Biochemical Characterization of Dopamine Receptors

  • Philip Strange
Part of the The Receptors book series (REC)

Abstract

Following the recognition of dopamine as a neurotransmitter in the brain, independent of its role as a precursor of noradrenaline, there has been great interest in the sites of action of dopamine, namely the receptors. This interest was fueled by studies on certain brain diseases such as Parkinson’s disease and schizophrenia, which showed that dopamine had a role either in the pathogenesis or drug treatment of the disease and that substances acting at the receptors might act as therapeutic agents (1). Dopamine receptors were, therefore, studied intensively using a number of techniques including electrophysiology, animal behavioral experiments, and biochemical studies. In 1976 Cools and van Rossum reviewed a large body of data on the actions of dopamine and concluded that there might be more than one receptor for dopamine in the brain (2). Their conclusions were based on anatomical, electrophysiological, and pharmacological data, and they proposed two receptors—one of which was insensitive to the butyrophenone, haloperidol.

Keywords

Dopamine Receptor Adenylate Cyclase Guanine Nucleotide Agonist Binding Aspartic Acid Residue 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Strange, P. G. (1992) Brain Biochemistry and Brain Disorders, Oxford University Press, Oxford, UK.Google Scholar
  2. 2.
    Cools, A. R. and van Rossum, J. M. (1976) Excitation-mediating and inhibition-mediating dopamine receptors: a new concept towards a better understanding of electrophysiological, biochemical, pharmacological, functional and clinical data. Psychopharmacologia 45, 243–254.PubMedCrossRefGoogle Scholar
  3. 3.
    Brown, J. H. and Makman, M. H. (1972) Stimulation by dopamine of adenylate cyclase in retinal homogenates and of adenosine-3’:5’-cyclic monophosphate formation in intact retina. Proc. Natl. Acad. Sci. USA 69, 539–543.PubMedCrossRefGoogle Scholar
  4. 4.
    Greengard, P. (1976) Possible role for cyclic nucleotides and phosphorylated membrane proteins in postsynaptic actions of neurotransmitters. Nature 260, 101–108.PubMedCrossRefGoogle Scholar
  5. 5.
    Iversen, L. L. (1975) Dopamine receptors in the brain. Science 188, 1084–1089.PubMedCrossRefGoogle Scholar
  6. 6.
    Kebabian, J. W., Petzold, G. L., and Greengard, P. (1972) Dopamine-sensitive adenylate cyclase in caudate nucleus ofrat brain, and its similarity to the “dopamine receptor.” Proc. Natl. Acad. Sci. USA 69, 2145–2149.PubMedCrossRefGoogle Scholar
  7. 7.
    Burt, D. R., Creese, I., and Snyder, S. H. (1976) Properties of [3H]haloperidol and [3H]dopamine binding associated with dopamine receptors in calf brain membranes. Mol. Pharmacol. 12, 800–812.Google Scholar
  8. 8.
    Seeman, P., Chau-Wong, M., Tedesco, J., and Wong, K. (1975) Brain receptors for antipsychotic drugs and dopamine: direct binding assays. Proc. Natl. Acad. Sci. USA 72, 4376–4380.PubMedCrossRefGoogle Scholar
  9. 9.
    Seeman, P. (1980) Brain dopamine receptors. Pharmacol. Rev. 32, 229–313.PubMedGoogle Scholar
  10. 10.
    Creese, I., Burt, D. R., and Snyder, S. H. (1976) Dopamine receptor binding predicts clinical and pharmacological potencies of antischizophrenic drugs. Science 192, 481–483.PubMedCrossRefGoogle Scholar
  11. 11.
    Seeman, P. Lee, T., Chau-Wong, M., and Wong, K. (1976) Antipsychotic drug doses and neuroleptic/dopamine receptors. Nature 261 717–719.Google Scholar
  12. 12.
    Kebabian, J. W. and Calne, D. B. (1979) Multiple receptors for dopamine Nature 277, 93–96.PubMedCrossRefGoogle Scholar
  13. 13.
    Spano, P. F., Govoni, S., and Trabucchi, M. (1978) Studies on the pharmacological properties of dopamine receptors in various areas of the central nervous system. Adv. Biochem. Psychopharm. 19, 155–165.Google Scholar
  14. 14.
    Strange, P. G. (1987) Dopamine receptors in the brain and periphery: “state of the art.” Neurochem. Int. 10, 27–33.PubMedCrossRefGoogle Scholar
  15. 15.
    Cavero, I., Massingham, R., and Lefevre-Borg, F. (1982) Peripheral dopamine receptors, potential targets for a new class of antihypertensive agents. Part I: subclassification and functional description. Life Sci. 31, 939–948.PubMedCrossRefGoogle Scholar
  16. 16.
    Cavero, I., Massingham, R., and Lefevre-Borg, F. (1982) Peripheral dopamine receptors, potential targets for a new class of antihypertensive agents. Part II: sites and mechanisms of action of dopamine receptor agonists. Life Sci. 31, 1059–1069.PubMedCrossRefGoogle Scholar
  17. 17.
    Leysen, J. E., Gommeren, W., and Laduron, P. M. (1977) Spiperone: a ligand of choice for neuroleptic receptors. 1. Kinetics and characteristics of in vitro binding. Biochem. Pharmacol. 27, 307–316.CrossRefGoogle Scholar
  18. 18.
    Leysen, J. E., Niemegeers, C. J. E., Tollenaere, J. P., and Laduron, P. M. (1978) Serotonergic component of neuroleptic receptors. Nature 272, 168–171.PubMedCrossRefGoogle Scholar
  19. 19.
    Morgan, D. G., Marcusson, J. O., and Finch, C. E. (1984) Contamination of serotonin-2 binding sites by an a-1 adrenergic component in assays with [ 3 H]spiperone. Life Sci. 34, 2507–2514.PubMedCrossRefGoogle Scholar
  20. 20.
    Withy, R. M., Mayer, R. J., and Strange, P. G. (1981) Use of [3H]spiperone for labelling dopaminergic and serotonergic receptors in bovine caudate nucleus. Neurochem. Int. 10, 27–33.Google Scholar
  21. 21.
    Högberg, T., Rämsby, S., Ögren, S.-P., and Norinder, U. (1987) New selective dopamine D-2 antagonists as antipsychotic agents. Pharmacological, chemical, structural and theoretical considerations. Acta Pharm. Suec. 24, 289–328.PubMedGoogle Scholar
  22. 22.
    Martres, M.-P., Sales, N., Bouthenet, M.-L., and Schwartz, J.-C. (1985) Localisation and pharmacological characterisation of D-2 dopamine receptors in rat cerebral neocortex and cerebellum using [125I]iodosulpride. Eur. J. Pharmacol. 118, 211–219.PubMedCrossRefGoogle Scholar
  23. 23.
    Niznik, H. B., Grigoriadis, D. E., Pri-Bar, I., Buchman, O., and Seeman, P. (1985) Dopamine D2 receptors selectively labeled by a benzamide neuroleptic: [3H]-YM0915–2. Naunyn-Schmiedeberg’s Arch. Pharmacol. 329, 333–343.Google Scholar
  24. 24.
    Hyttel, J. (1978) Effects of neuroleptic s on ‘H-haloperidol and ‘H-cis(Z)-flupenthixol binding and on adenylate cyclase activity in vitro. Life Sci. 23, 551–556.PubMedCrossRefGoogle Scholar
  25. 25.
    Leff, S. E., Hamblin, M. W., and Creese, I. (1984) Interactions of dopamine agonists with brain D, receptors labeled by 3H-antagonists. Mol. Pharmacol. 27, 171–183.Google Scholar
  26. 26.
    Hyttel, J. (1983) SCH 23390-The first selective dopamine D-1 antagonist. Eur. J. Pharmacol. 91, 153, 154.Google Scholar
  27. 27.
    Iorio, L. C. (1981) SCH 23390, a benzazepine with atypical effects on dopaminergic systems. Pharmacologist 23, 136.Google Scholar
  28. 28.
    Andersen, P. H., Grenvald, F. C., and Jansen, J. A. (1985) A comparison between dopamine-stimulated adenylate cyclase and ‘H-SCH 23390 binding in rat striatum. Life Sci. 37, 1971–1983.PubMedCrossRefGoogle Scholar
  29. 29.
    Billard, W., Ruperto, V., Crosby, G., Iorio, L. C., and Barnett, A. (1984) Characterization of the binding of 3H-SCH 23390, a selective D-1 receptor antagonist ligand, in rat striatum. Life Sci. 35, 1885–1893.PubMedCrossRefGoogle Scholar
  30. 30.
    Wyrick, S. D. and Mailman, R. B. (1985) Tritium labelled (±)-7-chloro-8-hydroxy3-methyl-l-phenyl-2,3,4,5-tetrahydro-lH-3-benzazepine (SCH23390). J. Labelled Compounds Radiopharmaceut. 22, 189–195.CrossRefGoogle Scholar
  31. 31.
    Bischoff, S., Heinrich, M., Sonntag, J. M., and Krauss, J. (1986) The D-1 dopamine receptor antagonist SCH 23390 also interacts potently with brain serotonin (5-HT2) receptors. Eur. J. Pharmacol. 129, 367–370.PubMedCrossRefGoogle Scholar
  32. 32.
    Nicklaus, K. J., McGonigle, P., and Molinoff, P. B. (1988) [3H]SCH 23390 labels both dopamine-1 and 5-hydroxytryptamine1c receptors in the choroid plexus. J. Pharmacol. Exper. Ther. 247, 343–348.Google Scholar
  33. 33.
    Hollis, C. M. and Strange, P. G. (1992) Studies on the structure of the ligand-binding site of the brain Di dopamine receptor. Biochem. Pharmacol. 44, 325–334.PubMedCrossRefGoogle Scholar
  34. 34.
    Sidhu, A., van Oene, J. C., Dandridge, P., Kaiser, C., and Kebabian, J. W. (1986) SCH 23893: the ligand of choice for identifying the D-1 dopamine receptor. Eur. J. Pharmacol. 128, 213–220.PubMedCrossRefGoogle Scholar
  35. 35.
    Hess, E. J. and Creese, I. (1987) Biochemical characterization ofdopamine receptors, in Dopamine Receptors ( Creese, I. and Fraser, C., eds.), Liss, New York, pp. 1–27.Google Scholar
  36. 36.
    Zahniser, N. R. and Molinoff, P. B. (1978) Effect of guanine nucleotides on striatal dopamine receptors. Nature 275, 453–455.PubMedCrossRefGoogle Scholar
  37. 37.
    Wreggett, K. A. and De Léan, A. (1984) The ternary complex model: its properties and application to ligand interactions with the D2-dopamine receptor of the anterior pituitary gland. Mol. Pharmacol. 26, 214–227.PubMedGoogle Scholar
  38. 38.
    Lefkowitz, R. J., Cotecchia, S., Samama, P., and Costa, T. (1993) Constitutive activity of receptors coupled to guanine nucleotide regulatory proteins. Trends Pharmacol. Sci. 14, 303–307.PubMedCrossRefGoogle Scholar
  39. 39.
    Sokoloff, P., Martres, M. P., and Schwartz, J. C. (1980) Three classes of dopamine receptor (D-2, D-3, D-4) identified by binding studies with 3H-apomorphine and 3H-domperidone. Naunyn-Schmiedeberg’s Arch. Pharmacol. 315, 89–103.PubMedCrossRefGoogle Scholar
  40. 40.
    Sokoloff, P., Martres, M.-P., Delandre, M., Redouane, K., and Schwartz, J.-C. (1984) 3H-domperidone binding sites differ in rat striatum and pituitary. NaunynSchmiedeberg’s Arch. Pharmacol. 327, 221–227.Google Scholar
  41. 41.
    Leonard, M. N., Halliday, C. A., Marriott, A. S., and Strange, P. G. (1988) D2 dopamine receptors in rat striatum are homogeneous as revealed by ligand-binding studies. Biochem. Pharmacol. 37, 4335–4339.Google Scholar
  42. 42.
    De Keyser, J., De Backer, J.-P., Convents, A., Ebinger, G., and Vauquelin, G. (1985) D2 dopamine receptors in calf globus pallidus: agonist high-and low-affinity sites not regulated by guanine nucleotide. J. Neurochem. 45, 977–979.PubMedCrossRefGoogle Scholar
  43. 43.
    Leonard, M. N., Macey, C. A., and Strange, P. G. (1987) Heterogeneity of D2 dopamine receptors in different brain regions. Biochem. J. 248, 595–602.PubMedGoogle Scholar
  44. 44.
    Kebabian, J. W., Agui, T., van Oene, J. C., Shigematsu, K., and Saavedra, J. M. (1986) The DI dopamine receptor: new perspectives. Trends Pharmacol. Sci. 7, 96–99.Google Scholar
  45. 45.
    Andersen, P. H., Gingrich, J. A., Bates, M. D., Dearry, A., Falardeau, P., Senogles, S. E., and Caron, M. G. (1990) Dopamine receptor subtypes: beyond the D1/D2 classification. Trends Pharmacol. Sci. 11, 231–236.PubMedCrossRefGoogle Scholar
  46. 46.
    Vallar, L. and Meldolesi, J. (1989) Mechanisms of signal transduction at the dopamine D2 receptor. Trends Pharmacol. Sci. 10, 74–77.PubMedCrossRefGoogle Scholar
  47. 47.
    Civelli, O., Bunzow, J. R., and Grandy, D. K. (1993) Molecular diversity of the dopamine receptors. Annu. Rev. Pharmacol. Toxicol. 32, 281–307.CrossRefGoogle Scholar
  48. 48.
    O’Dowd, B. F. (1993) Structures ofdopamine receptors. J. Neurochem. 60, 804–816.PubMedCrossRefGoogle Scholar
  49. 49.
    Sibley, D. R. and Monsma, F. J. (1992) Molecular biology of dopamine receptors. Trends. Pharmacol. Sci. 13, 61–69.PubMedCrossRefGoogle Scholar
  50. 50.
    Dixon, R. A. F., Kobilka, B. K., Strader, D. J., Benovic, J. L., Dohlman, H. G., Frielle, T., et al. (1986) Cloning of the gene and cDNA for mammalian ß-adrenergic receptor and homology with rhodopsin. Nature (Lond.) 321, 75–79.Google Scholar
  51. 51.
    Bunzow, J. R., Van Tol, H. H. M., Grandy, D. K., Albert, P., Salon, J., Christie, M., Machida, C. A., Neve, K. A., and Civelli, O. (1988) Cloning and expression of a rat D, dopamine receptor cDNA. Nature 336, 783–787.Google Scholar
  52. 52.
    Gorissen, H. and Laduron, P. (1979) Solubilisation of high-affinity dopamine receptors. Nature 279, 72–74.PubMedCrossRefGoogle Scholar
  53. 53.
    Laduron, P. M. and Ilien, B. (1982) Solubilization of brain muscarinic, dopaminergic and serotonergic receptors: a critical analysis. Biochem. Pharmacol. 31, 2145–2151.PubMedCrossRefGoogle Scholar
  54. 54.
    Strange, P. G. (1987) Isolation and molecular characterisation ofdopamine receptors, in Dopamine Receptors ( Creese, I. and Fraser, C., eds.), Liss, New York, pp. 29–43.Google Scholar
  55. 55.
    Strange, P. G. (1983) Isolation and characterisation of dopamine D2 receptors. Trends Pharmacol. Sci. 4, 188–190.CrossRefGoogle Scholar
  56. 56.
    Elazar, Z., Kanety, H., David, C., and Fuchs, S. (1988) Purification of the D-2 dopamine receptor from bovine striatum. Biochem. Biophys. Res. Commun. 156, 602–609.PubMedCrossRefGoogle Scholar
  57. 57.
    Senogles, S. E., Amlaiky, N., Falardeau, P., and Caron, M. G. (1988) Purification and characterization of the D,-dopamine receptor from bovine anterior pituitary. J. Biol. Chem. 263, 18,996–19, 002.Google Scholar
  58. 58.
    Williamson, R. A., Worrall, S., Chazot, P.L., and Strange, P. G. (1988) Purification of brain D2 dopamine receptor. EMBO J. 7, 4129–4133.Google Scholar
  59. 59.
    Hall, J. M., Frankham, P. A., and Strange, P. G. (1983) Use of cholate/sodium chloride for solubilisation of brain D2 dopamine receptors. J. Neurochem. 41, 1526–1532.PubMedCrossRefGoogle Scholar
  60. 60.
    Gingrich, J. A., Amlaiky, N., Senogles, S. E., Chang, W. K., McQuade, R. D., Berger, J. G., and Caron, M. G. (1988) Affinity chromatography of the Di dopamine receptor from rat corpus striatum. Biochemistry 27, 3907–3912.Google Scholar
  61. 61.
    Niznik, H. B., Grigoriadis, D. E., Otsuka, N. Y., Dumbrille-Ross, A., and Seeman, P. (1986) The dopamine DI receptor: partial purification of a digitonin-solubilized receptor-guanine nucleotide binding complex. Biochem. Pharmacol. 35, 2974–2977.PubMedCrossRefGoogle Scholar
  62. 62.
    Zhang, X. and Segawa, T. (1989) Investigation of rat striatal dopamine D-1 receptors solubilized by digitonin with a precipitation method. Eur. J. Pharmacol. 166, 401–410.Google Scholar
  63. 63.
    Ramwani, J. and Mishra, R. K. (1986) Purification of bovine striatal dopamine D-2 receptor by affinity chromatography. J. Biol. Chem. 261 8894–8898.Google Scholar
  64. 64.
    Sidhu, A. and Fishman, P. H. (1986) Solubilization of the D-1 dopamine receptor from rat striatum. Biochem. Biophys. Res. Commun. 137, 943–949.PubMedCrossRefGoogle Scholar
  65. 65.
    Sidhu, A. (1990) A novel affinity purification of D-1 dopamine receptors from rat striatum. J. Biol. Chem. 265, 10,065–10, 072.Google Scholar
  66. 66.
    Sidhu, A., Kassis, S., Kebabian, J., and Fishman, P. H. (1986) Sulfhydryl group(s) in the ligand binding site of the D-1 dopamine receptor: specific protection by agonist and antagonist. Biochemistry 25, 6695–6701.Google Scholar
  67. 67.
    Bosker, F. J., Van Bussel, F. J., Thielen, A. P. G. M., Soei, Y. L., Sieswerda, G. T., Dijk, J., Tepper, P. G., Horn, A. S., and Möller, W. (1989) Affinity chromatography with the immobilized agonist N-0434 yields an active and highly purified preparation of the dopamine D-2 receptor from bovine striatum. Eur. J. Pharmacol. 163, 319–326.Google Scholar
  68. 68.
    Leonard, M. N., Williamson, R. A., and Strange, P. G. (1988) The glycosylation properties of D2 dopamine receptors from striatal and limbic areas of bovine brain. Biochem. J. 255, 877–883.PubMedGoogle Scholar
  69. 69.
    Antonian, L., Antonian, E., Murphy, R. B., and Schuster, D. I. (1986) Studies on the use of a novel affinity matrix, sepharose amine-succinyl-amine haloperidol hemisuccinate, ASA-HHS, for purification of canine dopamine (D2) receptor. Life Sci. 38, 1847–1858.Google Scholar
  70. 70.
    Clagett-Dame, M., Schoenleber, R., Chung, C., and McKelvy, J. F. (1989) Preparation of an affinity chromatography matrix for the selective purification of the dopamine D2 receptor from bovine striatal membranes. Biochim. Biophys. Acta 986, 271–280.PubMedCrossRefGoogle Scholar
  71. 71.
    Senogles, S. E., Amlaiky, N., Johnson, A. L., and Caron, M. G. (1986) Affinity chromatography of the anterior pituitary D2-dopamine receptor. Biochemistry 25, 749–753.PubMedCrossRefGoogle Scholar
  72. 72.
    Soskic, V. and Petrovic, J. (1986) Purification of dopamine DZ receptors of the bovine caudate nucleus by spiperone-sepharose 4B affinity beads. Iugoslay. Physiol. Pharmacol. Acta 22, 329–338.Google Scholar
  73. 73.
    Chazot, P. L. and Strange, P. G. (1992) Molecular characterization of D2 dopamine-like receptors from brain and from the pituitary gland. Neurochem. Int. 21, 159–169.PubMedCrossRefGoogle Scholar
  74. 74.
    Elazar, Z., Siegel, G., and Fuchs, S. (1989) Association of two pertussis toxin-sensitive G-proteins with the D2-dopamine receptor from bovine striatum. EMBO J. 8, 2353–2357.Google Scholar
  75. 75.
    Ohara, K., Haga, K., Berstein, G., Haga, T., and Ichiyama, A. (1988) The interaction between D-2 dopamine receptors and GTP-binding proteins. Mol. Pharmacol. 33, 290–296.PubMedGoogle Scholar
  76. 76.
    Senogles, S. E., Benovic, J. L., Amlaiky, N., Unson, C., Milligan, G., Vinitsky, R., Spiegel, A. M., and Caron, M. G. (1987) The D2-dopamine receptor of anterior pituitary is functionally associated with a pertussis toxin-sensitive guanine nucleotide binding protein. J. Biol. Chem. 262, 4860–4867.PubMedGoogle Scholar
  77. 77.
    Senogles, S. E., Spiegel, A. M., Padrell, E., Iyengar, R., and Caron, M. G. (1990) Specificity of receptor-G protein interactions: discrimination of G, subtypes by the D2 dopamine receptor in a reconstituted system. J. Biol. Chem. 265, 4507–4514.PubMedGoogle Scholar
  78. 78.
    Lledo, P. M., Homburger, V., Bockaert, J., and Vincent, J.-D. (1992) Differential G protein-mediated coupling of D2 dopamine receptors to K+ and Cat+ currents in rat anterior pituitary cells. Neuron 8, 455–463.Google Scholar
  79. 79.
    Parker, E. M., Kameyama, K., Higashijima, T., and Ross, E. M. (1991) Reconstitution of active G protein-coupled receptors purified from baculovirus-infected insect cells. J. Biol. Chem. 266, 519–527.PubMedGoogle Scholar
  80. 80.
    Boundy, V. A., Luedtke, R. R., Gallitano, A. L., Smith, J. E., Filtz, T. M., Kallen, R. G., and Molinoff, P. B. (1993) Expression and characterization of the rat D3 dopamine receptor: pharmacologic properties and development of antibodies. J. Pharmacol. Exp. Ther. 264, 1002–1011.Google Scholar
  81. 81.
    Javitch, J. A., Kaback, J., Li, X., and Karlin, A. (1994) Expression and characterization of human dopamine D2 receptor in baculovirus-infected insect cells. J. Recept. Res. 14, 99–117.PubMedGoogle Scholar
  82. 82.
    Ng, G. Y. K., O’Dowd, B. F., Caron, M., Dennis, M., Brann, M. R., and George, S. R. (1994) Phosphorylation and palmitoylation of the human D2L dopamine receptor in Sf9 cells. J. Neurochem. 63, 1589–1595.Google Scholar
  83. 83.
    Woodcock, C., Graber, S. G., Strange, P. G., and Rooney, B.C. (1994) Characterisation of the D2long and D3 dopamine receptors expressed in insect cells. Biochem. Soc. Trans. 22, 935.Google Scholar
  84. 84.
    Presland, J. and Strange, P. G. (1994) Expression of D2 dopamine receptors in the yeast S. pombe. Br. Pharmacol. Soc. Proc. London Meeting, 50.Google Scholar
  85. 85.
    Sander, P., Grünewald, S., Maul, G., Reiländer, H., and Michel, H. (1994) Constitutive expression of the human D2S-dopamine receptor in the unicellular yeast Saccharomyces cerevisiae. Biochim. Biophys. Acta 1193, 255–262.CrossRefGoogle Scholar
  86. 86.
    Sander, P. Grünewald, S., Reiländer, H. and Michel, H. (1994) Expression of the human Des dopamine receptor in the yeasts Saccharomyces cerevisiae and Schizosaccharomyces pombe: a comparative study. FEBS Lett. 344 41–46.Google Scholar
  87. 87.
    Castro, S. W. and Strange, P. G. (1993) Differences in the ligand binding properties of the short and long versions of the D2 dopamine receptor../. Neurochem. 60, 372–375.CrossRefGoogle Scholar
  88. 88.
    Ziaser, E., Sperka-Gottlieb, C. D. M., Frasch, E., Kohlwein, S. D., Paltauf, F., and Daum, G. (1991) Phospholipid synthesis and lipid composition of subcellular membranes in the unicellular eukaryote S. Cerevisiae. J. Bact. 173, 2026–2034.Google Scholar
  89. 89.
    Hildebrandt, V., Fendles, K., Heberle, J., Hoffman, A., Bamberg, E., and Buldt, G. (1993) Bacteriorhodopsin expressed in S. pombe pumps protons through the plasma membrane. Proc. Natl. Acad. Sci. USA 90, 3578–3582.PubMedCrossRefGoogle Scholar
  90. 90.
    Kiritovsky, J. and Schramm, M. (1983) Delipidation of(3-adrenergic receptor preparation and reconstitution by specific lipids. J. Biol. Chem. 258, 6841–6849.Google Scholar
  91. 91.
    Mitchell, D. C., Straume, M., Miller, J. L., and Litman, B. J. (1990) Modulation of metarhodopsin formation by cholesterol-induced ordering of bilayer lipids. Biochemistry 29, 9143–9149.PubMedCrossRefGoogle Scholar
  92. 92.
    Niznik, H. B., Jarvie, K. R., Bzowej, N. H., Seeman, P., Garlick, R. K., Miller, J. J., Baindur, N., and Neumeyer, J. L. (1988) Photoaffinity labeling of dopamine D l receptors. Biochemistry 27, 7594–7599.Google Scholar
  93. 93.
    Niznik, H. B., Jarvie, K. R., and Brown, E. M. (1989) Dopamine D1 receptors of the calf parathyroid gland: identification of the ligand binding subunit with lower apparent molecular weight but similar primary structure to neuronal D1 receptors. Biochemistry 28, 6925–6930.PubMedCrossRefGoogle Scholar
  94. 94.
    Amlaiky, N., Berger, J. G., Chang, W., McQuade, R. J., and Caron, M. G. (1987) Identification of the binding subunit of the Di-dopamine receptor by photoaffinity crosslinking. Mol. Pharmacol. 31, 129–134.PubMedGoogle Scholar
  95. 95.
    Jarvie, K. R., Booth, G., Brown, E. M., and Niznik, H. B. (1989) Glycoprotein nature of dopamine D1 receptors in the brain and parathyroid gland. Mol. Pharmacol. 36, 566–574.PubMedGoogle Scholar
  96. 96.
    Amlaiky, N. and Caron, M. G. (1986) Identification of the D2-dopamine receptor binding subunit in several mammalian tissues and species by photoaffinity labeling. J. Neurochem. 47, 196–204.PubMedCrossRefGoogle Scholar
  97. 97.
    Clagett-Dame, M. and McKelvy, J. F. (1989) N-linked oligosaccharides are responsible for rat striatal dopamine D2 receptor heterogeneity. Arch. Biochem. Biophys. 274, 145–154.PubMedCrossRefGoogle Scholar
  98. 98.
    Grigoriadis, D. E., Niznik, H. B., Jarvie, K. R. and Seeman, P. (1988) Glycoprotein nature of D2 dopamine receptors. FEBS Lett. 227 220–224.Google Scholar
  99. 99.
    Jarvie, K. R., Niznik, H. B., and Seeman, P. (1988) Dopamine D2 receptor binding subunits of M = 140,000 and 94,000 in brain: deglycosylation yields a common unit of Mr = 44,000. Mol. Pharmacol. 34, 91–97.PubMedGoogle Scholar
  100. 100.
    David, C., Fishburn, C. S., Monsma, F. J., Jr., Sibley, D. R., and Fuchs, S. (1993) Synthesis and processing of D2 dopamine receptors. Biochemistry 32, 8179–8183.PubMedCrossRefGoogle Scholar
  101. 101.
    Jarvie, K. R., Niznik, H. B., Bzowej, N. H., and Seeman, P. (1988) Dopamine D2 receptors retain agonist high-affinity form and guanine nucleotide sensitivity after removal of sialic acid. J. Biochem. 104, 791–794.PubMedGoogle Scholar
  102. 102.
    Raymond, J. R., Fargin, A., Lohse, M., Regan, J. R., Senogles, S. E., Lefkowitz, R. J., and Caron, M. G. (1989) Identification of the ligand binding subunit of the human 5-hydroxytryptamine lA receptor with N-(p-azido-m[125I]iodophenethyl)spiperone, a high affinity radioiodinated photoaffinity probe. Mol. Pharmacol. 36, 15–21.PubMedGoogle Scholar
  103. 103.
    Covarrubias, M., Prinz, H., Meyers, H., and Maelicke, A. (1986) Equilibrium binding of cholinergic ligands to the membrane bound acetylcholine receptor. J. Biol. Chem. 261, 14,955–14, 961.Google Scholar
  104. 104.
    Strader, C. D., Fong, T. M., Tota, M. R., Underwood, D., and Dixon, R. A. F. (1994) Structure and function of G protein-coupled receptors. Annu. Rev. Biochem. 63, 101–132.PubMedCrossRefGoogle Scholar
  105. 105.
    Tota, M. R., Daniel, S., Sirotina, A., Mazina, K. E., Fong, T. M., Longmore, J., and Strader, C. D. (1994) Characterization of a fluorescent substance P analogue. Biochemistry 33, 13, 079–13, 086.Google Scholar
  106. 106.
    Madras, B. K., Canfield, D. R., Pfaelzer, C., Vittimberga, F. J., DiFiglia, M., Aronin, N., Bakthavachalam, V., Baindur, N., and Neumeyer, J. L. (1990) Fluorescent and biotin probes for dopamine receptors: Di and D2 receptor affinity and selectivity. Mol. Pharmacol. 37, 833–839.PubMedGoogle Scholar
  107. 107.
    Monsma, F. J., Barton, A. C., Kang, H. C., Brassard, D. L., Haugland, R. P., and Sibley, D. R. (1989) Molecular characterization of novel fluorescent ligands with high affinity for Di and D2 dopamine receptors. J. Neurochem. 52, 1641–1644.PubMedCrossRefGoogle Scholar
  108. 108.
    Ariano, M. A. and Sibley, D. R. (1994) Dopamine receptor distribution in the rat CNS: elucidation using anti-peptide antisera directed against DIA and D3 subtypes. Brain Res. 649, 95–110.PubMedCrossRefGoogle Scholar
  109. 109.
    Huang, Q., Zhou, D., Chase, K., Gusella, J. F., Aronin, N., and DiFiglia, M. (1992) Immunohistochemical localization of the DI dopamine receptor in rat brain reveals its axonal transport, presynaptic and postsynaptic localization, and prevalence in the basal ganglia, limbic system, and thalamic reticular nucleus. Proc. Natl. Acad. Sci. USA 89, 11,988–11, 992.Google Scholar
  110. 110.
    Levey, A. I., Hersch, S. M., Rye, D. B., Sunahara, R. K., Niznik, H. B., Kitt, C. A., Price, D. L., Maggio, R., Brann, M. R., and Ciliax, B. J. (1993) Localization of DI and D2 dopamine receptors in brain with subtype-specific antibodies. Proc. Natl. Acad. Sci. USA 90, 8861–8865.PubMedCrossRefGoogle Scholar
  111. 111.
    Fishburn, C. S., David, C., Carmon, S., Wein, C., and Fuchs, S. (1994) In vitro translation of D2 dopamine receptors and their chimaeras: analysis by subtype-specific antibodies. Biochem. Biophys. Res. Commun. 205, 1460–1466.PubMedCrossRefGoogle Scholar
  112. 112.
    Chazot, P. L., Doherty, A. J., and Strange, P. G. (1993) Antisera specific for D2 dopamine receptors. Biochem. J. 289, 789–794.PubMedGoogle Scholar
  113. 113.
    Farooqui, S. M. and Prasad, C. (1992) An antibody to dopamine D2 receptor inhibits dopamine antagonist and agonist binding to dopamine D2 receptor cDNA transfected mouse fibroblast cells. Life Sci. 51, 1509–1516.PubMedCrossRefGoogle Scholar
  114. 114.
    Plug, M. J., Dijk, J., Maassen, J. A., and Möller, W. (1992) An anti-peptide antibody that recognizes the dopamine D2 receptor from bovine striatum. Eur. J. Biochem. 206, 123–130.PubMedCrossRefGoogle Scholar
  115. 115.
    Boundy, V. A., Luedtke, R. R., Artymyshyn, R. P., Filtz, T. M., and Molinoff, P. B. (1993) Development of polyclonal anti-D2 dopamine receptor antibodies using sequence-specific peptides. Mol. Pharmacol. 43, 666–676.Google Scholar
  116. 116.
    David, C., Ewert, M., Seeburg, P. H., and Fuchs, S. (1991) Antipeptide antibodies differentiate between long and short isoforms of the D2 dopamine receptor. Biochem. Biophys. Res. Commun. 179, 824–829.PubMedCrossRefGoogle Scholar
  117. 117.
    McVittie, L. D., Ariano, M. A., and Sibley, D. R. (1991) Characterization of anti-peptide antibodies for the localization of D2 dopamine receptors in rat striatum. Proc. Natl. Acad. Sci. USA 88, 1441–1445.PubMedCrossRefGoogle Scholar
  118. 118.
    Braestrup, C. and Andersen, P. H. (1987) Effects of heavy metal cations and other sulfhydryl reagents on brain dopamine DI receptors: evidence for involvement of a thiol group in the conformation of the active site. J. Neurochem. 48, 1667–1672.PubMedCrossRefGoogle Scholar
  119. 119.
    Dewar, K. M. and Reader, T. A. (1989) Specific [3H] SCH 23390 binding to dopamine D, receptors in cerebral cortex and neostriatum: role of disulfide and sulfhydryl groups. J. Neurochem. 52, 472–482.PubMedCrossRefGoogle Scholar
  120. 120.
    Srivastava, L. K. and Mishra, R. K. (1990) Chemical modification reveals involvement of tyrosine in ligand binding to dopamine D, and D2 receptors. Biochem. Int. 21, 705–714.PubMedGoogle Scholar
  121. 121.
    Williamson, R. A. and Strange, P. G. (1990) Evidence for the importance of a carboxyl group in the binding of ligands to the D2 dopamine receptor. J. Neurochem. 55, 1357–1365.PubMedCrossRefGoogle Scholar
  122. 122.
    Freedman, S. B., Poat, J. A., and Woodruff, G. N. (1982) Influence of sodium and sulphydryl groups on [3H]sulpiride binding sites in rat striatal membranes. J. Neurochem. 38, 1459–1465.Google Scholar
  123. 123.
    Reader, T. A., Molina-Holgado, E., Lima, L., Boulianne, S., and Dewar, K. M. (1992) Specific [3H]raclopride binding to neostriatal dopamine D2 receptors: role of disulfide and sulfhydryl groups. Neurochem. Res. 17, 749–759.PubMedCrossRefGoogle Scholar
  124. 124.
    Sibley, D. R. and Creese, I. (1983) Regulation of ligand binding to pituitary D-2 dopaminergic receptors: effects of divalent cations and functional group modification. J. Biol. Chem. 258, 4957–4965.PubMedGoogle Scholar
  125. 125.
    Suen, E. T., Stefanini, E., and Clement-Cormier, Y. C. (1980) Evidence for essential thiol groups and disulfide bonds in agonist and antagonist binding to the dopamine receptor. Biochem. Biophys. Res. Commun. 96, 953–960.Google Scholar
  126. 126.
    Neve, K. A. (1991) Regulation of dopamine D2 receptors by sodium and pH. Mol. Pharmacol. 39, 570–578.PubMedGoogle Scholar
  127. 127.
    Chazot, P. L. and Strange, P. G. (1992) Importance of thiol groups in ligand binding to D2 dopamine receptors from brain and anterior pituitary gland. Biochem. J. 281, 377–380.PubMedGoogle Scholar
  128. 128.
    D’Souza, U. and Strange, P. G. (1995) pH dependence of ligand binding to D2 dopamine receptors. Biochemistry 34, 13, 635–13, 641.Google Scholar
  129. 129.
    Javitch, J. A., Li, X., Kaback, J., and Karlin, A. (1994) A cysteine residue in the third membrane-spanning segment of the human D2 dopamine receptor is exposed in the binding-site crevice. Proc. Natl. Acad. Sci. USA 91, 10,355–10, 359.Google Scholar
  130. 130.
    Presland, J. P. and Strange, P. G. (1991) pH dependence of sulpiride binding to the D2 dopamine receptor. Biochem. Pharmacol. 41, R9 — R12.Google Scholar
  131. 131.
    Sundaram, H., Newman-Tancredi, A., and Strange, P. G. (1993) Characterization of recombinant human serotonin SHTIA receptors expressed in Chinese hamster ovary cells. Biochem. Pharmacol. 45, 1003–1009.PubMedCrossRefGoogle Scholar
  132. 132.
    Sibley, D. R. and Creese, I. (1983) Interactions of ergot alkaloids with anterior pituitary D-2 dopamine receptors. Mol. Pharmacol. 23, 585–593.PubMedGoogle Scholar
  133. 133.
    Sundaram, H., Turner, J., and Strange, P. G. (1995) [3H]Lisuride binding to 5HT 1 A serotonin receptors. J. Neurochem. 65, 1909–1916.Google Scholar
  134. 134.
    Watanabe, M., George, S. R., and Seeman, P. (1985) Regulation of anterior pituitary D 2 dopamine receptors by magnesium and sodium ions. J. Neurochem. 45, 1842–1849.PubMedCrossRefGoogle Scholar
  135. 135.
    Theodorou, A. E., Hall, M. D., Jenner, P., and Marsden, C. D. (1980) Cation regulation differentiates specific binding of [3H]sulpiride and [3H]spiperone to rat striatal preparations. J. Pharm. Pharmacol. 32, 441–444.PubMedCrossRefGoogle Scholar
  136. 136.
    Horstman, D. A., Brandon, S., Wilson, A. L., Guyer, C. A., Cragoe, E. J., and Limbird, L. E. (1990) An aspartate conserved among G-protein receptors confers allosteric regulation of az adrenergic receptors by sodium. J. Biol. Chem. 265, 21,590–21, 595.Google Scholar
  137. 137.
    Neve, K. A., Cox, B. A., Henningsen, R. A., Spanoyannis, A., and Neve, R. L. (1991) Pivotal role for aspartate-80 in the regulation of D2 receptor affinity for drugs and inhibition of adenylyl cyclase. Mol. Pharmacol. 39, 733–739.PubMedGoogle Scholar
  138. 138.
    Birnbaumer, L. (1990) G proteins in signal transduction. Annu. Rev. Pharmacol. Toxicol. 30, 675–705.PubMedCrossRefGoogle Scholar
  139. 139.
    Neve, K. A., Henningsen, R. A., Bunzow, J. R., and Civelli, 0. (1989) Functional characterization of a rat dopamine D-2 receptor cDNA expressed in a mammalian cell line. Mol. Pharmacol. 36, 446–451.Google Scholar
  140. 140.
    Urwyler, S. (1989) Mono-and divalent cations modulate the affinities of brain DI and D2 receptors for dopamine by a mechanism independent of receptor coupling to guanyl nucleotide binding proteins. Naunyn-Schmiedeberg’s Arch. Pharmacol. 339, 374–382.PubMedCrossRefGoogle Scholar
  141. 141.
    Nunnari, J. M., Repaske, M. G., Brandon, S., Cragoe, E. J., and Limbird, L. E. (1987) Regulation of porcine brain a2-adrenergic receptors by Na’, W, and inhibitors of Na’/H’ exchange. J. Biol. Chem. 262, 12,387–12, 392.Google Scholar
  142. 142.
    Hoare, S. and Strange, P. G. (1994) Allosteric regulation of D2 dopamine receptors by amiloride analogues. Br. Pharmacol. Soc. Proc. Manchester Meeting, P17.Google Scholar
  143. 143.
    Birdsall, N. J. M., Cohen, F., Lazareno, S., and Matsui, H. (1995) Allosteric regulation of G-protein linked receptors. Biochem. Soc. Trans. 23, 108–111.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • Philip Strange

There are no affiliations available

Personalised recommendations