The Interaction of Intravenous Anesthetic Agents with Native and Recombinant GABAA Receptors

An Electrophysiological Study
  • Jeremy J. Lambert
  • Delia Belelli
  • Marco Pistis
  • Claire Hill-Venning
  • John A. Peters
Part of the The Receptors book series (REC)


The γ-aminobutyric acid type-A (GABAA) receptor is a ligand-gated, anion-selective, ion channel that exists as a pentameric complex of structurally homologous subunits (Sieghart, 1995; Smith and Olsen, 1995). Four families of subunit, termed α, β, δ, and γ, whose members may co-assemble to create GABAA receptors with differential biophysical and pharmacological properties, are currently recognized (Burt and Kamatchi, 1991; Macdonald and Angelotti, 1993; Whiting et al., 1995). GABAA receptor isoforms mediate the majority of the inhibitory action of GABA within the central nervous system (CNS), the activation of postsynaptically located GABAA receptors resulting in an increase in membrane conductance, predominantly to chloride ions, which shunts the influence of excitatory neurotransmitters, such as glutamate (Mody et al., 1994).


Neuroactive Steroid Xenopus Laevis Oocyte Anesthetic Action Recombinant Receptor Receptor Channel Complex 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adodra, S. and Hales, T. G. (1995) Potentiation, activation and blockade of GABAA receptors of clonal murine hypothalamic GT 1–7 neurones by propofol. Br. J. Pharmacol. 115, 953–960.PubMedGoogle Scholar
  2. Akaike, N., Hattori, K., Inomata, N., and Oomura, Y. (1985) y-Aminobutyric-acid and pentobarbitone-gated chloride currents in internally perfused frog sensory neurones. J. Physiol. 360, 367–386.Google Scholar
  3. Akaike, N., Maruyama, T., and Tokutomi, N. (1987) Kinetic properties of pentobarbitone-gated chloride current in frog sensory neurones. J. Physiol. 394, 85–98.PubMedGoogle Scholar
  4. Amin, J. and Weiss, D. S. (1993) GABAA receptor needs two homologous domains of the 13-subunit for activation by GABA, but not by pentobarbitone. Nature 366, 565–569.PubMedGoogle Scholar
  5. Ashton, D. and Wauquier, A. (1985) Modulation of a GABA-ergic inhibitory circuit in the in vitro hippocampus by etomidate isomers. Anesth. Analg. 64, 975–980.PubMedGoogle Scholar
  6. Barker, J. L., Harrison, N. L., Lange, G. D., and Owen, D. G. (1987) Potentiation of y-aminobutyric acid-activated chloride conductance by a steroid anesthetic in cultured rat spinal neurones. J. Physiol. 386, 485–501.Google Scholar
  7. Barker, J. L. and McBurney, R. N. (1979) Phenobarbitone modulation of postsynaptic GABA receptor function on cultured mammalian neurons. Proc. R. Soc. Lond. B. 206, 319–327.PubMedGoogle Scholar
  8. Barker, J. L. and Mathers, D. A. (1981) GABA receptors and the depressant action of pentobarbital. Trends Neurosci. 4, 10–13.Google Scholar
  9. Barker, J. L. and Ransom, B. R. (1978) Pentobarbitone pharmacology of mamalian central neurones grown in tissue culture. J. Physiol. 280, 355–372.PubMedGoogle Scholar
  10. Belelli, D. Callachan, H., Hill-Venning, C., Peters, J. A., and Lambert, J. J. (1996) Interaction of positive allosteric modulators with human and Drosophila recombinant GABA receptors expressed in Xenopus laevis oocytes. Br. J. Pharmacol. 118 563–576.Google Scholar
  11. Blair, L. A. C., Levitan, E. S., Marshall, J., Dionne, V. E., and Barnard, E. A. (1988) Single subunits of the GABAA receptor form ion channels with properties of the native receptor. Science 242, 577–579.PubMedGoogle Scholar
  12. Burt, D. R. and Kamatchi, G. L. (1991) GABAA receptor subtypes: from pharmacology to molecular biology. FASEB J. 5, 2916–2923.PubMedGoogle Scholar
  13. Callachan, H., Cottrell, G. A., Hather, N. Y., Lambert, J. J., Nooney, J. M., and Peters, J. A. (1987) Modulation of the GABAA receptor by progesterone metabolites. Proc. R. Soc. Lond. B. 231, 359–369.PubMedGoogle Scholar
  14. Carl, P. Hegskilde, S., Lang-Jensen, T., Bach, V., Jacobsen, J., Sorensen, M. B., Grälls, M., and Widlund, L. (1994) Pharmacokinetics and pharmacodynamics of eltanolone (pregnanolone), a new steroid intravenous anaesthetic, in humans. Acta Anaesthiol. Scand. 38 734–741.Google Scholar
  15. Cestari, I. N., Uchida, I., Li, L., Burt, D., and Yang, J. (1996) The agonist action of pentobarbital on GABAA [3-subunit homomeric receptors. Neuroreport 7, 943–947.PubMedGoogle Scholar
  16. Chen, R., Belelli, D., Lambert, J. J., Peters, J. A., Reyes, A., and Lan, N. C. (1994) Cloning and functional expression of a Drosophila y-aminobutyric acid receptor. Proc. Natl. Acad. Sci. USA 91 6069–6073.Google Scholar
  17. Collins, G. C. S. (1988) Effects of the anaesthetic 2,6-diisopropylphenol on synaptic transmission in the rat olfactory cortex slice. Br. J. Pharmacol. 95, 939–949.PubMedGoogle Scholar
  18. Connolly, C. N., Krishek, B. J., McDonald, B. J., Smart, T. G., and Moss, S. J. (1996) Assembly and cell surface expression of hereromeric and homomeric y-aminobutyric acid type A receptors. J. Biol. Chem. 271, 89–96.PubMedGoogle Scholar
  19. Cooper, E. J., Johnston, G. A. R., and Edwards, F. A. (1995) Differential sensitivity of synaptic GABAergic currents to a neuroactive steroid in brain slices from male rats. Soc. Neurosci Abs. 21, 531. 4.Google Scholar
  20. Cottrell, G. A., Lambert, J. J., and Peters, J. A. (1987) Modulation of GABAA receptor activity by alphaxalone. Br. J. Pharmacol. 90, 491–500.PubMedGoogle Scholar
  21. Cutting, G. R., Lu, L., O’Hara, B., Kasch, L. M., Donovan, D., Schimoda, S., Antonarakis, S. E., Guggino, W. B., Uhl, G. R., and Kazazion, H. H. (1991) Cloning of the GABA p l cDNA; a novel GABA subunit highly expressed in the retina. Proc. Natl. Acad. Sci. USA 88, 2673–2677.Google Scholar
  22. De Koninck, Y. and Mody, I. (1994) Noise analysis of miniature IPSCs in adult rat brain slices: properties and modulation of synaptic GABAA receptor channels. J. Neurophysiol. 71, 1318–1335.PubMedGoogle Scholar
  23. Ebert, B., Wafford, K. A., Whiting, P. J., Krogsgaard-Larsen, P., and Kemp, J. A. (1994) Molecular pharmacology of y-aminobutyric acid type A receptor agonists and partial agonists in oocytes injected with different a, ß, and y receptor subunit combinations. Mol. Pharmacol. 46, 957–963.Google Scholar
  24. Ebert, T. J., Muzi, M., Berens, R., Goff, D., and Kampine, J. P. (1992) Sympathetic responses to induction of anesthesia with propofol or etomidate. Anesthesiology 76, 725–733.PubMedGoogle Scholar
  25. Eccles, J. C., and Malcolm, J. L. (1946) Dorsal root potentials of the spinal cord. J. Neurophysiol. 9, 139–160.PubMedGoogle Scholar
  26. Eccles, J. C., Schmidt, R., and Willis, W. D. (1963) Pharmacological studies on presynaptic inhibition. J. Physiol. 168, 500–530.PubMedGoogle Scholar
  27. Evans, R. H. and Hill, R. G. (1978) GABA-mimetic action of etomidate. Experentia 34, 1325–1327.Google Scholar
  28. ffrench-Constant, R. H., Rocheleau, T. A., Steichen, J. C., and Chalmers, A. E. (1993) A point mutation a Drosophila receptor conferes insecticide resistance. Nature 363, 449–451.PubMedGoogle Scholar
  29. ffrench-Mullen, J. M. H., Barker, J. L., and Rogawski, M. A. (1993) Calcium block by (—)-pentobarbital, phenobarbital, and CHEB but not (+)-pentobarbital in acutely isolated hippocampal CA1 neurons: comparison with effects on GABA-activated Cl current. J. Neurosci. 13, 3211–3221.PubMedGoogle Scholar
  30. Franks, N. P. and Lieb, W. R. (1994) Molecular and cellular mechanisms of general anaesthesia. Nature 367, 607–614.PubMedGoogle Scholar
  31. Frerking, M., Borges, S., and Wilson, M. (1995) Variation in GABA mini amplitude is the consequence of variation in transmitter concentration. Neuron 15, 885–895.PubMedGoogle Scholar
  32. Gage, P. W. and Robertson, B. (1985) Prolongation of inhibitory postsynaptic currents by pentobarbitone, halothane and ketamine in CAI pyramidal cells in rat hippocampus. Br. J. Pharmacol. 85, 675–681.PubMedGoogle Scholar
  33. Galzi, J. L. and Changeux, J.-P. (1995) Neurotransmitter-gated ion channels as unconventional allosteric proteins. Current Opinion Struct. Biol. 4, 554–565.Google Scholar
  34. Gee, K. W., Bolger, M. B., Brinton, R. E., Coirini, H., and McEwen, B. S. (1988) Steroid modulation of the chloride ionophore in rat brain: structure-activity requirements, regional dependence and mechanism of action. J Pharmacol. Exp. Ther. 246, 803–812.PubMedGoogle Scholar
  35. Gee, K. W., McCauley, L. D., and Lan, N. C. (1995) A putative receptor for neurosteroids on the GABAA receptor complex: the pharmacological properties and therapeutic potential of epalons. Crit. Rev. Neurobiol. 9, 207–227.PubMedGoogle Scholar
  36. Gemmell, D. K., Byford, A., Anderson, A., Marshall, R. J., Hill, D. R., Campbell, A. C., Hamilton, N., Hill-Venning, C., Lambert, J. J., and Peters, J. A. (1995) The anaesthetic and GABA modulatory actions of ORG 21465, a novel water soluble steroidal intravenous anaesthetic agent. Br. J. Pharmacol. 116, 443 P.Google Scholar
  37. Hadingham, K. L., Wingrove, P. B., Wafford, K. A., Bain, C., Kemp, J. A., Palmer, K. J., Wilson, A. W., Wilcox, A. S., Sikela, J. M., Ragan, C. I., and Whiting, P. J. (1993) Role of the ß subunit in determining the pharmacology of human y-aminobutyric acid type A receptors. Mol. Pharmacol. 44, 1211–1218.PubMedGoogle Scholar
  38. Hales, T. G. and Lambert, J. J. (1991) The actions of propofol on inhibitory amino acid receptors of bovine adrenomedullary chromaffin cells and rodent central neurones. Br. J. Pharmacol. 104, 619–628.PubMedGoogle Scholar
  39. Hara, M., Kai, Y., and Ikemoto, Y. (1993) Propofol activates GABAA receptor-chloride ionophore complex in dissociated hippocampal pyramidal neurones of the rat. Anesthesiology 79, 781–788.PubMedGoogle Scholar
  40. Hara, M., Kai, Y., Ikemoto, Y. (1994) Enhancement by propofol of the y-aminobutyric acidA response in dissociated hippocampal pyramidal neurones of the rat. Anesthesiology 81, 988–994.PubMedGoogle Scholar
  41. Harris, R. A., Mihic, S. J., Dildy-Mayfield, J. E., and Machu, T. K. (1995) Actions of anesthetics on ligand-gated ion channels: role of receptor subunit composition. FASEB J. 9, 1454–1462.PubMedGoogle Scholar
  42. Harrison, N. L., Majewska, M. D., Harrington, J. W., and Barker, J. L. (1987b) Structure-activity relationships for steroid interaction with the y-aminobutyric acidA receptor complex. J. Pharmacol. Exp. Ther. 241, 346–353.PubMedGoogle Scholar
  43. Harrison, N. L. and Simmonds, M. A. (1984) Modulation of the GABA receptor complex by a steroid anaesthetic. Brain Res. 323, 287–292.PubMedGoogle Scholar
  44. Harrison, N. L., Vicini, S., and Barker, J. L. (1987a) A steroid anaesthetic prolongs inhibitory postsynaptic currents in cultured rat hippocampal neurons. J. Neurosci. 7, 604–609.PubMedGoogle Scholar
  45. Hawkinson, J. E., Kimbrough, C. L., Belelli, D., Lambert, J. J., Purdy, R. H., and Lan, N. C. (1994) Correlation of neuroactive steroid modulation of [35S]t-butylbicyclophosporothionate and [3H]flunitrazepam binding and y-aminobutyric acidA receptor function. Mol. Pharmacol. 46, 977–985.PubMedGoogle Scholar
  46. Hill-Venning, C., Belelli, D., Hope, A. G., Peters, J. A., and Lambert, J. J. (1995) Modulation of recombinant GABAA receptors by the general anaesthetic etomidate is subunit dependent. Soc. Neurosci. Abs. 21, 339. 6.Google Scholar
  47. Hill-Venning, C., Belelli, D., Peters, J. A., and Lambert, J. J. (1994b) Electrophysiological studies of neurosteroid modulation of y-aminobutyric acid type A receptor, in Neurobiology of Steroids ( deKloet, E. R. and Sutanto, W., eds.), Academic, San Diego, pp. 446–467.Google Scholar
  48. Hill-Venning, C., Callachan, H., Peters, J. A., Lambert, J. J., Gemmell, D. K., and Campbell, A. C. (1994a) Modulation of the GABAA receptor by Org 20599: a water-soluble pregnane steroid. Br. J. Pharmacol. 111, 183 P.Google Scholar
  49. Hill-Venning, C., Peters, J. A., Callachan, H., Lambert, J. J., Gemmell, D. K., Anderson, A., Byford, A., Hamilton, N., Hill, D. R., Marshall, R. J., and Campbell, A. C. (1996) The anaesthetic action and modulation of GABAA receptor activity by the novel water soluble aminosteroid ORG 20599. Neuropharmacology (in press).Google Scholar
  50. Hill-Venning, C., Lambert, J. J., Peters, J. A., and Hales, T. G. (1991) The actions of neurosteroids on inhibitory amino acid receptors, in Neurosteroids and Brain Function ( Costa, E. and Paul, S. M., eds.), Thieme, New York, 77–85.Google Scholar
  51. Holland, K. D., Canney, D. J., Rothman, S. M., Ferrendelli, J. A., and Covey, D. F. (1990) Physiological modulation of the GABA receptor by convulsant and anti-convulsant barbiturates in cultured rat hippocampal neurons. Brain Res. 516, 147–150.PubMedGoogle Scholar
  52. Horne, A. L., Harkness, P. C., Hadingham, K. L., Whiting, P., and Kemp, J. A. (1993) The influence of the y2L subunit on the modulation of responses to GABAA receptor activation. Br. J. Pharmacol. 108, 711–716.PubMedGoogle Scholar
  53. Huang, L.-Y. M. and Barker, J. L. (1980) Pentobarbital: stereoselective actions of (+) and (-) isomers revealed on cultured mammalian neurones. Science 207, 195–197.PubMedGoogle Scholar
  54. Janssen, P. A. J., Niemegeers, J. E., and Marsboom, R. P. H. (1975) Etomidate, a potent non-barbiturate hypnotic. Intravenous etomidate in mice, rats, guinea-pigs, rabbits and dogs. Arch. Int. Pharmacodyn. 214, 92–132.PubMedGoogle Scholar
  55. Jones, M. V. and Harrison, N. L. (1993) Effect of volatile anesthetics on the kinetics of inhibitory post-synaptic currents in cultured hippocampal neurons. J. Neurophysiol. 70, 1339–1349.PubMedGoogle Scholar
  56. Jones, M. V, Harrison, N. L., Pritchett, D., and Hales, T. G. (1995) Modulation of the GABAA receptor by propofol is independent of the y subunit. J. Pharmacol. Exp. Ther. 274, 962–968.PubMedGoogle Scholar
  57. Jones, M. V. and Westbrook, G. L. (1996) The impact of receptor desensitization on fast synaptic transmission. Trends Neurosci. 19, 96–101.PubMedGoogle Scholar
  58. Joyce, K. A., Atkinson, A. A., Bermudez, I., Beadle, D. J., and King, L.A. (1993) Synthesis of functional GABAA receptors in stable insect cell lines. FEBS Lett. 335, 61–64.PubMedGoogle Scholar
  59. Kaneda, M., Fanant, M., and Cull-Candy, S. G. (1995) Whole cell and single channel currents activated by GABA and glycine in granule cells of the cerebellum. J. Physiol. 485.2, 419–435.Google Scholar
  60. Korpi, E. R., Kleingoor, C., Kettenmann, H., and Seeburg, P. H. (1993) Benzodiazepineinduced motor impairment linked to point mutation in cerebellar GABAA receptor. Nature 361, 356–359.PubMedGoogle Scholar
  61. Korpi, E. R. and Luddens, H. (1993) Regional y-aminobutyric-acid sensitivity of t-butylbicyclophoshoro[35S]thionate binding depends on y-aminobutyric-acid A receptor a6 subunit. Mol. Pharmacol. 44, 87–92.PubMedGoogle Scholar
  62. Krishek, B. J., Moss, S. J., and Smart, T. G. (1996) Homomeric ß1 y-aminobutyric acidA receptor-ion channels: evaluation of pharmacological and physiological properties. Mol. Pharmacol. 49, 494–504.PubMedGoogle Scholar
  63. Lambert, J. J., Belelli, D., Hill-Venning, C., Callachan, H., and Peters, J. A. (1996) Neurosteroid modulation of native and recombinant GABAA receptors. Cell. Mol. Neurobiol. 16, 155–174.Google Scholar
  64. Lambert, J. J., Belelli, D., Hill-Venning, C., and Peters, J. A. (1995) Neurosteroids and GABAA receptor function. Trends Pharmacol. Sci. 16, 295–303.PubMedGoogle Scholar
  65. Lambert, J. J., Hill-Venning, C., Peters, J. A., Sturgess, N. C., and Hales, T. G. (1991) The actions of anesthetic steroids on inhibitory and excitatory amino acid receptors, in Transmitter Amino Acid Receptors: Structures, Transduction and Models for Drug Development ( Barnard, E. A. and Costa, E., eds.), Thieme, New York, pp. 219–236.Google Scholar
  66. Lambert, J. J., Peters, J. A., and Cottrell, G. A. (1987) Actions of synthetic and endogenous steroids on the GABAA receptor. Trends Pharmacol. Sci. 8, 224–227.Google Scholar
  67. Lambert, J. J., Peters, J. A., Sturgess, N. C., and Hales, T. G. (1990) Steroid modulation of the GABAA receptor complex: electrophysiological studies, in Steroids and Neuronal Activity ( Chadwick, D. and Widdows, K., eds.), Wiley, Chichester, UK, pp. 56–82.Google Scholar
  68. Langosch, D. (1995) Inhibitory glycine receptors, in Ligand-and Voltage-gated Ion Channels. Handbook of Receptors and Channels ( North, R. A., ed.), CRC, Boca Raton, FL, pp. 291–305.Google Scholar
  69. Laurie, D. J., Seeburg, P. H., and Wisden, W. (1992) The distribution of 13 GABAA receptor subunit mRNAs in the rat brain II. Olfactory bulb and cerebellum. J. Neurosci. 12, 1063–1076.PubMedGoogle Scholar
  70. Little, H. J. (1996) Has molecular pharmacology contributed to our understanding of the mechanism(s) of general anaesthesia? Pharmacol. Ther. 69, 37–58.PubMedGoogle Scholar
  71. Lodge, D. and Anis, N. A. (1984) Effects of ketamine and three other anaesthetics on spinal reflexes and inhibitions in the cat. Br. J. Anaesth. 56, 1143–1151.PubMedGoogle Scholar
  72. Luddens, H., Korpi, E. R., and Seeburg, P. H. (1995) GABAA/Benzodiazepine receptor heterogeneity: neurophysiological implications. Neuropharmacology 34, 245–254.PubMedGoogle Scholar
  73. Maconochie, D. J., Zemple, J. M., and Steinbach, J. H. (1994) How quickly can GABAA receptors open? Neuron 12, 61–71.PubMedGoogle Scholar
  74. Macdonald, R. L. and Olsen, R. W. (1994) GABAA receptor channels Ann. Rev. Neurosci. 17, 569–602.PubMedGoogle Scholar
  75. Macdonald, R. L., Rogers, C. J., and Twyman, R. E. (1989) Barbiturate regulation of kinetic properties of the GABAA receptor channel of mouse spinal neurons in culture. J. Physiol. 417, 483–500.PubMedGoogle Scholar
  76. Macdonald, R. L. and Angelotti, T. P. (1993) Native and recombinant GABAA receptor channels. Cell Physiol. Biochem. 3, 352–373.Google Scholar
  77. Majewska, M. D., Harrison, N. L., Schwartz, R. D., Barker, J. L., and Paul, S. M. (1986) Steroid hormone metabolites are barbiturate-like modulators of the GABA receptor. Science 232, 1004–1007.Google Scholar
  78. Mathers, D. and Barker, J. L. (1980) (—)Pentobarbital opens ion channels of long duration in cultured mouse spinal neurons. Science 209, 507–509.Google Scholar
  79. McCauley, L. D. and Gee, K. W. (1994) Detection and characterization of epalon receptors: novel recognition sites for neuroactive steroids that modulate the GABAA receptor complex, in Neurobiology of Steroids ( deKloet, E. R. and Sutanto, W., eds.), Academic, San Diego, pp. 211–241.Google Scholar
  80. McCauley, L. D., Liu, V., Chen, J. S., Hawkinson, J. E., Lan, N. C., and Gee, K. W. (1995) Selective actions of certain neuroactive pregnanediols at the y-aminobutyric acid type A receptor complex in rat brain. Mol. Pharmacol. 47, 354–362.PubMedGoogle Scholar
  81. McKernan, R. M. and Whiting, P. J. (1996) Which GABAA receptor subtypes really occur in the brain? Trends Neurosci. 19, 139–143.PubMedGoogle Scholar
  82. Mody, I., DeKoninck, Y., Otis, T. S., and Soltesz, I. (1994) Bridging the cleft at GABA synapses in the brain. Trends Neurosci. 17, 517–525.PubMedGoogle Scholar
  83. Nicoll, R. A. (1975) Pentobarbital: action on frog motoneurons. Brain Res. 96, 119–123.PubMedGoogle Scholar
  84. Nicoll, R. A. and Wojtowicz, J. M. (1980) The effects of pentobarbital and related compounds on frog motoneurons. Brain Res. 191, 225–237.PubMedGoogle Scholar
  85. Olsen, R. W. (1988) Barbiturates. Int. Anesth. Clin. 26, 254–261.Google Scholar
  86. Olsen, R. W., Fischer, J. B., and Dunwiddie, T. V. (1986) Barbiturate enhancement of y-aminobutyric acid receptor binding and function as a mechanism of anesthesia, in Molecular and Cellular Mechanisms of Anesthetics ( Roth, S. H. and Miller K. W. eds.), Plenum Press, New York, pp. 165–177.Google Scholar
  87. Olsen, R. W. and Sapp, D. W. (1995) Neuroactive steroid modulation of GABAA receptors, in GABA A Receptors and Anxiety from Neurobiology to Treatment: Advances in Biochemical Psychopharmacology, vol. 48. ( Biggio, G., Sanna, E., Serra, M., and Costa, E., ed.), Raven, New York, pp. 57–74.Google Scholar
  88. Orser, B. A., Wang, L.-Y., Pennefather, P. S., and Macdonald, J. F. (1994) Propofol modulates activation and desensitization of GABAA receptors in cultured murine hippocampal neurons. J. Neurosci. 14, 7747–7760.PubMedGoogle Scholar
  89. Peters, J. A., Kirkness, E. F., Callachan, H., Lambert J. J., and Turner, A. J. (1988) Modulation of the GABAA receptor by depressant barbiturates and pregnane steroids. Br. J. Pharmacol. 94, 1257–1269.PubMedGoogle Scholar
  90. Peters, J. A., Lambert, J. J., and Cottrell, G. A. (1989) An electrophysiological investigation of the characteristics and functions of GABAA receptors on bovine adrenomedullary chromaffin cells. Pflügers Arch. 415, 95–103.PubMedGoogle Scholar
  91. Phillipps, G. H. (1975) Structure-activity relationships in steroid anaesthetics. J. Steroid Biechem. 6, 607–613.Google Scholar
  92. Pistis, M., Belelli, D., Peters, J. A., and Lambert, J. J. (1996) Modulation of recombinant glycine and GABAA receptors by general anaesthetics: a comparative study. Soc. Neurosci. Abs. 22 (in press).Google Scholar
  93. Prince, R. J. and Simmonds, M. A. (1993) Differential antagonism by epipregnanolone of alphaxalone and prenanolone potentiation of [3H]flunitrazepem binding suggests more than one class of binding site for steroids at GABAA receptors. Neuropharmacology 32, 59–63.PubMedGoogle Scholar
  94. Pritchett, D. B., Sontheimer, H., Gorman, C. M., Kettenman, H., Seeburg, P. H., and Scholfield, P. R. (1988) Transient expression shows ligand-gating and allosteric potentiation of GABAA receptor subunits. Science 242, 1306–1308.PubMedGoogle Scholar
  95. Proctor, W. R., Mynlieff, M., and Dunwiddie, T. V. (1986) Facilitatory action of etomidate and pentobarbital on recurrent inhibition in rat hippocampal pyramidal neurons. J. Neurosci. 6, 3161–3168.PubMedGoogle Scholar
  96. Puia, G., Costa, E., and Vicini, S. (1994) Functional diversity of GABA-activated Cl-currents in Purkinje versus granule neurons in rat cerebellar slices. Neuron 12, 117–126.PubMedGoogle Scholar
  97. Puia, G., Ducic, I., Vicini, S., and Costa, E. (1993) Does neurosteroid modulatory efficacy depend on GABAA receptor subunit composition? Receptors Channels 1,135–142.Google Scholar
  98. Puia, G., Santi, M. R., Vicini, S. Pritchett, D. B., Purdy, R. H., Paul, S. M., Seeburg, P. H., and Costa, E. (1990) Neurosteroids act on recombinant human GABAA receptors. Neuron 4, 759–765.PubMedGoogle Scholar
  99. Robertson, B. (1989) Actions of anaesthetics and avermectin on GABAA chloride chan- nels in mammalian dorsal root ganglion neurones. Br. J. Pharmacol. 98, 167–176.PubMedGoogle Scholar
  100. Rogers, C. J., Twyman, R. E., and Macdonald, R. L. (1994) Benzodiazepine and f3-carboline regulation of single GABAA receptor channels of mouse spinal neurones in culture. J. Physiol. 475.1, 69–82.Google Scholar
  101. Salina, E., Garau, F., and Harris, R. A. (1995a) Novel properties of homomeric (ßf 7aminobutyric acid type A receptors: actions of the anaesthetics propofol and pentobarbital. Mol. Pharmacol. 47, 213–217.Google Scholar
  102. Sanna, E., Mascia, M. P., Klein, R. L., Whiting, P. Biggio, G., and Harris, R. A. (1995b) Actions of the general anesthetic propofol on recombinant human GABAA receptors: influence of receptor subunits. J. Pharmacol. Exp. Ther. 274, 353–360.Google Scholar
  103. Saxena, N. C., and Macdonald, R. L. (1994) Assembly of GABAA receptor subunits: role of the S subunit. J. Neurosci. 14, 7077–7086.PubMedGoogle Scholar
  104. Schulz, D. W., and Macdonald, R. L. (1981) Barbiturate enhancement of GABA-mediated inhibition and activation of chloride ion conductance: correlation with anticonvulsant and anesthetic actions. Brain Res. 209, 177–188.PubMedGoogle Scholar
  105. Scholfield, C. M. (1980) Potentiation of inhibition by general anaesthetics in neurones of the olfactory cortex in vitro. Pflügers Arch. 383, 249–255.PubMedGoogle Scholar
  106. Segal, M. and Barker, J. L. (1984) Rat hippocampal neurones in culture: voltage-clamp analysis of inhibitory synaptic connections. J. Neurophysiol. 52, 469–487PubMedGoogle Scholar
  107. Selye, H. (1941) Anesthetic effect of steroid hormones. Proc. Soc. Exp. Biol. Med. 46, 116–121.Google Scholar
  108. Shingai, R., Sutherland, M. L., and Barnard, E. A. (1991) Effects of subunit types of the cloned GABAA receptor on the response to a neurosteroid. Eur. J. Pharmacol. 206, 77–80.PubMedGoogle Scholar
  109. Sieghart, W. (1995) Structure and pharmacology of y-aminobutyric acidA receptor subtypes. Pharmacol. Rev. 47, 182–234.Google Scholar
  110. Sigel, E., Baur, R., Malherbe, P., and Möhler, H. (1989) The rat 01-subunit of the GABAA receptor forms a picrotoxin-sensitive anion channel open in the absence of GABA. FEBS Lett. 257, 377–379.PubMedGoogle Scholar
  111. Sigel, E., Baur, R., Trube, G., Möhler, H., and Malherbe, P. (1990) The effect of subunit composition of rat brain GABAA receptors on channel function. Neuron 5, 703–711.Google Scholar
  112. Smith, G. B., and Olsen, R. W. (1995) Functional domains of GABAA receptors. Trends Pharmacol. Sci. 16, 162–168.PubMedGoogle Scholar
  113. Stevenson, A., Wingrove, P. B., Whiting, P. J., and Wafford, K. A. (1995) 13-carboline yaminobutyric acidA receptor inverse agonists modulate y-aminobutyric acid via the loreclezole binding site as well as the benzodiazepine site. Mol. Pharmacol. 48, 965–969.Google Scholar
  114. Study, R. E. and Barker, J. L. (1981) Diazepam and (—) pentobarbital: fluctuation analysis reveals different mechanisms for potentiation of y-aminobutyric acid responses in cultured central neurones. Proc. Natl. Acad. Sci. USA 78, 7180–7184.PubMedGoogle Scholar
  115. Tanelian, D. L., Kosek, P., Mody, I., and MacIver, B. (1993) The role of the GABAA receptor/choride channel complex in anesthesia. Anesthesiology 78, 757–776.PubMedGoogle Scholar
  116. Thompson, S. A., Whiting, P. J., and Wafford, K. A. (1996) Barbiturate interactions at the human GABAA receptor: dependence on receptor subunit composition. Br. J. Pharmacol. 117, 521–527.PubMedGoogle Scholar
  117. Thyagarajan, R., Ramanjaneyulu, R., and Ticku, M. K. (1983) Enhancement of diazepam and y-aminobutyric acid binding by (+) etomidate and pentobarbital. J. Neurochem. 41, 578–585.PubMedGoogle Scholar
  118. Ticku, R. K. and Rastogi, S. K. (1986) Barbiturate-sensitive sites in the benzodiazepineGABA receptor-ionophore complex, in Molecular and Cellular Mechanisms of Anaesthetics ( Roth, S. H., and Miller K. W., eds.), Plenum Press, New York, pp. 179–188.Google Scholar
  119. Turner, D. M., Ransom, R. W., Yang, J. S.-J., and Olsen, R. W. (1989) Steroid anesthetics and naturally occurring analogues modulate the y-aminobutyric acid receptor complex at a site distinct from barbiturates. J. Pharmacol. Exp. Ther. 248, 960–966.PubMedGoogle Scholar
  120. Twyman, R. E. and Macdonald, R. L. (1992) Neurosteroid regulation of GABAA receptor single-channel kinetic properties of mouse spinal cord neurons in culture. J. Physiol. 456, 215–245.PubMedGoogle Scholar
  121. Tyndale, R. F., Olsen, R. W., and Tobin, A. J. (1995) GABAA receptors, in Ligand-and Voltage-gated Ion Channels. Handbook of Receptors and Channels ( North, R. A., ed.), CRC, Boca Raton, FL, pp. 265–290.Google Scholar
  122. Uchida, I., Cestari, I. N., and Yang, J. (1996) The differential bicuculline and SR95531 antagonism of chloride current directly induced by pentobarbital in cultured postnatal hippocampal neurons. Eur. J. Pharmacol. in press.Google Scholar
  123. Uchida, I., Katamachi, G., Burt, D., andYang, J. (1995) Etomidate potentiation of GABAA receptor gated current depends on subunit composition. Neurosci. Letts. 185, 203–206.Google Scholar
  124. Valeyev, A. Y., Barker, J. L., Cruciani, R. A., Lange, G. D., Smallwood, V. V., and Mahan, L. C. (1993) Characterization of the y-aminbutyric acid A receptor channel complex composed of a 1 ß2 and a 1 ß3 subunits from rat brain. J. Pharmacol. Exp. Ther. 265, 985–991.PubMedGoogle Scholar
  125. Vicini, S., Mienville, J.-M., and Costa, E. (1987)Actions ofbenzodiazepine and 3-carboline derivatives on y-aminobutyric acid-activated Cl-channels recorded from membrane patches of neonatal rat cortical neurons in culture. J. Pharmacol. Exp. Ther. 243, 1195–1201.Google Scholar
  126. Wafford, K. A., Thompson, S. A., Thomas, D., Sikela, J., Wilcox, A. S., and Whiting, P. J. (1996) Functional characterization of human GABAA receptors containing the a4 subunit. Manuscript submitted for publication.Google Scholar
  127. Wingrove, P. B., Wafford, K. A., Bain, C., and Whiting, P. J. (1994) The modulatory action of loreclezole at the y-aminobutyric acid type A receptor is determined by a single amino acid in the 32 and 33 subunit. Proc. Natl. Acad. Sci. USA 91, 4569–4573.PubMedGoogle Scholar
  128. Whiting, P. J., McKernan, R. M., and Wafford, K. A. (1995) Structure and pharmacology of vertebrate GABAA receptor subtypes. Int. Rev. Neurobiol. 38, 95–138.PubMedGoogle Scholar
  129. Woodward, R. M., Polenzani, L., and Miledi, R. (1992) Effects of steroids on y-aminobutyric acid receptors expressed inXenopus oocytes by poly (A)+ RNA from mammalian brain and retina. Mol. Pharmacol. 41, 89–103.PubMedGoogle Scholar
  130. Yang, J. and Uchida, I. (1996) Mechanisms of etomidate potentiation of GABAA receptor-gated currents in cultured post-natal hippocampal neurons. Neuroscience (in press).Google Scholar
  131. Zimmermann S. A., Jones M. V., and Harrison N. L. (1994) Potentiation of y-aminobutyric acidA Cl-current correlates with in vivo anesthetic potency. J. Pharmacol. Exp. Ther. 270, 987–991.Google Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • Jeremy J. Lambert
  • Delia Belelli
  • Marco Pistis
  • Claire Hill-Venning
  • John A. Peters

There are no affiliations available

Personalised recommendations