Skip to main content

Biochemical and Molecular Properties of GABAB Receptors

  • Chapter
The GABA Receptors

Part of the book series: The Receptors ((REC))

  • 162 Accesses

Abstract

γ-Aminobutyric acid (GABA) is known as one of the major inhibitory neurotransmitters in the brain. GABA receptors are many, and are pharmacologically classified into two major subtypes, GABAA and GABAB. The GABAA receptor is well-characterized pharmacologically. Muscimol and bicuculline, which are, respectively, an agonist and an antagonist for the GABAA receptor, bind selectively to the GABAA. Various central acting drugs, such as benzodiazepines and barbiturates, also have binding sites within the GABAA receptor complex (Doble and Martin, 1992). In addition, the GABAA receptor consists of heterogeneous subunits, and functions as a Cl-channel (Burt and Kamatchi, 1991; see also Chapter 2 of this volume).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Andrade, R. (1993) Enhancement of (3-adrenergic responses by G,-linked receptors in rat hippocampus. Neuron 10, 83–88.

    Article  PubMed  CAS  Google Scholar 

  • Asano, T. and Ogasawara, N. (1986) Uncoupling of y-aminobutyric acid B receptors from GTP-binding proteins by N-ethylmaleimide: effect of N-ethylmaleimide on purified GTP-binding proteins. Mol. Pharmacol. 29, 244–249.

    PubMed  CAS  Google Scholar 

  • Asano, T., Ui, M., and Ogasawara, N. (1985) Prevention of the agonist binding to yaminobutyric acid B receptors by guanine nucleotides and islet-activating protein, pertussis toxin, in bovine cerebral cortex. J. Biol. Chem. 260, 12,653–12, 658.

    Google Scholar 

  • Bittiger, H., Froestl, W, Mickel, S. J., and Olpe, H. R. (1993) GABAB receptor antagonists: from synthesis to therapeutic applications. Trends Pharmacol. Sci. 14, 391–394.

    Article  PubMed  CAS  Google Scholar 

  • Bonanno, G., Gemignani, A., Fedele, E., Fontana, G., and Raiteri, M. (1991) y-Aminobutyric acid (GABAB) receptors mediate inhibition of somatostatin release from cerebrocortex nerve terminals. J. Pharmacol. Exp. Ther. 259, 1153–1159.

    Google Scholar 

  • Bonanno, G. and Raiteri, M. (1992) Functional evidence for multiple y-aminobutyric acids receptor subtypes in the rat cerebral cortex. J. Pharmacol. Exp. Ther. 262, 114–118.

    PubMed  CAS  Google Scholar 

  • Bonanno, G. and Raiteri, M. (1993a) y-Aminobutyric acid (GABA) autoreceptors in rat cerebral cortex and spinal cord represent pharmacologically distinct subtypes of the GABAB receptor. J. Pharmacol. Exp. Ther. 265, 765–770.

    Google Scholar 

  • Bonanno, G., and Raiteri, M. (1993b) Multiple GABAB receptors. Trends Pharmacol. Sci. 14, 259–261.

    Article  PubMed  CAS  Google Scholar 

  • Bormann, J. (1988) Electrophysiology of GABAA and GABAB receptor subtypes. Trends Neurosci. 11, 112–116.

    Article  PubMed  CAS  Google Scholar 

  • Bowery, N. G., Hill, D. R., Hudson, A. L., Doble, A., Middlemiss, D. N., Shaw, J., and Turnbull, M. (1980) (—)-Baclofen decreases neurotransmitter release in the mammalian CNS by an action at a novel GABA receptor. Nature 283, 92–94.

    Google Scholar 

  • Brown, E., Kendall, D. A., and Nahorski, S. R. (1984) Inositol phospholipid hydrolysis in rat cerebral cortical slices: I. Receptor characterization. J. Neurochem. 42, 1379 1387.

    Google Scholar 

  • Brugger, F., Wicki, U., Olpe, H. R., Froestl, W., and Mickel, S. (1993) The action of new potent GABAB receptor antagonists in the hemisected spinal cord preparation of the rat. Eur. J. Pharmacol. 235, 153–155.

    Article  PubMed  CAS  Google Scholar 

  • Burt, D. B. and Kamatchi, G. L. (1991) GABAA receptor subtypes: from pharmacology to molecular pharmacology. FASEB J. 5, 2916–2923.

    PubMed  CAS  Google Scholar 

  • Conzelmann, U., Meyer, D. K., and Sperk, G. (1986) Stimulation of receptors of y-aminobutyric acid modulates the release of cholecystokinin-like immunoreactivity from slices of rat neostriatum. Br. J. Pharmacol. 89, 845–852.

    Article  PubMed  CAS  Google Scholar 

  • Crawford, M. L. A. and Young, J. M. (1988) GABAB receptor-mediated inhibition of histamine H1-receptor-induced inositol phosphate formation in slices of rat cerebral cortex. J. Neurochem. 51, 1441–1447.

    Article  PubMed  CAS  Google Scholar 

  • Davies, C. H., Starkey, S. J., Pozza, M. F., and Collingridge, G. L. (1991) GABAB autoreceptors regulate the induction of LTP. Nature 349, 609–611.

    Article  PubMed  CAS  Google Scholar 

  • Doble, A. and Martin, I. L. (1992) Multiple benzodiazepine receptors: no reason for anxiety. Trends Pharmacol. Sci. 13, 76–81.

    Article  PubMed  CAS  Google Scholar 

  • Dutar, P. and Nicoll, R. A. (1988a) A physiological role for GABAB receptors in the central nervous system. Nature 332, 156–158.

    Article  PubMed  CAS  Google Scholar 

  • Dutar, P. and Nicoll, R. A. (1988b) Pre-and postsynaptic GABAB receptors in the hippocampus have different pharmacological properties. Neuron 1, 585–591.

    Article  PubMed  CAS  Google Scholar 

  • Federman, A. D., Conklin, B. R., Schrader, K. A., Reed, R. R., and Bourne, H. R. (1992) Hormonal stimulation of adenylyl cyclase via G; protein ßy subunits. Nature 356, 159–161.

    Article  PubMed  CAS  Google Scholar 

  • Godfrey, P. P., Grahame-Smith, D. G., and Gray, J. A. (1988) GABAB receptor activation inhibits 5-hydroxytryptamine-stimulated inositol phospholipid turnover in mouse cerebral cortex. Eur. J. Pharmacol. 152, 185–188.

    Article  PubMed  CAS  Google Scholar 

  • Gray, J. A. and Green, A. R. (1987) GABAB receptor mediated inhibition of potassium-evoked release of endogenous 5-hydroxytryptamine from mouse frontal cortex. Br. J. Pharmacol. 91, 517–522.

    Article  PubMed  CAS  Google Scholar 

  • Haga, K. and Haga, T. (1983) Affinity chromatography of the muscarinic acetylcholine receptor. J. Biol. Chem. 258, 13,575–13, 579.

    Google Scholar 

  • Hill, D. R. and Bowery, N. G. (1981) 3H-Baclofen and 3H-GABA bind to bicucullineinsensitive GABAB sites in rat brain. Nature 290, 149–152.

    Google Scholar 

  • Hill, D. R., Bowery, N. G., and Hudson, A. L. (1984) Inhibition of GABAB receptor binding by guanyl nucleotides. J. Neurochem. 42, 652–657.

    Article  PubMed  CAS  Google Scholar 

  • Hirouchi, M., Mizutani, H., Nishikawa, M., Nakayasu, H., and Kuriyama, K. (1996) Functional analysis on GABAB receptor using a reconstituted system with purified GABAB receptor, G;/Go protein and adenylyl cyclase, in GABA: Receptors, Transporters and Metabolism ( Tanaka, C. and Bowery, N. G., eds.), Birkhauser, Basel, pp. 227–235.

    Chapter  Google Scholar 

  • Holopainen, I. Rau, C., and Wojcik, W. J. (1992) Proposed antagonists at GABAB receptors that inhibit adenylyl cyclase in cerebellar granule cell cultures of rat. Eup. J. Pharmacol. Mol. Pharmacol. Sec. 227 225–228.

    Google Scholar 

  • Holopainen, I. and Wojcik, W. J. (1993) A specific antisense oligonucleotide to mRNAs encoding receptors with seven transrmembrane spanning regions decreases muscarinic m2 and y-aminobutyric acidB receptors in rat cerebellar granule cells. J. Pharmacol. Exp. Ther. 264, 423–430.

    PubMed  CAS  Google Scholar 

  • Holz, G. G., Rane, S. G., and Dunlap, K. (1986) GTP-binding proteins mediate transmitter inhibition of voltage-dependent calcium channels. Nature 319, 670–672.

    Article  PubMed  CAS  Google Scholar 

  • Johnston, G. A. R. (1986) Multiplicity of GABA receptors, in Benzodiazepine/GABA receptors and chloride channels. Receptor biochemistry and methodology, vol. 5 ( Olsen, R. W. and Venter, J. C., eds.), Liss, New York, pp. 57–71.

    Google Scholar 

  • Karbon, E. W., Duman, R. S., and Enna, S. J. (1984) GABAB receptors and norepine- phrine-stimulated cAMP production in rat brain cortex. Brain Res. 306, 327–332.

    Article  PubMed  CAS  Google Scholar 

  • Karbon, E. W. and Enna, S. J. (1985) Characterization of the relationship between y-aminobutyric acid B agonists and transmitter-coupled cyclic nucleotide-generating systems in rat brain. Mol. Pharmacol. 27, 53–59.

    PubMed  CAS  Google Scholar 

  • Knott, C., Maguire, J. J., and Bowery, N. G. (1993) Age-related regional sensitivity to pertussis toxin-mediated reduction in GABAB receptor binding in rat brain. Mol. Brain Res. 18, 353–357.

    Article  PubMed  CAS  Google Scholar 

  • Kuriyama, K., Kanmori, K., Taguchi, J., andYoneda,Y. (1984) Stress-induced enhancement of suppression of [3H]GABA release from striatal slices by presynaptic auto-receptor. J. Neurochem. 42, 943–950.

    CAS  Google Scholar 

  • Kuriyama, K., Mizutani, H., and Nakayasu, H. (1992) Purification and identification of 61 kilodalton GABA (y-aminobutyric acid)B receptor from bovine brain. Mol. Neuropharmacol. 2, 155–157.

    CAS  Google Scholar 

  • Kuriyama, K., Nakayasu, H., Hirouchi, M., Mizutani, H., Tsujimura, A., HashimotoGotoh, T., and Kimura, H. (1993) Purification and expression of GABAB receptor. J. Neurochem. 61 (Suppl), S236.

    Google Scholar 

  • Malcangio, M. and Bowery, N. G. (1993) GABAB receptor-mediated inhibition of forskolin- stimulated cyclic AMP accumulation in rat spinal cord. Neurosci. Lett. 158, 189–192.

    Article  PubMed  CAS  Google Scholar 

  • Morishita, R., Kato, K., and Asano, T. (1990) GABAB receptors couple to G proteins Go, Go*, and G11 but not to G;2. FEBS Lett. 271, 231–235.

    Article  PubMed  CAS  Google Scholar 

  • Mott, D. D. and Lewis, D. V. (1991) Facilitation of the induction of long-term potentiation by GABAB receptors. Science 252, 1718–1720.

    Article  PubMed  CAS  Google Scholar 

  • Nakata, H. (1989) Purification of Al adenosine receptor from rat brain membranes. J. Biol. Chem. 264, 16,545–16, 551.

    Google Scholar 

  • Nakayasu, H., Mizutani, H., Hanai, K., Kimura, H., and Kuriyama, K. (1992) Monoclonal antibody to GABA binding protein, a possible GABAB receptor. Biochem. Biophys. Res. Commun. 182, 722–726.

    Article  PubMed  CAS  Google Scholar 

  • Nakayasu, H., Nishikawa, M., Mizutcmi, H., Kimura, H., and Kuriyama, K. (1993) lmmunoaffinity purification and characterization of y-aminobutyric acid (GABA)B receptor from bovine cerebral cortex. J. Biol. Chem. 268, 8658–8664.

    Google Scholar 

  • Newberry, N. R. and Nicoll, R. A. (1984) Direct hyperpolarizing action of baclofen on hippocampal pyramidal cells. Nature 308, 450–452.

    Article  PubMed  CAS  Google Scholar 

  • Ohmori, Y., Hirouchi, M., Taguchi, J., and Kuriyama, K. (1990) Functional coupling of y-aminobutyric acid, receptor with calcium ion channel and GTP-binding protein and its alteration following solubilization of the y-aminobutyric acid ß receptor. J. Neurochem. 54, 80–85.

    Article  PubMed  CAS  Google Scholar 

  • Ohmori, Y. and Kuriyama, K. (1989) Negative coupling of y-aminobutyric acid (GABA)B receptor with phosphatidylinositol turnover in the brain. Neurochem. Int. 15, 359–363.

    Article  PubMed  CAS  Google Scholar 

  • Ohmori, Y. and Kuriyama, K. (1990) Solubilization and partial purification of GABAB receptor from bovine brain. Biochem. Biophys. Res. Commun. 172, 22–27.

    Article  PubMed  CAS  Google Scholar 

  • Olpe, H. R. and Karlsson, G. (1990) The effects of baclofen and two GABAB-receptor antagonists on long-term potentiation. Naunyn Schmiedeberg s Arch. Pharmacol. 342, 194–197.

    Article  CAS  Google Scholar 

  • Olpe, H. R., Worner, W., and Ferrat, T. (1993) Stimulation parameters determine role of GABAB receptors in long-term potentiation. Experentia 49, 542–546.

    Article  CAS  Google Scholar 

  • Pittaluga, A., Asaro, D., Pellegrini, G., and Raiteri, M. (1987) Studies on [3H]GABA and endogenous GABA release in rat cerebral cortex suggest the presence of autoreceptors of the GABAB type. Eur. J. Pharmacol. 144, 45–52.

    Google Scholar 

  • Raiteri, M., Pellegrini, G., Cantoni, C., and Bonanno, G. (1989) A novel type of GABA receptor in rat spinal cord? Naunyn Schmiedeberg’s Arch. Pharmacol. 340, 666–670.

    Article  PubMed  CAS  Google Scholar 

  • Ramwani, J., and Mishra, R. K. (1986) Purification of bovine striatal dopamine D-2 receptor by affinity chromatography. J. Biol. Chem. 261, 8894–8898.

    PubMed  CAS  Google Scholar 

  • Scherer, R. W., Ferkany, J. W., Karbon, E. W., and Enna, S. J. (1989) y-Aminobutyric acid ß receptor activation modifies agonist binding to [3-adrenergic receptors in rat brain cerebral cortex. J. Neurochem. 53, 989–991.

    Google Scholar 

  • Seabrook, G. R., Howson, W., and Lacey, M. G. (1991) Subpopulations of GABA- mediated synaptic potentials in slices of rat: dorsal striatum are differentially modulated by presynaptic GABAB receptors. Brain Res. 562, 332–334.

    Article  PubMed  CAS  Google Scholar 

  • Sekiguchi, M., Sakuta, H., Okamoto, K., and Sakai, Y. (1990) GABAB receptors expressed in Xenopus oocytes by guinea pig cerebral mRNA are functionally coupled with Cat+-dependent Cl-channels and with K+ channels, through GTP-binding proteins. Mol. Brain Res. 8, 301–309.

    Article  PubMed  CAS  Google Scholar 

  • Shimada, S., Cutting, G., and Uhl, G. R. (1992) y-Aminobutyric acid A or C receptor? yAminobutyric acid p l receptor RNA induces bicuculline-, barbiturate-, and benzodiazepine-insensitive y-aminobutyric acid responses in Xenopus oocytes. Mol. Pharmacol. 41, 683–687.

    Google Scholar 

  • Taguchi, J. and Kuriyama, K. (1984) Purification of y-aminobutyric acid (GABA) receptor from rat brain by affinity column chromatography using a new benzodiazepine, 1012-S, as an immobilized ligand. Brain Res. 323, 219–226.

    Article  PubMed  CAS  Google Scholar 

  • Tang, W. J. and Gilman, A. G. (1991) Type specific regulation of adenylyl cyclase by G protein ßy subunits. Science 254, 1500–1503.

    Article  PubMed  CAS  Google Scholar 

  • Taniyama, K., Takeda, K., Ando, H., Kuno, T., and Tanaka, C. (1991) Expression of the GABAB receptor in Xenopus oocytes and inhibition of the response by activation of protein kinase C. FEBS Lett. 278, 222–224.

    Article  PubMed  CAS  Google Scholar 

  • Travagli, R. A., Ulivi, M., and Wojcik, W. J. (1991) y-Aminobutyric acid-B receptors inhibit glutamate release from cerebellar cells: consequences of inhibiting cyclic AMP formation and calcium influx. J. Pharmacol. Exp. Ther. 258, 903–909.

    Google Scholar 

  • Waldmeier, P. C., Wicki, P., Feldtrauer, J. J., and Baumann, P. A. (1988) Potential involvement of a baclofen-sensitive autoreceptor in the modulation of the release of endogenous GABA from rat brain slices in vitro. Naunyn Schmiedeberg’s Arch. Pharmacol. 337, 289–295.

    PubMed  CAS  Google Scholar 

  • Wojcik, W. J., and Neff, N. H. (1984) y-Aminobutyric acid B receptors are negatively coupled to adenylate cyclase in brain, and in the cerebellum these receptors may be associated with granule cells. Mol. Pharmacol. 25, 24–28.

    Google Scholar 

  • Wojcik, W. J., Ulivi, M., Paez, X., and Costa, E. (1989) Islet-activating protein inhibits the ß-adrenergic receptor facilitation elicited by y-aminobutyric acid ß receptors. J. Neurochem. 53, 753–758.

    Article  PubMed  CAS  Google Scholar 

  • Woodward, R. M. and Miledi, R. (1992) Sensitivity of Xenopus oocytes to changes in extracellular pH: possible relevance to proposed expression of atypical mammalian GABAB receptors. Mol. Brain Res. 16, 204–210.

    Article  PubMed  CAS  Google Scholar 

  • Xu, J. and Wojcik, W. J. (1986) Gamma aminobutyric acid B receptor-mediated inhibition of adenylate cyclase in cultured cerebellar granule cells: blockade by islet-activating protein. J. Pharmacol. Exp. Ther. 239, 568–573.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kuriyama, K., Hirouchi, M. (1997). Biochemical and Molecular Properties of GABAB Receptors. In: Enna, S.J., Bowery, N.G. (eds) The GABA Receptors. The Receptors. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-4757-2597-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-2597-1_9

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-4757-2599-5

  • Online ISBN: 978-1-4757-2597-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics