Advertisement

Algorithmic Prefix Complexity

  • Ming Li
  • Paul Vitányi
Part of the Graduate Texts in Computer Science book series (TCS)

Abstract

While the development of an algorithmic theory of complexity according to the original definitions (plain Kolmogorov complexity) in Chapter 2 was very fruitful, for certain goals the mathematical framework is not yet satisfactory. This has resulted in a plethora of proposals of modified measures to get rid of one or the other problem. Let us list a few conspicuous inconveniences.

Keywords

Turing Machine Binary String Recursive Function Kolmogorov Complexity Uniform Measure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

History and References

  1. [L.A. Levin, Problems Inform. Transmission, 10:3(1974), 206–210.Google Scholar
  2. P. Gács, Soviet Math. Dokl., 15(1974), 1477–1480.zbMATHGoogle Scholar
  3. G.J. Chaitin, J. ACM, 22(1975), 329–340].MathSciNetzbMATHCrossRefGoogle Scholar
  4. [R.J. Solomonoff, A preliminary report on a general theory of inductive inference, Tech. Rept. ZTB-138, Zator Company, Cambridge, Mass., November 1960; Inform. Contr., 7(1964), 1–22, 224-254].Google Scholar
  5. [A.K. Zvonkin and L.A. Levin, Russ. Math. Surv., 25:6(1970), 83–124]MathSciNetzbMATHCrossRefGoogle Scholar
  6. J. Tromp [‘A CL-based definition of Kolmogorov complexity,’ Manuscript, CWI, Amsterdam, November 1996].Google Scholar
  7. G.J. Chaitin [Complexity, 1:4(1995/1996), 55–59]MathSciNetGoogle Scholar
  8. [L.A. Levin, Problems Inform. Transmission, 10:3(1974), 206–210; S.K. Leung-Yan-Cheong and T.M. Cover, IEEE Trans. Inform.Google Scholar
  9. Theory, IT-24(1978), 331-339; R. Solovay, Lecture Notes, UCLA, 1975, unpublished].Google Scholar
  10. [G.J. Chaitin, J. ACM, 22(1975), 329–340].MathSciNetzbMATHCrossRefGoogle Scholar
  11. Chaitin [J. ACM, 22(1975), 329–340]MathSciNetzbMATHCrossRefGoogle Scholar
  12. [C.H. Bennett and M. Gardner, Scientific American, 241:11(1979), 20–34].Google Scholar
  13. [Adv. Appl. Math., 8(1987), 119-146; Algorithmic Information Theory, Cambridge Univ. Press, 1987].Google Scholar
  14. P. Gács [J. Symb. Logic, 54(1989), 624–627].CrossRefGoogle Scholar
  15. [A.N. Kolmogorov and V.A. Uspensky, Theory Probab. Appl, 32(1987), 389–412.zbMATHCrossRefGoogle Scholar
  16. V.A. Uspensky, A.L. Semenov and A.Kh. Shen’, Russ. Math. Surv., 45:1(1990), 121–189.CrossRefGoogle Scholar
  17. V.A. Uspensky, J. Symb. Logic, 57:2(1992), 385–412].MathSciNetzbMATHCrossRefGoogle Scholar
  18. P. Gács [Soviet Math. Dokl., 15(1974), 1477–1480]zbMATHGoogle Scholar
  19. R.M. Solovay [Lecture Notes, UCLA, 1975, unpublished].Google Scholar
  20. [P. Gács, Soviet Math. Dokl., 15(1974), 1477–1480].zbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • Ming Li
    • 1
  • Paul Vitányi
    • 2
  1. 1.Department of Computer ScienceUniversity of WaterlooWaterlooCanada
  2. 2.Centrum voor Wiskunde en InformaticaSJ AmsterdamThe Netherlands

Personalised recommendations