Cellular and Biochemical Responses to GABAB Receptor Activation

  • Martin Cunningham
  • S. J. Enna
Part of the The Receptors book series (REC)

Abstract

The GABAB receptor was first identified with the characterization of a bicuculline-insensitive, GABA-mediated inhibition of transmitter release from peripheral and central nervous system (CNS) tissue (Bowery and Hudson, 1979; Bowery et al., 1980). The identification of baclofen as the prototypical GABAB receptor agonist provided a plausible mechanism of action for an agent used clinically for some time. These discoveries led to the development of potent and selective GABAB receptor agonists and antagonists which have, in turn, been crucial in characterizing the molecular, biochemical, electrophysiological, and behavioral responses associated with the GABAB receptor system (Bowery, 1993; Froestl et al., 1995a,b).

Keywords

Adenylate Cyclase Adenylyl Cyclase Phorbol Ester Pertussis Toxin GABAB Receptor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Albright, A. L., Barrow, W. B., Fasick, M. P., Polinko, P., and Janosky, J. (1993) Continuous intrathecal baclofen infusion for spasticity of cerebral origin. J. Am. Med. Assoc 270, 2475–2477.Google Scholar
  2. Amico, C., Marchetti, C., Nobile, M., and Usai, C. (1995) Pharmacological types of calcium channels and their modulation by baclofen in cerebellar granules. J. Neurosci 15, 2839–2848.PubMedGoogle Scholar
  3. Andrade, R., Malenka, R. C., and Nicoll, R. R. (1986) A G protein couples serotonin and GABAB receptors to the same channels in hippocampus. Science 234, 1261–1265.PubMedGoogle Scholar
  4. Arias-Montano, J. A., Martinez-Fong, D., and Aceves, J. (1991) Gamma-aminobutyric acid (GABAB) receptor-mediated inhibition of tyrosine hydroxylase activity in the stratum of rat. Neuropharmacology 30, 1047.PubMedGoogle Scholar
  5. Asano, T., Ui, M., and Ogasawara, N. (1985) Prevention of the agonist binding to gammaaminobutyric acid B receptors by guanine nucleotides and islet-activating protein, pertussis toxin, in bovine cerebral cortex. Possible coupling of the toxin-sensitive GTP binding proteins to receptors. J. Biol. Chem. 260, 12,653–12, 658.Google Scholar
  6. Bartschat, D. K. and Rhodes, T. E. (1995) Protein kinase C modulates calcium channels in isolated presynaptic nerve terminals of rat hippocampus. J. Neurochem 64, 2064–2072.Google Scholar
  7. Belvisi, M. G., Ichinose, M., and Barnes, P. J. (1989) Modulation of non-adrenergic, noncholinergic neural bronchoconstriction in guinea pig airways via GABAB receptors. Br. J. Pharmacol 97, 1225–1231.PubMedGoogle Scholar
  8. Bernasconi, R., Lauber, J., Marescaux, C., Vergnes, M., Markin, P., Rubic, V., Leonchardt, T., Reymann, N., and Bettiger, H. (1992) Experimental absence seizures: potential role of gamma-hydroxybutyric acid and GABAB receptors. J. Neuron Trans 35 (Suppl.), 155–177.Google Scholar
  9. Birnbaumer, L. (1992) Receptor-to-effector signaling through G proteins: roles for beta gamma dimers as well as alpha subunits. 71, 1069–1072.Google Scholar
  10. Boiser, D. C., DeGennaro, F. C., O’Reilly, S., Chapman, R. W., Kreutner, W. S., Egan, R. W., and Hey, J. A. (1994) Peripheral and central sites of action of GABA-B agonists to inhibit the cough reflex in the cat and guinea pig. Br. J. Pharmacol 113, 1344–1348.Google Scholar
  11. Bonanno, G., Gemignani, A., Fedele, E., Fontana, G., and Raiteri, M. (1991) Gammaaminobutyric acid B receptors mediate inhibition of somatostatin release from cerebrocortex nerve terminals. J Pharmacol. Exp. Ther 259, 1153–1157.PubMedGoogle Scholar
  12. Bonnano, G. and Raiteri, M. (1992) Functional evidence for multiple gamma-aminobutyric acid B receptor subtypes in the rat cerebral cortex. J. Pharmacol. Exp. Ther 262, 114–118.Google Scholar
  13. Bonnano, G. and Raiteri, M. (1993) Gamma-anninobutyric acid (GABA) autoreceptors in rat cerebral cortex and spinal cord represent pharmacologically distinct subtypes of the GABAB receptor. J. Pharmacol. Exp. Ther 265, 765–770.Google Scholar
  14. Bourne, H. R., Lustig, K. D., Wong, V. H., and Conklin, B. R. (1992) Detection of coincident signals by G proteins and adenylyl cyclase. Cold Spring Harb. Symp. Quant. Biol 57, 145–148.PubMedGoogle Scholar
  15. Bowery, N. G. (1993) GABAB receptor pharmacology. Ann. Rev. Pharmacol. 33, 109–147.Google Scholar
  16. Bowery, N. G. Bittiger, H., and Olpe, H.-R. eds. (1993) GABAB Receptors in Mammalian Function, John Wiley, New York.Google Scholar
  17. Bowery, N. G., Hill, D. R., Hudson, A. L., Doble, A., Middlemiss, D. N., Shaw, J., and Turnbull, M. (1980) (—)Baclofen decreases neurotransmitter release in the mammalian CNS by an action at a novel GABA receptor. Nature 283 92–94.Google Scholar
  18. Bowery, N. G., Hill, D. R., and Moratalla, R. (1989) Neurochemistry and autoradiography of GABAB receptors in mammalian brain: second messenger system(s), in Allosteric Modulation of Amino Acid Receptor: Therapeutic Implications (Barnard, E. A. and Cost, A., eds.), Raven, New York, pp. 159–172.Google Scholar
  19. Bowery, N. G. and Hudson, A. L. (1979) y-Aminobutyric acid reduces the evoked release of 3H-noradrenaline from sympathetic nerve terminals. Br. J. Pharmacol 66 108P.Google Scholar
  20. Campbell, V., Berrow, N., and Dolphin, A. C. (1993) GABAB receptor modulation of CA2+ currents in rat sensory neurones by the G protein G (0): antisense oligonucleotide studies../. Physiol. Lond 470, 1–11.Google Scholar
  21. Campbell, V., Berrow, N., Brickley, K., Page K., Wade, R., and Dolphin, A. C. (1995) Voltage-dependent calcium channel beta-subunits in combination with alpha 1 subunits, have a GTPase activating effect to promote the hydrolysis to GTP by G alpha 0 in rat frontal cortex. FEBS Lett. 370, 135–140.PubMedGoogle Scholar
  22. Chabre, O., Conklin, B. R., Brandon, S., Bourne, H. R., and Limbird, L. E. (1994) Coupling of the alpha 2A-adrenergic receptor to multiple G-proteins. A simple approach for estimating receptor-G-protein coupling efficacy in a transient expression system. J Biol. Chem 5730–5734.Google Scholar
  23. Chapman, R. W., Hey, J. A., Rizzo, C. A., Kreutner, W., and Bolser, D. C. (1993) GABAB receptors in the lung. Trends Pharmacol. Sci 14, 26–29.PubMedGoogle Scholar
  24. Charpentier, N., Prezeau, L., Carrette, J., Bertorelli, R., Le Cam, G., Manzoni, O., Bockaert, J., and Homburger, V. (1993) Transfected Go 1 alpha inhibits the calcium dependence of beta-adrenergic stimulated cAMP accumulation in C6 glioma cells. J. Biol. Chem 268, 8980–8989.PubMedGoogle Scholar
  25. Chen, J. and Iyengar, R. (1993) Inhibition of cloned adenylyl cyclases by mutant-activated Gi-alpha and specific suppression of type 2 adenylyl cyclase inhibition by phorbol ester treatment. J. Biol. Chem. 168, 12,253–12, 256.Google Scholar
  26. Conklin, B. R., Rarfel, Z., Lustig, K. D., Julius, D., and Bourne, H. R. (1993) Substitution of three amino acids switches receptor specificity of Gq alpha to that of Gi alpha. Nature 363, 274–276.PubMedGoogle Scholar
  27. Conzelmann, U., Meyer, D. K., and Sperk, G. (1986) Stimulation of receptors of gammaaminobutyric acid modulates the release of cholecystokinin-like immunoactivity from slices of rat neostriatum. Br. J. Pharmacol 89, 845–852.PubMedGoogle Scholar
  28. Corradotti, R., Ruggiero, M., Chiarugi, V. P., and Pepeu, G. (1987) GABA-receptor stimulation enhances norepinephrine-induced polyphosphoinositide metabolism in rat hippocampal slices. Brain Res. 411, 196–199.Google Scholar
  29. Coupry, I., Duzic, E., and Lanier, S. M. (1992) Factors determining the specificity of signal transduction by guanine nucleotide-binding protein-coupled receptors. II. Preferential coupling of the alpha 2C-adrenergic receptor for the guanine nucleotide-binding protein, Go. J. Biol. Chem 267, 9852–9857.PubMedGoogle Scholar
  30. Crawford, M. L. and Young, J. M. (1988) GABAB receptor-mediated inhibition of histamine Hl-receptor-induced inositol phosphate fotmation in slices of rat cerebral cortex. J. Neurochem 51, 1441–1447.PubMedGoogle Scholar
  31. Cunningham, M. D. and Enna, S. J. (1996) Evidence for pharmacologically distinct GABAB receptors associated with cAMP production in rat brain. Brain Res. 720, 220–224.PubMedGoogle Scholar
  32. Demaziere, J., Saissy, J. M., Vitris, M., Seck, M., Marcoux, L., and Ndiaye, M. (1991) Intermittent intrathecal baclofen for severe tetanus. Lancet 337, 427.PubMedGoogle Scholar
  33. Dolphin, A. C., McGuirk, S. M., and Scott, R. H. (1989) An investigation into the mechanisms of inhibition of calcium channel currents in cultured sensory neurones of the rat by guanine nucleotide analogues and (—)-baclofen. Br. J. Pharmacol 97, 263–273.PubMedGoogle Scholar
  34. Duman, R. S., Karbon, E. W., Harrington, C., and Enna, S. J. (1986) An examination of the involvement of phospholipases A2 and C in the alpha-adrenergic and gammaaminobutyric acid receptor modulation of cyclic AMP accumulation in rat brain slices. J. Neurochem 47, 800–810.PubMedGoogle Scholar
  35. Dutar, P., and Nicoll, R. A. (1988) A physiological role for GABAB receptors in the central nervous system. Nature 332 156–158.Google Scholar
  36. Duzic, E., Coupry, I., Downing, S., and Lanier, S. M. (1992) Factors determining the specificity of signal transduction by guanine nucleotide-binding protein-coupled receptors. I. Coupling of alpha 2-adrenergic receptor subtypes to distinct G-proteins. J. Biol. Chem 267, 9844–9851.PubMedGoogle Scholar
  37. Duzic, E. and Lamer, S. M. (1992) Factors determining the specificity of signal transduction by guanine-nucleotide binding protein-coupled receptors. III Coupling of alpha 2-adrenergic receptor subtypes in a cell type-specific manner. J. Biol. Chem. 267, 24,095–24, 052.Google Scholar
  38. Enna, S. J. (1993) Gamma-aminobutyric acid A receptor-subunits in the mediation of selective drug action. Curr. Opin. Neurol. Neurosurg 6, 597–601.PubMedGoogle Scholar
  39. Fassio, A., Bonanno, G., Cavazzani, R and Raiteri, M. (1994) Characterization of the GABA autoreceptor in human neocortex as as pharmacological subtype of the GABAB receptor. Eur. J. Pharmacol 263, 311–314.PubMedGoogle Scholar
  40. Federman, A. D., Conklin, B. R., Schrader, K. A., Reed, R. R., and Bourne, H. R. (1992) Hormonal stimulation of adenylyl cyclase through Gi-protein beta gamma subunits. Nature 356, 154–161.Google Scholar
  41. Feinstein, P. G., Schrader, K. A., Bakalyav, H. A., Tang, W. J., Krupinski, J., Gilman, A. G., and Reed, R. R. (1991) Molecular cloning and characterization of a Ca2+/calmodulininsensitive adenylyl cyclase from rat brain. Proc. Natl. Acad. Sci. USA 88, 10,173–10,177.Google Scholar
  42. File, S. E., Charkovsky, A., and Hitchcott, P. K. (1992) Effects of nitrendipine, chlordiazepoxide, flumazenil and baclofen on the increased anxiety resulting from ethanol withdrawal. Prog. Neuropsychopharmacol. Biol. Psychiat 16, 87–93.Google Scholar
  43. Froestl, W., Mickel, S. J., Hall, R. G., von Sprecher, G., Strub, D., Baumann, P. A., Brugger, F., Gentsch, C., Jaekel, J., Olpe, H.-R., Rihs, G., Vassout, A., Waldmeier, R C., and Bittiger, H. (1995a) Phosphinic acid analogues of GABA. 1. New potent and selective GABAB agonists. J. Med. Chem 38 3297–3312.Google Scholar
  44. Froestl, W., Mickel, S. J., von Sprecher, G., Diel, P. J., Hall, R. G., Maier, L., Strub, D., Melillo, V., Baumann, P. A., Bernasconi, R., Gentsch, C., Hauser, K., Jaekel, J., Karlsson, G., Klebs, K., Maitre, L., Marescaux, C., Pozza, M. F., Schmutz, M., Steinmann, M. W., van Riezen, H., Vassout, A., Mondadori, C., Olpe, H.-R., Waldmeier, R. C., and Bittiger, H. (1995b) Phosphinic acid analogues of GABA. 2. Selective, orally active GABAB antagonists. J. Med. Chem 38, 3313–3331.PubMedGoogle Scholar
  45. Fromm, G. H., Aumentado, D., and Terrence, C. F. (1993) A clinical and experimental investigation of the effects of tizanidine in trigeminal neuralgia. Pain 53, 265–271.PubMedGoogle Scholar
  46. Gao, B. and Gilman, A. G. (1991) Cloning and expression of a widely distributed (type IV) adenylyl cyclase. Proc. Natl. Acad. Sci. USA 88, 10,178–10, 182.Google Scholar
  47. Gerber, U. and Gähwiler, B. H., (1994) GABAB and adenosine receptors mediate enhancement of the K+ current, IAHP, by reducing adenylyl cyclase activity in rat CA3 hippocampal neurons. J. Neurophysiol 72 2360–2367.Google Scholar
  48. Godfrey, P. P., Grahame-Smith, D. G., and Gray, J. A. (1988) GABAB receptor activation inhibits 5-hydroxytryptamine-stimulated inositol phospholipid turnover in mouse cerebral cortex. Eur. J. Pharmacol 152, 185–188.PubMedGoogle Scholar
  49. Gray, J. A. and Green, A. R. (1987) GABAB-receptor mediated inhibition of potassium-evoked release of endogenous 5-hydroxytryptamine from mouse frontal cortex. Br. J. Pharmacol 91, 517–522.PubMedGoogle Scholar
  50. Guiramand, J., Montmayeur, J. P., Ceraline, J., Bhatia, M., and Borrelli, E. (1995) Alternative splicing of the dopamine D2 receptor directs specificity of coupling to G-proteins. J. Biol. Chem 270, 7354–7358.PubMedGoogle Scholar
  51. Gumulka, S. W., Dinnendahl, V., and Schowhofer, R S. (1979) Baclofen and cerebellar cycle GMP levels in mice. Pharmacology 19, 75–81.PubMedGoogle Scholar
  52. Hahner, L., McQuilken, S., and Harris, R. A. (1991) Cerebellar GABAB receptors modulate function of GABA receptors. FASEB J. 5, 2466–2472.PubMedGoogle Scholar
  53. Harish, O. E. and Role, L. W. (1992) Activation of phosphoinositide turnover and protein kinase C by neurotransmitters that modulate calcium channels in embryonic chick sensory neurons. Int. i Dey. Neurosci 10, 421–433.Google Scholar
  54. Hepler, J. R. and Gilman, A. G. (1992) G proteins. Trends Biochem. Sci. 17, 383–387.PubMedGoogle Scholar
  55. Hill, D. R. (1985) GABAB receptor modulation of adenylate cyclase activity in rat brain slices. Br. J. Pharmacol 84, 249–257.PubMedGoogle Scholar
  56. Hill, D. R., Bowery, N. G., and Hudson, A. L. (1984) Inhibition of GABAB receptor binding by guanyl nucleotides. J. Neurochem 42, 652–657.PubMedGoogle Scholar
  57. Hirata, K., Ohno-Shosaku, T., Sawada, S., and Yamamoto, C. (1995) Baclofen inhibits GABAergic transmission after treatment with type-specific calcium channel blockers in cultural rat hippocampal neurons. Neurosci. Lett 187, 205–208.PubMedGoogle Scholar
  58. Hirsch, J. C. and Burnod, Y. (1987) A synaptically evoked late hyperpolarization in the rat dorsolateral geniculate neurons in vitro. Neuroscience 23, 457–468.PubMedGoogle Scholar
  59. Hoehn, K., Reid, A., and Sawynok, J. (1988) Pertussis toxin inhibits antinociception produced by intrathecal injection of morphine, noradrenaline and baclofen. Eur. J. Pharmacol 146, 65–72.PubMedGoogle Scholar
  60. Huston, E., Cullen, G., Sweeney, M. I., Pearson, H., Fazeli, M. S., and Dolphin, C. (1993) Pertussis toxin treatment increases glutamate release and dihydropyridine binding sites in cultured rat cerebellar granule neurons. Neuroscience 52, 787–798.PubMedGoogle Scholar
  61. Huston, E., Scott R. H., and Dolphin, A. C. (1990) A comparison of the effect of calcium channel ligands and GABAB agonists and antagonists on transmitter release and somatic calcium channel currents in cultured neurons. Neuroscience 38, 721–729.PubMedGoogle Scholar
  62. Inoue, M. and Imanaga, I. (1995) Phosphatase is responsible for run down, and probably G protein-mediated inhibition of inwardly rectifying K+ currents in guinea pig chromaffin cells. J. Gen. Physiol 105, 249–266.PubMedGoogle Scholar
  63. Ishikawa, Y., Amano, I., Eguchi, T., and Ishida, H. (1995) Mechanism of isoproterenolinduced heterologous desensitization of mucin secretion from rat submandibular glands. Regulation of phosphorylation of Gi proteins controls the cell response to the subsequent stimulation. Biochim. Biophys. Acta 1265, 173–180.PubMedGoogle Scholar
  64. Iyengar, R. (1993) Multiple families of GS regulated adenylyl cyclases. Adv. Second Messenger Phosphoprot. Res 28, 27–36.Google Scholar
  65. Jacobowitz, O., Chen, J., Premont, R. T., and Iyengar, R. (1993) Stimulation of specific types of GS stimulated adenylyl cyclases by phorbol ester treatment. J. Biol. Chem 268, 3829–3832.PubMedGoogle Scholar
  66. Jarolimek, W., Demmelhuber, J., Bijak, M., and Misgeld, U. (1993) CGP55845A blocks baclofen, gamma-aminobutyric acid and inhibitory postsynaptic potassium currents in guinea pig CA3 neurons. Neurosci. Lett 154, 31–34.PubMedGoogle Scholar
  67. Kamatchi, G. L. and Ticku, M. K. (1990) Functional coupling of presynaptic GABAB receptors with voltage-gated CA2+ channel: regulation by protein kinases A and C in cultured spinal cord neurons. Mol. Pharmacol 38, 342–347.PubMedGoogle Scholar
  68. Karbon, E. W., Duman, R. S., and Enna, S. J. (1984) GABAB receptors and norepineph- rine stimulated cAMP production in rat brain cortex. Brain Res 306 327–332.Google Scholar
  69. Karbon, E. W. and Enna, S. J. (1985) Characterization of the relationship between gammaaminobutyric acid B agonists and transmitter-coupled cyclic nucleotide-generating systems in rat brain. Mol. Pharmacol 27, 53–59.PubMedGoogle Scholar
  70. Karbon, E. W., Shenolikar, S., and Enna, S. J. (1986) Phorbol esters enhance neurotransmitter stimulated cyclic AMP production in rat brain slices. J. Neurochem 47, 15661575.Google Scholar
  71. Kardos, J., Elster, L., Damgaard, I., Krogsgaard-Larsen, P., and Schousbe, A. (1994) Role of GABAB receptors in intracellular Ca2+ homeostasis and possible interaction between GABA and GABAB receptors in regulation of transmitter release in cerebellar granule neurons. J. Neurosci. Res 39, 645–655.Google Scholar
  72. Katada, T., Gilman, A. G., Watanabe, Y., Bauer, S., and Jakobs, H. (1985) Protein kinase C phosphorylates the inhibitory guanine-nucleotide-binding regulatory component and apparently suppresses its function in hormonal inhibition of adenylate cyclase. Eur. J. Biochem 151, 431–437.PubMedGoogle Scholar
  73. Klapstein, G. J. and Colmers, W. F. (1992) 4-Aminopyridine and low Ca“ differentiate presynaptic inhibition mediated by neuropeptide Y, baclofen and 2-chloroadenosine in rat hippocampal CA1 in vitro. Br. J. Pharmacol 105 470-ß474.Google Scholar
  74. Kleuss, C., Hescheler, J., Ewel, C., Rosenthal, W., Schultz, G., and Wittig, B. (1991) Assignment of G-protein subtypes to specific receptors inducing inhibition of calcium currents. Nature 353, 43–48.PubMedGoogle Scholar
  75. Kleuss, C., Scherubl, H., Hescheler, J., Schultz, G., and Wittig, B. (1992) Different beta-subunits determine G-protein interaction with transmembrane receptors. Nature 358, 424–426.PubMedGoogle Scholar
  76. Kleuss, C., Scherubl, H., Hescheler, J., Schultz, G., and Wittig, B. (1993) Selectivity in signal transduction determined by gamma subunits of heterotrimeric G proteins. Science 254 832–834.Google Scholar
  77. Knott, C., Maguire, J. J., and Bowery, N. C. (1993) Age-related regional selectivity to pertussis toxin-mediated reduction in GABAB receptor binding in rat brain. Brain Res. 18, 353–357.Google Scholar
  78. Lanza, M., Fassio, A, Gemingnani, A., Bonalmo, G., and Raiteri, M. (1993) CGP52432: a novel potent and selective GABAB autoreceptor antagonist in rat cerebral cortex. Eur. J. Pharmacol 237, 191–195.PubMedGoogle Scholar
  79. Li, X. H., Song, L., and Jope, R. S. (1990) Modulation of phòsphoinositide metabolism in rat brain slices by excitatory amino acids, arachidonic acid, and GABA. Neurochem. Res 15, 725–738.PubMedGoogle Scholar
  80. Logothetis, D. E., Kurachi,Y., Galper, J., Neer, E. J., and Clapham, D. E. (1987) The beta gamma subunits of GTP-binding proteins activate the muscarinic K. channel in heart. Nature 325 321–326.Google Scholar
  81. Lovinger, D. M., Harrison, N. L., and Lambert, N. A. (1992) The actions of 3aminopropanephosphinic acid at GABAB receptors in rat hippocampus. Eur. J. Pharmacol 211, 337–341.PubMedGoogle Scholar
  82. Mailman, R. B., Mueller, R. A., and Breese, G. R. (1978) The effect of drugs which alter GABA-ergic function on cerebellar guanosine-3’,5’-monophosphate content. Life Sci. 23, 623–627.PubMedGoogle Scholar
  83. Malcangio, M. and Bowery, N. G. (1992) Effect of (-)-baclofen on cAMP formation in rat spinal cord slices. Br. J. Pharmacol 106, 31 P.Google Scholar
  84. Marescaux, C., Vergnes, M., and Bernasconi, R. (1992) GABAB receptor antagonists: potential new anti-absence drugs. J. Neurol. Trans. Suppl 35, 179–188.Google Scholar
  85. Masotto, C., Wisniewski, G., and Negro-Vilar, A. (1989) Different gamma-amino-butyricacid receptor subtypes are involved in the regulation of opiate-dependent and independent luteinizing hormone-releasing hormone secretion. Endocrinology 125, 548–553.PubMedGoogle Scholar
  86. Mayfield, R. D. and Zahniser, N. R. (1993) Endogenous GABA release from rat striatal slices: effects of the GABAB receptor antagonist 2-hydroxy-saclofen. Synapse 14, 16–23.PubMedGoogle Scholar
  87. Mintz, I. M. and Bean, B. P. (1993) GABAB receptor inhibition of P-type Ca2+ channels in central neurons. Neuron 10, 889–898.PubMedGoogle Scholar
  88. Mondadori, C., Jaekel, J., and Preiswork, G. (1993) CGP 36742: the first orally active GABAB blocker improves the cognitive performance of mice, rats, and rhesus monkeys. Behay. Neurol. Biol 60, 62–68.Google Scholar
  89. Mons, N. and Cooper, D. M. (1995) Adenylate cyclases: critical foci in neuronal signaling. Trends Neurosci. 18, 536–542.PubMedGoogle Scholar
  90. Mons, N., Harry, A., Dubourg, P., Premont, R. T., Iyengar, R., and Cooper, D. M. (1995) Immunohistochemical localization of adenylyl cyclase in rat brain indicates a highly selective concentration at synapses. Proc. Natl. Acad. Sci. USA 92, 8473–8477.PubMedGoogle Scholar
  91. Morishita, R., Kato, K., and Asano, T. (1990) GABAB receptors couple to G proteins Go, Go* and G11 but not to G12. FEBS Lett. 271, 231–235.PubMedGoogle Scholar
  92. Mott, D. D. and Lewis, D. V. (1991) Facilitation of the induction of long-term potentiation by GABAB receptors. Science 252, 1718–1720.PubMedGoogle Scholar
  93. Nakayasu, H., Mizutani, H., Hanai, K., Kimura, H., and Kuriyama, K. (1992) Monoclonal antibody to GABA binding protein, a possible GABAB receptor. Biochem. Biophys. Res. Comm 182 722–726.Google Scholar
  94. Nakayasu, H., Nishikawa, M., Mizutani, H., Kimura, H., and Kuriyama, K. (1993) Immunoaffinity purification and characterization of gamma-aminobutyric acid (GABA)B receptor from bovine cerebral cortex. J. Biol. Chem 268, 8658–8664.PubMedGoogle Scholar
  95. Nishikawa, M. and Kuriyama, K. (1989) Functional coupling of cerebral y-aminobutyric acid (GABAB) receptors with the adenylate cyclase system: effect of phaclofen. Neurochem. Int 14, 85–90.PubMedGoogle Scholar
  96. Nishikawa, T., Scatton, B., Inomoto, T., Shinohava, K., and Takahashi, K. (1989) Modulation of striatal serotonin metabolism by baclofen, a gamma-aminobutyric acid B receptor agonist. Tokai J. Exp. Clin. Med 14, 375–380.PubMedGoogle Scholar
  97. Nockels, R. and Young, W. (1992) Pharmacologic strategies in the treatment of experimental spinal cord injury. J. Neurotrauma 9 S211—S217.Google Scholar
  98. Ogino, Y., Fraser, C. M., and Costa, T. (1992) Selective interaction of beta 2- and alpha 2-adrenergic receptors with stimulatory and inhibitory guanine nucleotide-binding proteins. Mol. Pharmacol 42, 6–9.PubMedGoogle Scholar
  99. Ohmori, Y., Hirouchi, M., Taguchi, J., and Kuriyama, K. (1990) Functional coupling of the gamma-aminobutyric acid B receptor with calcium ion channel and GTP-binding protein and its alteration following solubilization of the gamma-aminobutyric acid B receptor. J. Neurochem 54 80–85.Google Scholar
  100. Ohmori, Y. and Kuriyama, K. (1991) Pharmacological and biochemical characteristics of partially purified GABAB receptor. Neurochem. Res 16, 357–362.PubMedGoogle Scholar
  101. Okuhara, D. Y. and Beck, S. G. (1994) 5-HT IA receptor linked to inward-rectifying potassium current in hippocampal CA3 pyramidal cells. J. Neurophysiol 71 21612167.Google Scholar
  102. Olpe, H. R., Steinmann, M. W., Ferrat, T., Pozza, M. F., Greiner, K., Bragger, F., Froestl, W., Mickel, S. J. and Bittiger, H. (1993) The actions of orally active GABAB receptor antagonists on GABAergic transmission in vivo and in vitro. Eur. J. Pharmacol 233 179–186.Google Scholar
  103. Ong, J. and Kerr, D. I. B. (1984) Evidence for a physiological role of GABA in the control of guinea pig intestinal motility. Neurosci. Lett 50, 339–343.PubMedGoogle Scholar
  104. Oset-Gasque, M. J., Parramon, M., and Gonzalez, M. P. (1993) GABAB receptors modulate catecholamine secretion in chromaffin cells by a mechanism involving cyclic AMP formation. Br. J. Pharmacol 110, 1586–1592.PubMedGoogle Scholar
  105. Parmar, B. S., Shah, K. H., and Gandhi, I. C. (1989) Baclofen in trigeminal neuralgia—a clinical trial. Indian J. Dent. Res 1 109–113.Google Scholar
  106. Pende, M., Lanza, M., Bonnano, G., and Railteri, M. (1993) Release of endogenous glutamic and aspartic acids from cerebrocortex synaptosomes and its modulation through activation of a gamma-aminobutyric acid B (GABAB) receptor subtype. Brain Res. 604, 325–330.PubMedGoogle Scholar
  107. Penn, R. D. (1992) Intrathecal baclofen for spasticity of spinal origin: seven years of experience. J. Neurosurg 77, 236–240.PubMedGoogle Scholar
  108. Pfrieger, F. W., Gottmann, K., and Lux, H. D. (1994) Kinetics of GABAB receptor-mediated inhibition of calcium currents and excitatory synaptic transmission in hippocampal neurons in vitro. Neuron 12 979– 107.Google Scholar
  109. Pieroni, J. P., Jacobowitz, O., Chen, J., and Iyengar, R. (1993) Signal recognition and integration by Gs-stimulated adenylyl cyclase. Curr. Opin. Neurobiol 3 345–351.Google Scholar
  110. Pitler, T. A. and Alger, B. E. (1994) Differences between presynaptic and postsynaptic GABAB mechanisms in rat hippocampal pyramidal cells. J. Neurophysiol 72, 2317–2332.PubMedGoogle Scholar
  111. Remaury, A., Larrouy, D., Daviaud, D., Rouot, B., and Paris, H. (1993) Coupling of the alpha 2-adrenergic receptor to the inhibitory G-protein G. and adenylate cyclase in HT29 cells. Biochem. J 292, 283–288.PubMedGoogle Scholar
  112. Reuveny, E., Slesinger, P. A., Inglese, J., Morales, J. M., Iniguez-Lluhi, J. A., Leflcowitz, R. J., Bourne, H. R., and Jan, Y. N., and Jan, L. Y. (1994) Activation of the cloned muscarinic potassium channel by G protein beta gamma subunits. Nature 370, 143–146.PubMedGoogle Scholar
  113. Rhee, S. G., Lee, C. W., and Thon, D. Y. (1993) Phospholipase C isozymes and modulation by cAMP-dependent protein kinase. Adv. Second Mess. Phosphoprot. Res 28, 57–64.Google Scholar
  114. Saudou, F., Boschert, U., Amlaiky, N., Plassat, J. L., and Hen, R. (1992) A family of drosphila serotonin receptors with distinct intracellular signalling properties and expression patterns. EMBO J. 11, 7–17.PubMedGoogle Scholar
  115. Schaad, N. C., Schorderet, M., and Mogistretti, P. J. (1989) Accumulation of cyclic AMP elicited by vasoactive intestinal peptide is potentiated by noradrenaline, histamine, adenosine, baclofen, phorbol esters, and ouabain in mouse cerebral cortical slices: studies on the role of arachidonic acid metabolites and protein kinase C. J. Neurochem 53, 1941–1951.PubMedGoogle Scholar
  116. Scherer, R. W., Karbon, E. W., Ferkany, J. W., and Enna, S. J. (1988) Augmentation of neurotransmitter receptor-stimulated cyclic AMP accumulation in rat brain: differentiation between the effects of baclofen and phorbol esters. Brain Res. 451, 361–365.PubMedGoogle Scholar
  117. Scholz, K. P. and Miller, R. J. (1991) GABAB receptor-mediated inhibition of Ca+2 currents and synaptic transmission in cultured rat hippocampal neurones. J. Physiol. Lond 444, 669–686.PubMedGoogle Scholar
  118. Sharma, R., Mathur, R., and Nayar, U. (1993) GABAB mediated analgesia in tonic pain in monkeys. Indian J. Physiol. Pharmacol 37, 189–193.PubMedGoogle Scholar
  119. Shenolikar, S., Karbon, E. W., and Enna, S. J. (1986) Phorbol esters down-regulate protein kinase C in rat brain cerebral cortical slices. Biochem. Biophys. Res. Comm 139, 251–258.PubMedGoogle Scholar
  120. Shibuya, I. and Douglas, W. W. (1993) Indications from Mn-quenching of Fura-2 fluorescence in melanotrophs that dopamine and baclofen close Ca channels that are spontaneously open but not those opened by high [K+]O; and that Cd preferentially blocks the latter. Cell Calcium 14, 33–44.PubMedGoogle Scholar
  121. Simon, M. I., Strathmann, M. P., and Gautam, N. (1991) Diversity of G proteins in signal transduction. Science 252, 802–808.PubMedGoogle Scholar
  122. Snead, O. C. (1992) Evidence for GABAB-mediated mechanisms in experimental generalized absence seizures. Eur. J. Pharmacol 21, 343–349.Google Scholar
  123. Snodgrass, S. R. (1992) GABA and epilepsy: their complex relationship and the evolution of our understanding. J. Child Neurol 7, 77–86.PubMedGoogle Scholar
  124. Suzdak, P. D. and Gianutsos, G. (1986) Effect of chronic imipramine or baclofen and GABA-B binding and cyclic AMP production in cerebral cortex. Eur. J. Pharmacol 131, 129–133.PubMedGoogle Scholar
  125. Swartz, K. J. (1993) Modulation of Caz+ channels by protein kinase C in rat central and peripheral neurons: disruption of G protein-mediated inhibition. Neuron 11, 305–320.PubMedGoogle Scholar
  126. Swartzwelder, H. S., Lewis, D. V., Anderson, W. W., and Wilson, W. A. (1987) Seizure-like events in brain slices: suppression by interictal activity. Brain Res. 410, 362–366.PubMedGoogle Scholar
  127. Sweeney, M. I. and Dolphin, A. C. (1992) 1,4-Dihydropyridines modulate GTP hydrolysis by Go in neuronal membranes. FEBS Lett 310 66–70.Google Scholar
  128. Takigawa, M., Sakurai, T., Kasuya, Y., Abe, Y., Masaki, T., and Goto, K. (1995) Molecular identification of guanine-nucleotide-binding regulatory proteins which couple to endothelin receptors. Eur. J. Biochem 228, 102–108.PubMedGoogle Scholar
  129. Tang, W. J. and Gilman, A. G. (1991) Type-specific regulation of adenylyl cyclase by G protein beta-gamma subunits. Science 254, 1500–1503.PubMedGoogle Scholar
  130. Tang, W. J. and Gilman, A. G. (1992) Adenylyl cyclases. Cell 70, 869–872.PubMedGoogle Scholar
  131. Tang, W. J., Iniguez-Lluhi, J. A., Mumby, S., and Gilman, A. G. (1992) Regulation of mammalian adenylyl cyclase by G-protein alpha and beta gamma subunits. Cold Spring Harb. Symp. Quant. Biol 57 135–144.Google Scholar
  132. Taniyama, K., Hanada, S., and Tanaka, C. (1985) Autoreceptors regulate gamma-[3H] amino-butyric acid release from the guinea pig small intestine. Neurosci. Lett 55, 245–248.PubMedGoogle Scholar
  133. Taniyama, K., Niwa, M., Kataoka, Y., and Yamashita, K. (1992) Activation of protein kinase C suppresses the gamma-aminobutyric acid B receptor-mediated inhibition of the vesicular release of noradrenaline and acetylcholine. J. Neurochem 58, 1239–1245.PubMedGoogle Scholar
  134. Taniyama, K., Takeda, K., Ando, H., Tanaka, C. (1991) Expression of the GABAB receptor in Xenopus oocytes ând desensitization bXy activation of protein kinase C. Adv. Exp. Med. Biol 287, 413–420.PubMedGoogle Scholar
  135. Tareilus, E. and Breer, H. (1995) Presynaptic calcium channels: pharmacology and regulation. Neurochem. Int 26, 539–558.PubMedGoogle Scholar
  136. Tareilus, E., Schoch, J., and Breer, H. (1994) GABAB-receptor-mediated inhibition of calcium signals in isolated nerve terminals. Neurochem. Int 24, 349–361.PubMedGoogle Scholar
  137. Taussig, R., Quarmby, L. M., and Gilman, A. G. (1993) Regulation of purified type I and type II adenylyl cyclases by G protein beta gamma subunits. J. Biol. Chem 268, 9–12.PubMedGoogle Scholar
  138. Thalmann, R. H. (1988) Evidence that guanosine triphosphate (GTP)-binding proteins control a synaptic response in brain: effect ofpertussis toxin and GTP gamma S on the late inhibitory postsynaptic potential of hippocampal CA3 neurons. J. Neurosci 8, 4589–4602.PubMedGoogle Scholar
  139. Thompson, S. M. and Gähwiler, B. H. (1992) Comparison of the actions of baclofen at pre- and postsynaptic receptors in the rat hippocampus in vitro. J. Physiol Lond 451, 329–345.PubMedGoogle Scholar
  140. Ticku, M. K. and Delgado, A. (1989) GABAB receptor activation inhibits Caz+ -mediated potassium channels in symptosomes: involvement of G-proteins. Life Sci. 44, 1271–1276.PubMedGoogle Scholar
  141. Toselli, M. and Taglietti, V. (1993) Baclofen inhibits high-threshold calcium currents with two distinct modes in rat hippocampal neurons. Neurosci. Lett 164, 134–136.PubMedGoogle Scholar
  142. Waldmeier, P. C. (1991) The GABAB antagonist, CGP35348 antagonizes the effects of baclofen, gamma-butyrolactone and HA966 on rat striatal dopamine synthesis. Naunyn Schmiedebergs Arch. Pharmacol 343 173–178.Google Scholar
  143. Waldmeier, P. C. and Baumann, P. A. (1990) Presynaptic GABA receptors. Ann. N.Y. Acad. Sci 604, 136–151.PubMedGoogle Scholar
  144. Waldmeier, P. C. and Wiki, P. (1994) GABA release in rat cortical slices is unable to cope with demand if the autoreceptor is blocked. Naunyn Schmiedebergs Arch. Pharmacol 349, 583–587.PubMedGoogle Scholar
  145. Watling, K. J. and Bristow, D. R. (1986) GABAB receptor-mediated enhancement of vasoactive intestinal peptide-stimulated cyclic AMP production in slices of rat cerebral cortex. J. Neurochem 46 1756–1762.Google Scholar
  146. Wojcik, W. J. and Neff, N. H. (1984) Gamma-aminobutyric acid B receptors are negatively coupled to adenylate cyclase in brain, and in the cerebellum these receptors may be associated with granule cells. Mol. Pharmacol 25, 24–28.PubMedGoogle Scholar
  147. Wojcik, W. J., Ulivi, M., Paez, X., and Costa, E. (1989) Islet-activating protein inhibits the beta-adrenergic receptor facilitation elicited by gamma-aminbutyric-acid B receptors. J. Neurochem 53, 753–758.PubMedGoogle Scholar
  148. Worley, P. F., Baraban, J. M., McCarren, M., Snyder, S. H., and Alger, B. E. (1987) Cholinergic phosphatidylinositol modulation of inhibitory, G protein-linked neurotransmitter actions: electrophysiological studies in rat hippocampus. Proc. Natl. Acad. Sci. USA 84, 3467–3471.PubMedGoogle Scholar
  149. Xu, J. and Wojcik, W. J. (1986) Gamma aminobutyric acid B receptor-mediated inhibition of adenylate cyclase in cultured cerebellar granule cells: blockade by islet-activating protein. J. Pharmacol. Exp. Ther 239, 568–573.PubMedGoogle Scholar
  150. Yoshimura, M. and Cooper, D. M. (1993) Type-specific stimulation of adenyl cyclase by protein kinase C. J. Biol. Chem 268, 4604–4607.PubMedGoogle Scholar
  151. Zorn, S. H. and Enna, S. J. (1985) The effect of mouse spinal cord transection on the antinociceptive response to the gamma-aminobutyric acid agonists THIP (4,5,6,7tetrahydroisoxazolo[5,4-c]pyridine-3-ol) and baclofen. Brain Res. 338, 380–383.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • Martin Cunningham
  • S. J. Enna

There are no affiliations available

Personalised recommendations