Resource-Bounded Complexity

  • Ming Li
  • Paul Vitányi
Part of the Graduate Texts in Computer Science book series (TCS)

Abstract

Recursion theory has a resource-bounded version in computational complexity theory. Similarly, Kolmogorov complexity has resource-bounded Kolmogorov complexity (also known as generalized Kolmogorov complexity). Several authors suggested early on the possibility of restricting the power of the device used to (de)compress strings. Says Kolmogorov:

“The concept discussed ...does not allow for the ‘difficulty’ of preparing a program p for passing from an object x to an object y. [... some] object permitting a very simple program, i.e., with very small complexity K(x) can be restored by short programs only as the result of computations of a thoroughly unreal nature. [... this concerns] the relationship between the necessary complexity of a program and its permissible difficulty t. The complexity K(x) that was obtained [before] is, in this case, the minimum of K t (x) on the removal of the constraints on t.”

Keywords

Polynomial Time Turing Machine Kolmogorov Complexity Compression Function Short Program 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

History and References

  1. J.M. Barzdins [Soviet Math. Dokl., 9(1968), 1251–1254].Google Scholar
  2. [J. ACM, 20:4(1973), 687-695; Inform. Contr., 23(1973), 301-312].Google Scholar
  3. [L.A. Levin, Problems Inform. Transmission, 9(1973), 265–266.Google Scholar
  4. R.P. Daley, Theoret. Comput. Sci., 4(1977), 301–309.MathSciNetMATHCrossRefGoogle Scholar
  5. L. Adleman, ‘Time, space, and randomness,’ LCS Report TM-131, 1979, MIT].Google Scholar
  6. [J. Hartmanis, Proc. 24th IEEE Found. Comput. Sci., 1983, pp. 439-445; Ker-I Ko, Theoret. Comput. Sci., 48(1986), 9-33; and M. Sipser, Proc. 15th ACM Symp. Theory Comput, 1983, pp. 330-335].Google Scholar
  7. Y. Wang [Randomness and Complexity, Ph.D. Thesis, Heidelberg, 1996; Proc. 11th IEEE Conf. Structure in Complexity Theory, 1996, pp. 180-189].Google Scholar
  8. M. Sipser in [Ibid.]. Theorems 7.1.4 and 7.1.5 and Definition 7.1.8 are from [Ker-I Ko, Ibid.]. The theory of co-enumerable and recursive majorants of complexity is found in A.K. Zvonkin and L.A.Google Scholar
  9. Levin, Russ. Math. Surveys, 25:6(1970), 83–124].MATHCrossRefGoogle Scholar
  10. [J. Hartmanis, Proc. 24th IEEE Found. Comput. Sci., 1983, pp. 439-445].Google Scholar
  11. [J. ACM, 20:4(1973), 687-695]Google Scholar
  12. J. Hartmanis [Ibid.]. L. Longpré’s [Ph.D. Thesis, Cornell University, 1986]Google Scholar
  13. [M. Sipser, Proc. 15th ACM Symp. Theory Comput, 1983, pp. 330-335; H.M. Buhrman and L. Fortnow, Proc. 14th Symp. Theoret. Aspects Comput. Sci., Lect. Notes Comput. Sci., Springer-Verlag, Heidelberg, 1997; A. Goldberg and M. Sipser, SIAM J. Comput, 20(1991), 524-536].Google Scholar
  14. H.M. Buhrman and L. Fortnow, Ibid. Theorems 7.2.2 and 7.2.4 are from [M. Sipser, Ibid].Google Scholar
  15. [A. Goldberg and M. Sipser, Ibid.].Google Scholar
  16. [E. Allender [Ph.D. Thesis, Georgia Inst. Tech., 1985; A. Goldberg and M. Sipser, Ibid.].Google Scholar
  17. [J. Hartmanis, Proc. 24th IEEE Found. Comput. Sci., 1983, pp. 439-445].Google Scholar
  18. R.V. Book, P. Orponen, D. Russo, and O. Watanabe [SIAM J. Comput., 17(1988), 504–516].MathSciNetMATHCrossRefGoogle Scholar
  19. [E. Allender and R. Rubinstein, SIAM J. Comput, 17(1988), 1193–1202]MathSciNetMATHCrossRefGoogle Scholar
  20. J.L Balcázar and R.V. Book [Acta Informatica, 23(1986), 679–688]MathSciNetMATHCrossRefGoogle Scholar
  21. J. Hartmanis and L. Hemachandra [Inform. Process. Lett, 28(1988), 291–295].MathSciNetMATHCrossRefGoogle Scholar
  22. [J.H. Lutz, J. Comput. System Sci., 44(1992), 220–258]MathSciNetMATHCrossRefGoogle Scholar
  23. [Theoret. Comput. Sci., 81(1991), 127-135]Google Scholar
  24. [R.V. Book and J.H. Lutz, SIAM J. Comput, 22:2(1993), 395–402]MathSciNetMATHCrossRefGoogle Scholar
  25. D.W. Juedes and J.H. Lutz in [Kolmogorov complexity and its relation to computational complexity theory, O. Watanabe (Ed.), Springer-Verlag, 1992, pp. 43-65].Google Scholar
  26. J.H. Lutz in [Proc. 8th IEEE Conf. Structure in Complexity Theory, 1993, pp. 158-175].Google Scholar
  27. H. Buhrman and L. Longpré in [Proc. 13th Symp. Theoret. Aspects Comput. Sci., Lect. Notes Comp. Sci., vol. 1046, Springer-Verlag, Heidelberg, 1996, 13-24]Google Scholar
  28. [J.H. Lutz [J. Comput. System Sci., 44(1992), 220–258].MathSciNetMATHCrossRefGoogle Scholar
  29. K.W. Regan and J. Wang [SIGACT News, 25(1994), 106–113]CrossRefGoogle Scholar
  30. A. Naik, K.W. Regan and D. Sivakumar [Theoret. Comput. Sci., 148(1995), 325–349]MathSciNetMATHCrossRefGoogle Scholar
  31. [P. Orponen, K. Ko, U. Schüning, and O. Watanabe, J. ACM, 41(1994), 96–121].MATHCrossRefGoogle Scholar
  32. [M. Kummer, SIAM J. Comput, 25:6(1996), 1123–1143.MathSciNetMATHCrossRefGoogle Scholar
  33. H.M. Buhrman and P. Orponen, J. Comput. System Sci., 53:2(1996), 261–266.MathSciNetMATHCrossRefGoogle Scholar
  34. L. Fortnow and M. Kummer, Theoret Comput Sci. A, 161(1996), 123–140].MathSciNetMATHCrossRefGoogle Scholar
  35. [L.A. Levin, Problems Inform. Transmission, 9:3(1973), 265–266].Google Scholar
  36. [Proc. 3rd ACM Symp. Theory Comput, 1971, pp. 151-158].Google Scholar
  37. [Yu. Gurevitch, EATCS Bull, 35(1988), 71–82.Google Scholar
  38. R.J. Solomonoff, Optimum sequential search, Memorandum, 1984].Google Scholar
  39. [L.A. Levin, Inform. Contr., 61(1984), 17–37]CrossRefGoogle Scholar
  40. [pp. 473-491 in: L.N. Kanal and J.F. Lemmer, Eds., Uncertainty in Artificial Intelligence, Elsevier, 1986]Google Scholar
  41. [J. Schmidhuber, Proc. 12th Int’l Conf. Machine Learning, Morgan Kaufmann, 1995, 488-496].Google Scholar
  42. [J. Schmidhuber and M. Wiering, Proc. 13th Int’l Conf. Machine Learning, Morgan Kaufmann, 1996, To appear]Google Scholar
  43. L. Hemachandra and G. Wechsung [Theoret. Comput. Sci. 83(1991), 313–322]MathSciNetMATHCrossRefGoogle Scholar
  44. G. Peterson, Proc. 21st IEEE Found. Comput. Sei., 1980, pp. 86-95.Google Scholar
  45. E. Allender, J. Comput. System Sci., 39(1989), 101–124.MathSciNetMATHCrossRefGoogle Scholar
  46. J.H. Lutz, J. Comput. System Sci., 41(1990), 307–320.MathSciNetMATHCrossRefGoogle Scholar
  47. M. Hermo and E. Mayordomo, Math. Systems Theory, 27(1994), 247–356.MathSciNetCrossRefGoogle Scholar
  48. J.L. Balcázar and U. Schöning, Theoret. Comput. Sci., 99(1992), 279–290.MathSciNetMATHCrossRefGoogle Scholar
  49. [M. Li and P.M.B. Vitányi, SIAM J. Comput., 20:5(1991), 915–935].CrossRefGoogle Scholar
  50. [P.B. Miltersen, SIAM J. Comput, 22:1(1993), 147–156.MathSciNetMATHCrossRefGoogle Scholar
  51. K. Kobayashi, IEICE Trans. Inform. Systems, E76-D:6 (1993), 634–6Google Scholar
  52. K. Kobayashi, Transformations that preserve malignness of universal distributions, Theoret. Comput. Sci., to appear; A. Jakoby, R. Reischuk, and C. Schindelhauer, Proc. 12th Symp. Theoret. Aspects Comput. Sci., Led. Notes Comp. Sci., vol. 900, Springer-Verlag, Heidelberg, 1995, 628-639].Google Scholar
  53. A.K. Jagota and K.W. Regan [‘Performance of MAX-CLIQUE approximation heuristics under description-length weighed distributions,’ UB-CS-TR 92-24, SUNY at Buffalo, 1992].Google Scholar
  54. G.J. Chaitin in [IBM J. Res. Develop., 21(1977), 350–359]MathSciNetMATHCrossRefGoogle Scholar
  55. C.H. Bennett in [Emerging Syntheses in Science, D. Pines (Ed.), Addison-Wesley, 1987, pp. 215-233.Google Scholar
  56. The universal Turing machine: a half-century survey, R. Herken (Ed.), Oxford Univ. Press, 1988, pp. 227-258].Google Scholar
  57. [P. Gács,’ self-correcting two-dimensional arrays,’ in Randomness in Computation, vol 5, S. Micali (Ed.), JAI Press, 1989, pp. 223-326.Google Scholar
  58. W.G. Wang, Ph.D. Thesis, Boston University, 1990].Google Scholar
  59. D.W. Juedes, J.I. Lathrop, and J.H. Lutz [Computational depth and reducibility, To appear in Theoret. Comput. Sci.]Google Scholar
  60. [Kolmogorov complexity and computational complexity, O. Watanabe (Ed.), Springer-Verlag, 1992].Google Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • Ming Li
    • 1
  • Paul Vitányi
    • 2
  1. 1.Department of Computer ScienceUniversity of WaterlooWaterlooCanada
  2. 2.Centrum voor Wiskunde en InformaticaSJ AmsterdamThe Netherlands

Personalised recommendations