Biochemical and Molecular Properties of GABAB Receptors

  • Kinya Kuriyama
  • Masaaki Hirouchi
Part of the The Receptors book series (REC)


γ-Aminobutyric acid (GABA) is known as one of the major inhibitory neurotransmitters in the brain. GABA receptors are many, and are pharmacologically classified into two major subtypes, GABAA and GABAB. The GABAA receptor is well-characterized pharmacologically. Muscimol and bicuculline, which are, respectively, an agonist and an antagonist for the GABAA receptor, bind selectively to the GABAA. Various central acting drugs, such as benzodiazepines and barbiturates, also have binding sites within the GABAA receptor complex (Doble and Martin, 1992). In addition, the GABAA receptor consists of heterogeneous subunits, and functions as a Cl-channel (Burt and Kamatchi, 1991; see also Chapter 2 of this volume).


Adenylate Cyclase Xenopus Oocyte Gaba Receptor Cerebellar Granule Cell Gaba Release 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Andrade, R. (1993) Enhancement of (3-adrenergic responses by G,-linked receptors in rat hippocampus. Neuron 10, 83–88.PubMedCrossRefGoogle Scholar
  2. Asano, T. and Ogasawara, N. (1986) Uncoupling of y-aminobutyric acid B receptors from GTP-binding proteins by N-ethylmaleimide: effect of N-ethylmaleimide on purified GTP-binding proteins. Mol. Pharmacol. 29, 244–249.PubMedGoogle Scholar
  3. Asano, T., Ui, M., and Ogasawara, N. (1985) Prevention of the agonist binding to yaminobutyric acid B receptors by guanine nucleotides and islet-activating protein, pertussis toxin, in bovine cerebral cortex. J. Biol. Chem. 260, 12,653–12, 658.Google Scholar
  4. Bittiger, H., Froestl, W, Mickel, S. J., and Olpe, H. R. (1993) GABAB receptor antagonists: from synthesis to therapeutic applications. Trends Pharmacol. Sci. 14, 391–394.PubMedCrossRefGoogle Scholar
  5. Bonanno, G., Gemignani, A., Fedele, E., Fontana, G., and Raiteri, M. (1991) y-Aminobutyric acid (GABAB) receptors mediate inhibition of somatostatin release from cerebrocortex nerve terminals. J. Pharmacol. Exp. Ther. 259, 1153–1159.Google Scholar
  6. Bonanno, G. and Raiteri, M. (1992) Functional evidence for multiple y-aminobutyric acids receptor subtypes in the rat cerebral cortex. J. Pharmacol. Exp. Ther. 262, 114–118.PubMedGoogle Scholar
  7. Bonanno, G. and Raiteri, M. (1993a) y-Aminobutyric acid (GABA) autoreceptors in rat cerebral cortex and spinal cord represent pharmacologically distinct subtypes of the GABAB receptor. J. Pharmacol. Exp. Ther. 265, 765–770.Google Scholar
  8. Bonanno, G., and Raiteri, M. (1993b) Multiple GABAB receptors. Trends Pharmacol. Sci. 14, 259–261.PubMedCrossRefGoogle Scholar
  9. Bormann, J. (1988) Electrophysiology of GABAA and GABAB receptor subtypes. Trends Neurosci. 11, 112–116.PubMedCrossRefGoogle Scholar
  10. Bowery, N. G., Hill, D. R., Hudson, A. L., Doble, A., Middlemiss, D. N., Shaw, J., and Turnbull, M. (1980) (—)-Baclofen decreases neurotransmitter release in the mammalian CNS by an action at a novel GABA receptor. Nature 283, 92–94.Google Scholar
  11. Brown, E., Kendall, D. A., and Nahorski, S. R. (1984) Inositol phospholipid hydrolysis in rat cerebral cortical slices: I. Receptor characterization. J. Neurochem. 42, 1379 1387.Google Scholar
  12. Brugger, F., Wicki, U., Olpe, H. R., Froestl, W., and Mickel, S. (1993) The action of new potent GABAB receptor antagonists in the hemisected spinal cord preparation of the rat. Eur. J. Pharmacol. 235, 153–155.PubMedCrossRefGoogle Scholar
  13. Burt, D. B. and Kamatchi, G. L. (1991) GABAA receptor subtypes: from pharmacology to molecular pharmacology. FASEB J. 5, 2916–2923.PubMedGoogle Scholar
  14. Conzelmann, U., Meyer, D. K., and Sperk, G. (1986) Stimulation of receptors of y-aminobutyric acid modulates the release of cholecystokinin-like immunoreactivity from slices of rat neostriatum. Br. J. Pharmacol. 89, 845–852.PubMedCrossRefGoogle Scholar
  15. Crawford, M. L. A. and Young, J. M. (1988) GABAB receptor-mediated inhibition of histamine H1-receptor-induced inositol phosphate formation in slices of rat cerebral cortex. J. Neurochem. 51, 1441–1447.PubMedCrossRefGoogle Scholar
  16. Davies, C. H., Starkey, S. J., Pozza, M. F., and Collingridge, G. L. (1991) GABAB autoreceptors regulate the induction of LTP. Nature 349, 609–611.PubMedCrossRefGoogle Scholar
  17. Doble, A. and Martin, I. L. (1992) Multiple benzodiazepine receptors: no reason for anxiety. Trends Pharmacol. Sci. 13, 76–81.PubMedCrossRefGoogle Scholar
  18. Dutar, P. and Nicoll, R. A. (1988a) A physiological role for GABAB receptors in the central nervous system. Nature 332, 156–158.PubMedCrossRefGoogle Scholar
  19. Dutar, P. and Nicoll, R. A. (1988b) Pre-and postsynaptic GABAB receptors in the hippocampus have different pharmacological properties. Neuron 1, 585–591.PubMedCrossRefGoogle Scholar
  20. Federman, A. D., Conklin, B. R., Schrader, K. A., Reed, R. R., and Bourne, H. R. (1992) Hormonal stimulation of adenylyl cyclase via G; protein ßy subunits. Nature 356, 159–161.PubMedCrossRefGoogle Scholar
  21. Godfrey, P. P., Grahame-Smith, D. G., and Gray, J. A. (1988) GABAB receptor activation inhibits 5-hydroxytryptamine-stimulated inositol phospholipid turnover in mouse cerebral cortex. Eur. J. Pharmacol. 152, 185–188.PubMedCrossRefGoogle Scholar
  22. Gray, J. A. and Green, A. R. (1987) GABAB receptor mediated inhibition of potassium-evoked release of endogenous 5-hydroxytryptamine from mouse frontal cortex. Br. J. Pharmacol. 91, 517–522.PubMedCrossRefGoogle Scholar
  23. Haga, K. and Haga, T. (1983) Affinity chromatography of the muscarinic acetylcholine receptor. J. Biol. Chem. 258, 13,575–13, 579.Google Scholar
  24. Hill, D. R. and Bowery, N. G. (1981) 3H-Baclofen and 3H-GABA bind to bicucullineinsensitive GABAB sites in rat brain. Nature 290, 149–152.Google Scholar
  25. Hill, D. R., Bowery, N. G., and Hudson, A. L. (1984) Inhibition of GABAB receptor binding by guanyl nucleotides. J. Neurochem. 42, 652–657.PubMedCrossRefGoogle Scholar
  26. Hirouchi, M., Mizutani, H., Nishikawa, M., Nakayasu, H., and Kuriyama, K. (1996) Functional analysis on GABAB receptor using a reconstituted system with purified GABAB receptor, G;/Go protein and adenylyl cyclase, in GABA: Receptors, Transporters and Metabolism ( Tanaka, C. and Bowery, N. G., eds.), Birkhauser, Basel, pp. 227–235.CrossRefGoogle Scholar
  27. Holopainen, I. Rau, C., and Wojcik, W. J. (1992) Proposed antagonists at GABAB receptors that inhibit adenylyl cyclase in cerebellar granule cell cultures of rat. Eup. J. Pharmacol. Mol. Pharmacol. Sec. 227 225–228.Google Scholar
  28. Holopainen, I. and Wojcik, W. J. (1993) A specific antisense oligonucleotide to mRNAs encoding receptors with seven transrmembrane spanning regions decreases muscarinic m2 and y-aminobutyric acidB receptors in rat cerebellar granule cells. J. Pharmacol. Exp. Ther. 264, 423–430.PubMedGoogle Scholar
  29. Holz, G. G., Rane, S. G., and Dunlap, K. (1986) GTP-binding proteins mediate transmitter inhibition of voltage-dependent calcium channels. Nature 319, 670–672.PubMedCrossRefGoogle Scholar
  30. Johnston, G. A. R. (1986) Multiplicity of GABA receptors, in Benzodiazepine/GABA receptors and chloride channels. Receptor biochemistry and methodology, vol. 5 ( Olsen, R. W. and Venter, J. C., eds.), Liss, New York, pp. 57–71.Google Scholar
  31. Karbon, E. W., Duman, R. S., and Enna, S. J. (1984) GABAB receptors and norepine- phrine-stimulated cAMP production in rat brain cortex. Brain Res. 306, 327–332.PubMedCrossRefGoogle Scholar
  32. Karbon, E. W. and Enna, S. J. (1985) Characterization of the relationship between y-aminobutyric acid B agonists and transmitter-coupled cyclic nucleotide-generating systems in rat brain. Mol. Pharmacol. 27, 53–59.PubMedGoogle Scholar
  33. Knott, C., Maguire, J. J., and Bowery, N. G. (1993) Age-related regional sensitivity to pertussis toxin-mediated reduction in GABAB receptor binding in rat brain. Mol. Brain Res. 18, 353–357.PubMedCrossRefGoogle Scholar
  34. Kuriyama, K., Kanmori, K., Taguchi, J., andYoneda,Y. (1984) Stress-induced enhancement of suppression of [3H]GABA release from striatal slices by presynaptic auto-receptor. J. Neurochem. 42, 943–950.Google Scholar
  35. Kuriyama, K., Mizutani, H., and Nakayasu, H. (1992) Purification and identification of 61 kilodalton GABA (y-aminobutyric acid)B receptor from bovine brain. Mol. Neuropharmacol. 2, 155–157.Google Scholar
  36. Kuriyama, K., Nakayasu, H., Hirouchi, M., Mizutani, H., Tsujimura, A., HashimotoGotoh, T., and Kimura, H. (1993) Purification and expression of GABAB receptor. J. Neurochem. 61 (Suppl), S236.Google Scholar
  37. Malcangio, M. and Bowery, N. G. (1993) GABAB receptor-mediated inhibition of forskolin- stimulated cyclic AMP accumulation in rat spinal cord. Neurosci. Lett. 158, 189–192.PubMedCrossRefGoogle Scholar
  38. Morishita, R., Kato, K., and Asano, T. (1990) GABAB receptors couple to G proteins Go, Go*, and G11 but not to G;2. FEBS Lett. 271, 231–235.PubMedCrossRefGoogle Scholar
  39. Mott, D. D. and Lewis, D. V. (1991) Facilitation of the induction of long-term potentiation by GABAB receptors. Science 252, 1718–1720.PubMedCrossRefGoogle Scholar
  40. Nakata, H. (1989) Purification of Al adenosine receptor from rat brain membranes. J. Biol. Chem. 264, 16,545–16, 551.Google Scholar
  41. Nakayasu, H., Mizutani, H., Hanai, K., Kimura, H., and Kuriyama, K. (1992) Monoclonal antibody to GABA binding protein, a possible GABAB receptor. Biochem. Biophys. Res. Commun. 182, 722–726.PubMedCrossRefGoogle Scholar
  42. Nakayasu, H., Nishikawa, M., Mizutcmi, H., Kimura, H., and Kuriyama, K. (1993) lmmunoaffinity purification and characterization of y-aminobutyric acid (GABA)B receptor from bovine cerebral cortex. J. Biol. Chem. 268, 8658–8664.Google Scholar
  43. Newberry, N. R. and Nicoll, R. A. (1984) Direct hyperpolarizing action of baclofen on hippocampal pyramidal cells. Nature 308, 450–452.PubMedCrossRefGoogle Scholar
  44. Ohmori, Y., Hirouchi, M., Taguchi, J., and Kuriyama, K. (1990) Functional coupling of y-aminobutyric acid, receptor with calcium ion channel and GTP-binding protein and its alteration following solubilization of the y-aminobutyric acid ß receptor. J. Neurochem. 54, 80–85.PubMedCrossRefGoogle Scholar
  45. Ohmori, Y. and Kuriyama, K. (1989) Negative coupling of y-aminobutyric acid (GABA)B receptor with phosphatidylinositol turnover in the brain. Neurochem. Int. 15, 359–363.PubMedCrossRefGoogle Scholar
  46. Ohmori, Y. and Kuriyama, K. (1990) Solubilization and partial purification of GABAB receptor from bovine brain. Biochem. Biophys. Res. Commun. 172, 22–27.PubMedCrossRefGoogle Scholar
  47. Olpe, H. R. and Karlsson, G. (1990) The effects of baclofen and two GABAB-receptor antagonists on long-term potentiation. Naunyn Schmiedeberg s Arch. Pharmacol. 342, 194–197.CrossRefGoogle Scholar
  48. Olpe, H. R., Worner, W., and Ferrat, T. (1993) Stimulation parameters determine role of GABAB receptors in long-term potentiation. Experentia 49, 542–546.CrossRefGoogle Scholar
  49. Pittaluga, A., Asaro, D., Pellegrini, G., and Raiteri, M. (1987) Studies on [3H]GABA and endogenous GABA release in rat cerebral cortex suggest the presence of autoreceptors of the GABAB type. Eur. J. Pharmacol. 144, 45–52.Google Scholar
  50. Raiteri, M., Pellegrini, G., Cantoni, C., and Bonanno, G. (1989) A novel type of GABA receptor in rat spinal cord? Naunyn Schmiedeberg’s Arch. Pharmacol. 340, 666–670.PubMedCrossRefGoogle Scholar
  51. Ramwani, J., and Mishra, R. K. (1986) Purification of bovine striatal dopamine D-2 receptor by affinity chromatography. J. Biol. Chem. 261, 8894–8898.PubMedGoogle Scholar
  52. Scherer, R. W., Ferkany, J. W., Karbon, E. W., and Enna, S. J. (1989) y-Aminobutyric acid ß receptor activation modifies agonist binding to [3-adrenergic receptors in rat brain cerebral cortex. J. Neurochem. 53, 989–991.Google Scholar
  53. Seabrook, G. R., Howson, W., and Lacey, M. G. (1991) Subpopulations of GABA- mediated synaptic potentials in slices of rat: dorsal striatum are differentially modulated by presynaptic GABAB receptors. Brain Res. 562, 332–334.PubMedCrossRefGoogle Scholar
  54. Sekiguchi, M., Sakuta, H., Okamoto, K., and Sakai, Y. (1990) GABAB receptors expressed in Xenopus oocytes by guinea pig cerebral mRNA are functionally coupled with Cat+-dependent Cl-channels and with K+ channels, through GTP-binding proteins. Mol. Brain Res. 8, 301–309.PubMedCrossRefGoogle Scholar
  55. Shimada, S., Cutting, G., and Uhl, G. R. (1992) y-Aminobutyric acid A or C receptor? yAminobutyric acid p l receptor RNA induces bicuculline-, barbiturate-, and benzodiazepine-insensitive y-aminobutyric acid responses in Xenopus oocytes. Mol. Pharmacol. 41, 683–687.Google Scholar
  56. Taguchi, J. and Kuriyama, K. (1984) Purification of y-aminobutyric acid (GABA) receptor from rat brain by affinity column chromatography using a new benzodiazepine, 1012-S, as an immobilized ligand. Brain Res. 323, 219–226.PubMedCrossRefGoogle Scholar
  57. Tang, W. J. and Gilman, A. G. (1991) Type specific regulation of adenylyl cyclase by G protein ßy subunits. Science 254, 1500–1503.PubMedCrossRefGoogle Scholar
  58. Taniyama, K., Takeda, K., Ando, H., Kuno, T., and Tanaka, C. (1991) Expression of the GABAB receptor in Xenopus oocytes and inhibition of the response by activation of protein kinase C. FEBS Lett. 278, 222–224.PubMedCrossRefGoogle Scholar
  59. Travagli, R. A., Ulivi, M., and Wojcik, W. J. (1991) y-Aminobutyric acid-B receptors inhibit glutamate release from cerebellar cells: consequences of inhibiting cyclic AMP formation and calcium influx. J. Pharmacol. Exp. Ther. 258, 903–909.Google Scholar
  60. Waldmeier, P. C., Wicki, P., Feldtrauer, J. J., and Baumann, P. A. (1988) Potential involvement of a baclofen-sensitive autoreceptor in the modulation of the release of endogenous GABA from rat brain slices in vitro. Naunyn Schmiedeberg’s Arch. Pharmacol. 337, 289–295.PubMedGoogle Scholar
  61. Wojcik, W. J., and Neff, N. H. (1984) y-Aminobutyric acid B receptors are negatively coupled to adenylate cyclase in brain, and in the cerebellum these receptors may be associated with granule cells. Mol. Pharmacol. 25, 24–28.Google Scholar
  62. Wojcik, W. J., Ulivi, M., Paez, X., and Costa, E. (1989) Islet-activating protein inhibits the ß-adrenergic receptor facilitation elicited by y-aminobutyric acid ß receptors. J. Neurochem. 53, 753–758.PubMedCrossRefGoogle Scholar
  63. Woodward, R. M. and Miledi, R. (1992) Sensitivity of Xenopus oocytes to changes in extracellular pH: possible relevance to proposed expression of atypical mammalian GABAB receptors. Mol. Brain Res. 16, 204–210.PubMedCrossRefGoogle Scholar
  64. Xu, J. and Wojcik, W. J. (1986) Gamma aminobutyric acid B receptor-mediated inhibition of adenylate cyclase in cultured cerebellar granule cells: blockade by islet-activating protein. J. Pharmacol. Exp. Ther. 239, 568–573.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • Kinya Kuriyama
  • Masaaki Hirouchi

There are no affiliations available

Personalised recommendations