Advertisement

Evolutionary Approach to the Maximum Clique Problem: Empirical Evidence on a Larger Scale

  • Immanuel Bomze
  • Marcello Pelillo
  • Robert Giacomini
Part of the Nonconvex Optimization and Its Applications book series (NOIA, volume 18)

Abstract

An algorithm for finding a maximum clique in a graph is presented which uses the Comtet regularization of the Motzkin/Straus continuous problem formulation: maximize an indefinite quadratic form over the standard simplex. We shortly review some surprising connections of the problem with dynamic principles of evolutionary game theory, and give a detailed report on our numerical experiences with the method proposed.

Keywords

Maximum Clique Replicator Dynamic Evolutionarily Stable Strategy Evolutionary Game Theory Quadratic Optimization Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    T. Bäck and S. Khuri (1994). An evolutionary heuristic for the maximum independent set problem. Proc. 1st IEEE Conf. Evolutionary Comput. Orlando, FL, 531–535.Google Scholar
  2. 2.
    L. E. Baum and J. A. Eagon (1967). An inequality with applications to statistical estimation for probabilistic functions of Markov processes and to a model for ecology. Bull. Amer. Math. Soc. 73, 360–363.MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    L. E. Baum and G. R. Sell (1968). Growth transformations for functions on manifolds. Pacif. J. Math. 27(2), 211–227.MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    I. M. Bomze (1991). Cross entropy minimization in uninvadable states of complex populations. J. Math. Biol. 30, 73–87.MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    I. M. Bomze (1996). Evolution towards the maximum clique. J. Global Optim., in press.Google Scholar
  6. 6.
    I. M. Bomze and J. W. Weibull (1995), Does neutral stability imply Lyapunov stability? Games and Econ. Behav. 11., 173–192.MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    L. Comtet (1974). Advanced Combinatorics. Reidel, Dordrecht.zbMATHCrossRefGoogle Scholar
  8. 8.
    J. F. Crow and M. Kimura (1970), An Introduction to Population Genetics Theory. Harper & Row, New York.zbMATHGoogle Scholar
  9. 9.
    W. J. Ewens (1979). Mathematical Population Genetics. Springer-Verlag, Berlin.zbMATHGoogle Scholar
  10. 10.
    W. J. Ewens and A. Hastings (1995). Aspects of optimality behavior in population genetics theory. In W. Banzhaf and F. H. Eeckman (Eds.), Evolution and Biocomputation: Computational Models of Evolution (pp. 7–17). Springer-Verlag, Berlin.CrossRefGoogle Scholar
  11. 11.
    U. Feige, S. Goldwasser, L. Lovász, S. Safra, and M. Szegedy (1991). Approximating clique is almost NP-complete. Proc. 32nd Ann. Symp. Found. Comput. Sci., San Juan, Puerto Rico, 2–12.Google Scholar
  12. 12.
    M. W. Feldman (1989). Dynamical systems from evolutionary population genetics. In D. L. Stein (Ed.), Lectures in the Sciences of Complexity (pp. 501–526). Addison-Wesley, Redwood City, CA.Google Scholar
  13. 13.
    R. A. Fisher (1930). The Genetical Theory of Natural Selection. Clarendon Press, Oxford.zbMATHGoogle Scholar
  14. 14.
    M. R. Garey and D. S. Johnson (1979). Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman, New York.zbMATHGoogle Scholar
  15. 15.
    L. E. Gibbons, D. W. Hearn, and P. M. Pardalos (1995). A continuous based heuristic for the maximum clique problem. In D. S. Johnson and M. Trick (Eds.), Second DIMACS Implementation Challenge. DIMACS Series in Discrete Mathematics and Theoretical Computer Science, in press.Google Scholar
  16. 16.
    L. E. Gibbons, D. W. Hearn, P. M. Pardalos, and M. V. Ramana (1996). Continuous characterization of the maximum clique problem. Math. Oper. Res., to appear.Google Scholar
  17. 17.
    T. Grossman (1995). Applying the INN model to the Max Clique problem. In D. S. Johnson and M. Trick (Eds.), Second DIMACS Implementation Challenge. DIMACS Series in Discrete Mathematics and Theoretical Computer Science, in press.Google Scholar
  18. 18.
    J. Hasselberg, P. M. Pardalos, and G. Vairaktarakis (1993). Test case generators and computational results for the maximum clique problem. J. Global Optim. 3, 463–482.MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    A. Hastings and G. A. Fox (1995). Optimization as a technique for studying population genetics equations. In W. Banzhaf and F. H. Eeckman (Eds.), Evolution and Biocomputation: Computational Models of Evolution (pp. 18–26). Springer-Verlag, Berlin.CrossRefGoogle Scholar
  20. 20.
    J. Hofbauer and K. Sigmund (1988). The Theory of Evolution and Dynamical Systems. Cambridge University Press.zbMATHGoogle Scholar
  21. 21.
    R. Horst, P. Pardalos, and V. Thoai (1995). Introduction to Global Optimization. Kluwer, Amsterdam.zbMATHGoogle Scholar
  22. 22.
    A. Jagota (1995). Approximating maximum clique with a Hopfield network. IEEE Trans. Neural Networks 6(3), 724–735.CrossRefGoogle Scholar
  23. 23.
    A. Jagota, L. Sanchis, and R. Ganesan (1995). Approximately solving maximum clique using neural networks and related heuristics. In D. S. Johnson and M. Trick (Eds.), Second DIMACS Implementation Challenge. DIMACS Series in Discrete Mathematics and Theoretical Computer Science, in press.Google Scholar
  24. 24.
    S. Karlin (1984). Mathematical models, problems and controversies of evolutionary theory. Bull. Amer. Math. Soc. 10, 221–273.MathSciNetzbMATHCrossRefGoogle Scholar
  25. 25.
    M. Kimura (1958). On the change of population fitness by natural selection. Heredity 12., 145–167.CrossRefGoogle Scholar
  26. 26.
    S. E. Levinson, L. R. Rabiner, and M. M. Sondhi (1983). An introduction to the application of the theory of probabilistic functions of a Markov process to automatic speech recognition. Bell Syst. Tech. J. 62(4), 1035–1074.MathSciNetzbMATHGoogle Scholar
  27. 27.
    V. Losert and E. Akin (1983). Dynamics of games and genes: discrete versus continuous time. J. Math. Biol. 17, 241–251.MathSciNetzbMATHCrossRefGoogle Scholar
  28. 28.
    Yu. Lyubich, G. D. Maistrowskii, and Yu. G. Ol’khovskii (1980), Selection-induced convergence to equilibrium in a single-locus autosomal population. Problems of Information Transmission 16, 66–75.zbMATHGoogle Scholar
  29. 29.
    T. S. Motzkin and E. G. Straus (1965). Maxima for graphs and a new proof of a theorem of Turán. Canad. J. Math. 17, 533–540.MathSciNetzbMATHCrossRefGoogle Scholar
  30. 30.
    H. Mühlenbein, M. Gorges-Schleuter, and O. Krämer (1988). Evolution algorithms in combinatorial optimization. Parallel Computing 7, 65–85.zbMATHCrossRefGoogle Scholar
  31. 31.
    A. S. Murthy, G. Parthasarathy, and V. U. K. Sastry (1994). Clique finding-A genetic approach. Proc. 1st IEEE Conf. Evolutionary Comput. Orlando, FL, 18–21.Google Scholar
  32. 32.
    P. M. Pardalos and A. T. Phillips (1990). A global optimization approach for solving the maximum clique problem. Int. J. Computer Math. 33, 209–216.zbMATHCrossRefGoogle Scholar
  33. 33.
    P. M. Pardalos, M. G. C. Resende, and K. G. Ramakrishnan (1995), editors: Parallel processing of discrete optimization problems. DIMACS series in discrete mathematics and theoretical computer science, Vol. 22. Amer. Math. Society, Providence, RI.zbMATHGoogle Scholar
  34. 34.
    P. Pardalos and J. Xue (1994). The maximum clique problem. J. Global Optim. 4, 301–328.MathSciNetzbMATHCrossRefGoogle Scholar
  35. 35.
    M. Pelillo (1995). Relaxation labeling networks for the maximum clique problem. J. Artif. Neural Networks, Special issue on “Neural Networks for Optimization,” 2, 313–327.Google Scholar
  36. 36.
    M. Pelillo (1996). The dynamics of nonlinear relaxation labeling processes. J. Math. Imaging Vision, to appear.Google Scholar
  37. 37.
    M. Pelillo and A. Jagota (1995). Feasible and infeasible maxima in a quadratic program for maximum clique. J. Artif. Neural Networks, Special issue on “Neural Networks for Optimization,” 2, 411–419.Google Scholar
  38. 38.
    P. Taylor and L. Jonker (1978). Evolutionarily stable strategies and game dynamics. Math. Biosci. 40, 145–156.MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1997

Authors and Affiliations

  • Immanuel Bomze
    • 1
  • Marcello Pelillo
    • 2
  • Robert Giacomini
    • 2
  1. 1.Institut für Statistik, Operations Research und ComputerverfahrenUniversität WienWienAustria
  2. 2.Dipartimento di Matematica Applicata e InformaticaUniversità “Ca’ Foscari” di VeneziaVenezia MestreItaly

Personalised recommendations