. 571, 260–264.PubMedCrossRefGoogle Scholar
  122. 122.
    Hong, J. S., Yang, H. Y., Gillin, J. C., and Costa, E. (1980) Effects of long-term administration of antipsychotic drugs on enkephalinergic neurons. Adv. Biochem. Psychopharmacol. 24, 223–232.PubMedGoogle Scholar
  123. 123.
    Tang, F., Costa, E., and Schwartz, J. P. (1983) Increase of proenkephalin mRNA and enkephalin content of rat striatum after daily injection of haloperidol for 2 to 3 weeks. Proc. Natl. Acad. Sci. USA 80, 3841–3844.PubMedCrossRefGoogle Scholar
  124. 124.
    Castel, M. N., Morino, P., Dagerlind, A., and Hokfelt, T. (1994) Up-regulation of neurotensin mRNA in the rat striatum after acute methamphetamine treatment. Eur. J. Neurosci. 6, 646–656.PubMedCrossRefGoogle Scholar
  125. 125.
    Li, S., Sivam, S. P., and Hong, J. S. (1986) Regulation of the concentration of dynorphin Al-8 in the striatonigral pathway by the dopaminergic system. Brain Res. 398, 390–392.PubMedCrossRefGoogle Scholar
  126. 126.
    Letter, A. A., Matsuda, L. A., Merchant, K. M., Gibb, J. W., and Hanson, G. R. (1987) Characterization of dopaminergic influence on striatal-nigral neurotensin systems. Brain Res. 422, 200–203.PubMedCrossRefGoogle Scholar
  127. 127.
    Li, S. J., Sivam, S. P., McGinty, J. F., Jiang, H. K., Douglass, J., Calavetta, L., and Hong, J. S. (1988) Regulation of the metabolism of striatal dynorphin by the dopaminergic system. J. Pharmacol. Exp. Ther. 246, 403–408.PubMedGoogle Scholar
  128. 128.
    Angulo, J. A., Davis, L. G., Burkhart, B. A., and Christoph, G. R. (1986) Reduction of striatal dopaminergic neurotransmission elevates striatal proenkephalin mRNA. Eur. J. Pharmacol. 130, 341–343.PubMedCrossRefGoogle Scholar
  129. 129.
    Sirinathsinghji, D. J. and Dunnett, S. B. (1991) Increased proenkephalin mRNA levels in the rat neostriatum following lesion of the ipsilateral nigrostriatal dopamine pathway with 1-methyl-4-phenylpyridinium ion (MPP+): reversal by embryonic nigral dopamine grafts. Brain Res. Mol. Brain Res. 9, 263–269.PubMedCrossRefGoogle Scholar
  130. 130.
    Masuo, Y., P’Elaprat, D., Montagne, M. N., Scherman, D., and Rostene, W. (1990) Regulation of neurotensin-containing neurons in the rat striatum and substantia nigra. Effects of unilateral nigral lesion with 6-hydroxydopamine on neurotensin content and its binding site density. Brain Res. 510, 203–210.PubMedCrossRefGoogle Scholar
  131. 131.
    Drago, J., Gerfen, C. R., Lachowicz, J. E., Steiner, H., Hollon, T. R., Love, P. E., et al. (1994) Altered striatal function in a mutant mouse lacking D IA dopamine receptors. Proc. Natl. Acad. Sci. USA 91, 12,564–12, 568.Google Scholar
  132. 132.
    Xu, M., Moratalla, R., Gold, L. H., Hiroi, N., Koob, G. F., Graybiel, A. M., and Tonegawa, S. (1994) Dopamine D1 receptor mutant mice are deficient in striatal expression of dynorphin and in dopamine-mediated behavioral responses. Cell 79, 729–742.Google Scholar
  133. 133.
    Hong, J. S., Yang, H.-Y. T., Fratta, W., and Costa, E. (1978) Rat striatal methionine-enkephalin content after chronic treatment with cataleptogenic and noncataleptogenic drugs. J. Pharmacol. Exp. Ther. 205, 141–147.PubMedGoogle Scholar
  134. 134.
    Kalivas, P. W. (1985) Interactions between neuropeptides and dopamine neurons in the ventromedial mesencephalon. Neurosci. Biobehay. Rev. 9, 573–587.CrossRefGoogle Scholar
  135. 135.
    Jaber, M., Fournier, M. C., and Bloch, B. (1992) Reserpine treatment stimulates enkephalin and D2 dopamine receptor gene expression in the rat striatum. Brain Res. Mol. Brain Res. 15, 189–194.PubMedCrossRefGoogle Scholar
  136. 136.
    Nisenbaum, L. K., Kitai, S. T., Crowley, W. R., and Gerfen, C. R. (1994) Temporal dissociation between changes in striatal enkephalin and substance P messenger RNAs following striatal dopamine depletion. Neuroscience 60, 927–937.PubMedCrossRefGoogle Scholar
  137. 137.
    De Vries, T. J., Mulder, A. H., and Schoffelmeer, A. N. (1992) Differential ontogeny of functional dopamine and muscarinic receptors mediating presynaptic inhibition of neurotransmitter release and postsynaptic regulation of adenylate cyclase activity in rat striatum. Brain Res. Dev. Brain Res. 66, 91–96.PubMedCrossRefGoogle Scholar
  138. 138.
    De Vries, T. J., Jonker, A. J., Voorn, P., Mulder, A. H., and Schoffelmeer, A. N. (1994) Adaptive changes in rat striatal preproenkephalin expression and dopamine-opioid interactions upon chronic haloperidol treatment during different developmental stages. Brain Res. Dev. Brain Res. 78, 175–181.Google Scholar
  139. 139.
    Sivam, S. P., Krause, J. E., Breese, G. R., and Hong, J. S. (1991) Dopamine-dependent postnatal development of enkephalin and tachykinin neurons of rat basal ganglia. J. Neurochem. 56, 1499–1508.PubMedCrossRefGoogle Scholar
  140. 140.
    Soghomonian, J. J. (1993) Effects of neonatal 6-hydroxydopamine injections on glutamate decarboxylase, preproenkephalin and dopamine D2 receptor mRNAs in the adult rat striatum. Brain Res. 621, 249–259.PubMedCrossRefGoogle Scholar
  141. 141.
    Sivam, S. P. (1991) Dopamine dependent decrease in enkephalin and substance P levels in basal ganglia regions ofpostmortem Parkinsonian brains. Neuropeptides 18, 201–207.Google Scholar
  142. 142.
    Krause, J. E., Chirgwin, J. M., Carter, M. S., Xu, Z. S., and Hershey, A. D. (1987) Three rat preprotachykinin mRNAs encode the neuropeptides substance P and neurokinin A. Proc. Natl. Acad. Sci. USA 84, 881–885.PubMedCrossRefGoogle Scholar
  143. 143.
    Brownstein, M. J., Mroz, E. A., Kizer, J. S., Palkovits, M., and Leeman, S. E. (1976) Regional distribution of substance Pin the brain of the rat. Brain Res. 116, 299–305.PubMedCrossRefGoogle Scholar
  144. 144.
    Bannon, M. J., Haverstïck, D. M., Shibata, K., and Poosch, M. S. (1991) Preprotachykinin gene expression in the forebrain: regulation by dopamine. Ann. NY Acad. Sci. 632, 31–37.PubMedCrossRefGoogle Scholar
  145. 145.
    Gerfen, C. R. (1992) The neostriatal mosaic: multiple levels of compartmental organization in the basal ganglia. Annu. Rev. Neurosci. 15, 285–320.PubMedCrossRefGoogle Scholar
  146. 146.
    Bren’e, S., Lindefors, N., and Persson, H. (1992) Midbrain dopamine neurons regulate preprotachykinin-A mRNA expression in the rat forebrain during development. Brain Res. Mol. Brain Res. 14, 13–19.CrossRefGoogle Scholar
  147. 147.
    Oblin, A. and Zivkovic, B. (1991) Tachykinins in the rat substantia nigra: effects of selective dopamine receptor antagonists. Fundam. Clin. Pharmaco1. 5, 129–138.CrossRefGoogle Scholar
  148. 148.
    Kostrzewa, R. M., Gong, L., and Brus, R. (1993) Serotonin (5-HT) systems mediate dopamine (DA) receptor supersensitivity. Acta Neurobiol. Exp. Warsz. 53, 31–41.PubMedGoogle Scholar
  149. 149.
    Walker, P. D., Ni, L., Riley, L. A., Jonakait, G. M., and Hart, R. P. (1991) Serotonin innervation affects SP biosynthesis in rat neostriatum. Ann. NY Acad. Sci. 632, 485–487.Google Scholar
  150. 150.
    Civelli, O., Douglass, J., Goldstein, A., and Herbert, E. (1985) Sequence and expression of the rat prodynorphin gene. Proc. Natl. Acad. Sci. USA 82, 4291–4295.PubMedCrossRefGoogle Scholar
  151. 151.
    Bronstein, D. M., Ye, H., Pennypacker, K. R., Hudson, P. M., and Hong, J. S. (1994) Role of a 35 kDa fos-related antigen (FRA) in the long-term induction of striatal dynorphin expression in the 6-hydroxydopamine lesioned rat. Brain Res. Mol. Brain Res. 23, 191–203.Google Scholar
  152. 152.
    Zhang, W. Q., Pennypacker, K. R., Ye, H., Merchenthaler, I. J., Grimes, L., ladarola, M. J., and Hong, J. S. (1992) A 35 kDa Fos-related antigen is co-localized with substance P and dynorphin in striatal neurons. Brain Res. 577, 312–317.Google Scholar
  153. 153.
    Carraway, R. and Leeman, S. E. (1979) The amino acid sequence of bovine hypothalamic substance P. Identity to substance P from colliculi and small intestine. J. Biol. Chem. 254, 2944–2945.PubMedGoogle Scholar
  154. 154.
    Jennes, L., Stumpf, W. E., and Kalivas, P. W. (1982) Neurotensin: topographical distribution in rat brain by immunohistochemistry. J. Comp. Neurol. 210, 211–224.PubMedCrossRefGoogle Scholar
  155. 155.
    Zahm, D. S. and Heimer, L. (1988) Ventral striatopallidal parts of the basal ganglia in the rat: I. Neurochemical compartmentation as reflected by the distributions of neurotensin and substance P immunoreactivity. J. Comp. Neurol. 272, 516–535.PubMedCrossRefGoogle Scholar
  156. 156.
    Zoli, M., Cintra, A., Zini, I., Hersh, L. B., Gustafsson, J. A., Fuxe, K., and Agnati, L. F. (1990) Nerve cell clusters in dorsal striatum and nucleus accumbens of the male rat demonstrated by glucocorticoid receptor immunoreactivity. J. Chem. Neuroanat. 3, 355–366.PubMedGoogle Scholar
  157. 157.
    Eggerman, K. W. and Zahm, D. S. (1988) Numbers of neurotensin-immunoreactive neurons selectively increased in rat ventral striatum following acute haloperidol administration. Neuropeptides 11, 125–132.Google Scholar
  158. 158.
    Govoni, S., Hong, J. S., Yang, H. Y., and Costa, E. (1980) Increase of neurotensin content elicited by neuroleptics in nucleus accumbens. J. Pharmacol. Exp. Ther. 215, 413–417.PubMedGoogle Scholar
  159. 159.
    Letter, A. A., Merchant, K., Gibb, J. W., and Hanson, G. R. (1987) Effect of methamphetamine on neurotensin concentrations in rat brain regions. J. Pharmacol. Exp. Ther. 241, 443–447.PubMedGoogle Scholar
  160. 160.
    Merchant, K. M., Dobner, P. R., and Dorsa, D. M. (1992) Differential effects of haloperidol and clozapine on neurotensin gene transcription in rat neostriatum. J. Neurosci. 12, 652–663.PubMedGoogle Scholar
  161. 161.
    Castel, M. N., Morino, P., Frey, P., Terenius, L., and Hokfelt, T. (1993) Immunohistochemical evidence for a neurotensin striatonigral pathway in the rat brain. Neuroscience 55, 833–847.Google Scholar
  162. 162.
    Merchant, K. M. (1994) c-fos antisense oligonucleotide specifically attenuates haloperidol-induced increases in neurotensin/neuromedin N mRNA expression in rat dorsal striatum. Mol. Cell. Neurosci. 5, 336–344.Google Scholar
  163. 163.
    Dobner, P. R., Kislauskis, E., and Bullock, B. P. (1992) Cooperative regulation of neurotensin/neuromedin N gene expression in PC 12 cells involves AP-1 transcription factors. Ann. NYAcad. Sci. 668, 17–29.Google Scholar
  164. 164.
    Vernier, P., Julien, J. F., Rataboul, P., Fourrier, O., Feuerstein, C., and Mallet, J. (1988) Similar time course changes in striatal levels of glutamic acid decarboxylase and proenkephalin mRNA following dopaminergic deafferentation in the rat. J. Neurochem. 51, 1375–1380.PubMedCrossRefGoogle Scholar
  165. 165.
    Chen, J. F. and Weiss, B. (1993) Irreversible blockade of D2 dopamine receptors by fluphenazine-N-mustard increases glutamic acid decarboxylase mRNA in rat striatum. Neurosci. Lett. 150, 215–218.PubMedCrossRefGoogle Scholar
  166. 166.
    Segovia, J., Tillakaratne, N. J., Whelan, K., Tobin, A. J., and Gale, K. (1990) Parallel increases in striatal glutamic acid decarboxylase activity and mRNA levels in rats with lesions of the nigrostriatal pathway. Brain Res. 529, 345–348.PubMedCrossRefGoogle Scholar
  167. 167.
    Stork, O., Hashimoto, T., and Obata, K. (1994) Haloperidol activates tyrosine hydroxylase gene-expression in the rat substantia nigra, pars reticulata. Brain Res. 633, 213–222.PubMedCrossRefGoogle Scholar
  168. 168.
    Buckland, P. R., O’Donovan, M. C., and McGuffin, P. (1992) Changes in dopa decarboxylase mRNA but not tyrosine hydroxylase mRNA levels in rat brain following antipsychotic treatment. Psychopharmacology Berl. 108, 98–102.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • Monique R. Adams
  • Raymond P. Ward
  • Daniel M. Dorsa

There are no affiliations available

Personalised recommendations