Pharmacology of Mammalian GABAA Receptors

  • Neil Upton
  • Thomas Blackburn
Part of the The Receptors book series (REC)

Abstract

γ-Aminobutyric acid (GABA) is the most prevalent neurotransmitter in the mammalian brain and exerts its main actions through GABAA receptors (GABAARs). GABAARs have proven to serve as the primary target for many important neuroactive drugs, including benzodiazepines (BZs), barbiturates, steroids, general anesthetics, and possibly ethanol (Macdonald and Olsen, 1994). Recent elegant studies of the molecular nature of GABAARs have revealed the existence of multiple subtypes of these receptors, the composition of which is determined by the formation of pentameric structures from members of at least three distinct subunit families (αl–6, β1–3, γl–3) (Lüddens et al., 1995). Furthermore, by using sophisticated in vitro techniques, the regulation of functional properties by GABA itself, as well as other modulators of GABAARs, has now been shown to differ dramatically with the type of subunit variants in the pentameric complex (Lüddens et al., 1995; Sieghart, 1995).

Keywords

Partial Agonist Receptor Occupancy Inverse Agonist Full Agonist Neuroactive Steroid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allan, A. M., Baier, L. D., and Zhang, X. (1992) Effects of lorazepam tolerance and withdrawal on GABAA receptor-operated chloride channels. J Pharmacol. Exp. Ther. 261, 295–402.Google Scholar
  2. Angelotti, T. and Macdonald, R. L. (1993) Assembly of GABAA receptor subunits: a,ß, and a, 0,72s subunits produce unique ion channels with dissimilar single-channel properties. J. Neurosci. 13, 1429–1440.PubMedGoogle Scholar
  3. Anholt, R. R., De Souza, E. B., Oster-Granite, M. L., and Snyder, S. H. (1985) Peripheral-type benzodiazepine receptors: autoradiographic localisation in whole-body sections of neonatal rats. J Pharmacol. Exp. Ther. 233, 517–526.PubMedGoogle Scholar
  4. Ansseau, M., Olie, J-P., Von Frenckell, R., Jourdain, G., Stehle, B., and Guillet, P. (1991) Controlled comparisons in the efficacy and safety of four doses of suriclone, diazepam and placebo in generalised anxiety disorder. Psychopharmacology 104, 439–443.Google Scholar
  5. Arbilla, S., Benavides, J., Scatton, B., Tan, S., and Langer, S. Z. (1993) The mechanism of action of alpidem, in Imidazopyridines and Anxiety Disorders: A Novel Experimental and Therapeutic Approach (Bartholini, G., Garreau, M., Morselli, P. L., and Zivkovic, B., eds.), Raven, New York, pp. 61–67.Google Scholar
  6. Arbilla, S., Depoortere, H., George, P., and Langer, S. Z. (1985) Pharmacological profile of zolpidem at benzodiazepine receptors and electrocorticogram in rats. Naunyn Schmiedeberg’s Arch. Pharmacol. 330, 248–251.PubMedGoogle Scholar
  7. Auta, J., Giusti, P., Guidotti, A., and Costa, E. (1994) Imidazenil, a partial positive allosteric modulator of GABAA receptors, exhibits low tolerance and dependence liabilities in the rat. J. Pharmacol. Exp. Ther. 270, 1262–1269.Google Scholar
  8. Ballenger, J. C., McDonald, S., Noyes, R., Rickelo, K., Sussman, N., Woods, S., Patin, J., and Singer, J. (1991) The first double blind, placebo-controlled trial of a partial benzodiazepine agonist abecarnil (ZK 112–119) in generalised anxiety disorder. Psychopharmacol. Bull. 27, 171–179.Google Scholar
  9. Baulieu, E.-E., Robel, P., Vatier, O., Haug, A., Le Gascogne, C., and Bourreau, E. (1987) Neurosteroids: pregnenolone and dehydroepiandrosterone in the rat brain, in Receptor-Receptor Interaction, a New Intramembrane Integrative Mechanism ( Fuxe, K. and Agnati, L. F., eds.), MacMillan, Basingstoke, UK, pp. 89–104.Google Scholar
  10. Benavides, J., Peny, B., Dubois, A., Perrault, G., Morel, E., Zivkovic, B., and Scatton, B. (1987) In vivo interaction of zolpidem with central benzodiazepine (BZD) binding sites (as labeled by [3H]Ro 15–1788) in the mouse brain. Preferential affinity of zolpidem for the coi (BZD i)subtype. J. Pharmacol. Exp. Ther. 245, 1033–1041.Google Scholar
  11. Benavides, J., Peny, B., Ruano, D., Vitorica, J., and Scatton, B. (1993) Comparative autoradiographic distribution of central co (benzodiazepine) modulatory site subtypes with high, intermediate and low affinity for zolpidem and alpidem. Brain Res. 604, 240–250.PubMedGoogle Scholar
  12. Blackburn, T. P., Davies, D. T., Forbes, I. T., Hayward, C. J., Johnson, C. N., Martin, R. T., Piper, D. C., Thomas, D. R., Thompson, M., Upton, N., and Ward, R. W. (1995) Isosteric replacement of the indole nucleus by benzothiophene in a series of pyrido[2,3b]indoles with potential anxiolytic activity. Bioorg. Med. Chem. Lett. 5 2589–2592.Google Scholar
  13. Blanchard, J. C., Boireau, A., Garret, C., and Julou, L. (1979) In vitro and in vivo inhibition by zopic lone of benzodiazepine binding to rodent brain receptors. Life Sci. 24, 2417–2420.Google Scholar
  14. Blanchard, J. C. and Julou, L. (1983) Suriclone—a new cyclopyrrolone derivative recognising receptors labelled by benzodiazepines in rat hippocampus and cerebellum. J. Neurochem. 40, 601–607.PubMedGoogle Scholar
  15. Bormann, J. (1988) Electrophysiology of GABA, and GABA, receptor subtypes. Trends Neurosci. 11, 112–116.PubMedGoogle Scholar
  16. Bowery, N. G., Collins, J. F., and Hill, R. G. (1976) Bicyclic phosphorous esters that are potent convulsants and GABA antagonists. Nature (Lond.) 261, 601–603.Google Scholar
  17. Braestrup, C. (1977) Benzodiazepine receptors in rat brain. Nature (Lond.) 266, 732–734.Google Scholar
  18. Braestrup, C. and Nielsen, M. (1983) Benzodiazepine receptors, in Handbook of Psychopharmacology, vol. 17 ( Iversen, L. L., Iversen, S. D., and Snyder, S. H., eds.),Plenum, New York, pp. 285–384.Google Scholar
  19. Braestrup, C., Nielsen, M., Honore, T., Jensen, I. H., and Petersen, E. N. (1983) Benzodiazepine receptor ligands with positive and negative efficacy. Neuropharmacology 22, 1451–1457.PubMedGoogle Scholar
  20. Braestrup, C., Nielsen, M., and Olsen, C. E. (1980) Urinary and brain ß-carboline- 3-carboxylates as potent inhibitors of brain benzodiazepine receptors. Proc. Natl. Acad. Sci. USA 77, 2288–2292.PubMedGoogle Scholar
  21. Braestrup, C., Schmeichen, R., Neef, G., Nielsen, M., and Petersen, E. N. (1982) Interaction of convulsive ligands with benzodiazepine receptors. Science (Wash., DC) 216, 1241–1243.Google Scholar
  22. Brogden, R. N. and Goa, K. L. (1991) Flumazenil: a reappraisal of its pharmacological properties and therapeutic efficacy as a benzodiazepine antagonist. Drugs 42, 1061–1089.PubMedGoogle Scholar
  23. Brooks-Kayal, A. R. and Pritchett, D. B. (1993) Developmental changes in human y- aminobutyric acid, receptor subunit composition. Annals of Neurol. 34, 687–693.Google Scholar
  24. Busto, U., Kaplan, H. L., Zawertailo, L., and Sellers, E. M. (1994) Pharmacologic effects and abuse liability ofbretazenil, diazepam and alprazolam in humans. Clin. Pharmacol. Ther. 55, 451–463.PubMedGoogle Scholar
  25. Callachan, H. Cottrell, G. A., Hather, N. Y., Lambert, J. J. Nooney, J. M., and Peters, J. A. (1987) Modulation of the GABA, receptor by progesterone metabolites. Proc. R. Soc. London Ser. 231 359–369.Google Scholar
  26. Charney, D.S. and Woods, S.W. (1989) Benzodiazepine treatment of panic disorder: a comparison of alprazolam and lorazepam. J. Clin. Psychiatry 50, 418–423.PubMedGoogle Scholar
  27. Chevalier, S. F., Mendelwicz, J., and Coupez, R. (1993) Safety and efficacy of alpidem, in Imidazopyridines in Anxiety Disorders: A Novel Experimental and Therapeutic Appraoch ( Bartholini, G., Garreau, M., Morselli, P.L., and Zivkovic, B., eds.), Raven, New York, pp. 193–199.Google Scholar
  28. Concas, A., Serra, M., Atsoggiu, T., and Biggio, G. (1988) Foot-shock stress and anxiogenic ß-carbolines increase t35S]butylbicyclophosphorothionate binding in the rat cerebral cortex, an effect opposite to anxiolytic and y-aminobutyric acid mimetics. J. Neurochem. 51, 1868–1876.PubMedGoogle Scholar
  29. Concas, A., Serra, M., Santoro, G., Maciocco, E., Cuccheddu, T., and Biggio, G. (1994) The effect of cyclopyrrolones on GABAA receptor function is different from that of benzodiazepines. Naunyn Schmiedebergs Arch. Pharmacol. 350, 294–300.Google Scholar
  30. Costa, E. and Guidotti, A. (1991) Minireview: diazepam binding inhibitor (DBI): a peptide with multiple biological actions. Life Sci. 49, 325–344.PubMedGoogle Scholar
  31. Costa, E., Guidotti, A., Mao, C. C., and Suria, A. (1975) New concepts on the mechanism of action of the benzodiazepines. Life Sci. 17, 167–186.PubMedGoogle Scholar
  32. Depoortere, B., Zivkovic B., Lloyd, K. G., Sanger, D. J., Perrault, G., Langer, S. Z., and Bartholini, G. (1986) Zolpidem, a novel nonbenzodiazepine hypnotic. I. Neuro-pharmacological and behavioural effects. J. Pharmacol. Exp. Ther. 237, 649–658.PubMedGoogle Scholar
  33. Dillon, G. H., Im, W. B., Carter, D. B., and McKinley, D. D. (1995) Enhancement by GABA of the association rate ofpicrotoxin and tert-butylbicyclophosphorothionate to the rat cloned a,ß2y2 GABAA receptor subtype. Br. J. Pharmacol. 115, 539–545.PubMedGoogle Scholar
  34. Dillon, G. H., Im, H. K., Hamilton, B. J., Carter, D. B., Gammill, R. B., Judge, T. M., and Im, W. B. (1993) U-93631 causes rapid decay of y-aminobutyric acid-induced chloride currents in recombinant rat y-aminobutyric acid type A receptors. Mol. Pharmacol. 44, 860–864PubMedGoogle Scholar
  35. Doble, A., Canton, T., Malgouris, C., Stutzmann, J. M., Piot, O., Bardone, M. C., Pauchet, C., and Blanchard, J. C. (1995) The mechanism of action ofzopiclone. Eur. Psychiatry 10 (Suppl. 3) 117–128.Google Scholar
  36. Doble, A., Canton, T., Piot, O., Zundel, J. L., Stutzmann, J. M., Cotrel, C., and Blanchard, J. C. (1992) The pharmacology of cyclopyrrolone derivatives acting at the GABAA/ benzodiazepine receptors, in GABAergic Synaptic Transmission: Molecular, Pharmacological and Clinical Aspects ( Biggio, G., Concas, A., and Costa, E., eds.), Raven, New York, pp. 407–418.Google Scholar
  37. Dorow, R., Horowski, R., Paschelke, G., Amin, M., and Braestrup, C. (1983) Severe anxiety induced by FG 7142, a 3-carboline ligand for benzodiazepine receptors. Lancet II, 98–99.Google Scholar
  38. Dubois, A., Benavides, J., Peny, B., Duverger, D., Fage, D., Gotti, B., MacKenzie, E. T., and Scatton, B. (1988) Imaging of primary and remote ischaemic and excitotoxic brain lesions. An autoradiographic study of peripheral type benzodiazepine binding sites in the rat and cat. Brain Res. 445, 77–90.PubMedGoogle Scholar
  39. Duncan, G. E., Breese, G. R., Criswell, H. E., McCowan, T. J., Herbert, J. S., Devaud, L. L., and Morrow, A. L. (1995) Distribution of [3H]zolpidem binding sites in relation to messenger RNA encoding the a1, ß2 and y2 subunits of GABAA receptors in rat brain. Neuroscience 64, 1113–1128.PubMedGoogle Scholar
  40. Edgar, P. P. and Schwarz, R. D. (1992) Functionally relevant y-aminobutyric acidA receptors: equivalence between receptor affinity (Ks) and potency (EC„)? Mol. Pharmacol. 41, 1124–1129.Google Scholar
  41. Facklam, M., Schoch, P., Bonetti, E. P., Jenck, F., Martin, J. R., Moreau, J. L., and Haefely, W. E. (1992a) Relationship between benzodiazepine receptor occupancy and functional effects in vivo of four ligands of differing intrinsic efficacies. J. Pharmacol. Exp. Ther. 261, 1113–1121.PubMedGoogle Scholar
  42. Facklam, M., Schoch, P., and Haefely, W. (1992b) Relationship between benzodiazepine receptor occupancy and potentiation of y-aminobutyric acid-stimulated chloride flux in vitro of four ligands of differing intrinsic efficacies. J. Pharmacol. Exp. Ther. 261, 1106–1112.PubMedGoogle Scholar
  43. Faure-Halley, C., Graham, D., Arbilla, S., and Langer, S. Z. (1993) Expression and properties of recombinant 0272 and a5132y2 forms of the rat GABAA receptor. Eur. J. Pharamacol. 246, 283–287.Google Scholar
  44. File, S.E. (1985) Tolerance to the behavioural actions of benzodiazepines. Neurosci. Biobehay. Rev. 9, 113–122.Google Scholar
  45. File, S. E. and Pellow, S. (1987) Behavioural pharmacology of minor tranquilisers. Pharmac. Ther. 35, 265–290.Google Scholar
  46. Forster, M. J., Prather, P. L., Patel, S. R., and Lal, H. (1995) The benzodiazepine receptor inverse agonist RO 15–3505 reverses recent memory deficits in aged mice. Pharmacol. Biochem. Behan 51, 557–560.Google Scholar
  47. Fritschy, J. M., Paysan, J., Enna, A., and Möhler, H. (1994) Switch in the expression of rat GABAA-receptor subtypes during postnatal development: an immunohistochemical study. J. Neurosci. 14, 5302–5324.PubMedGoogle Scholar
  48. Fuchs, K., Möhler, H., and Sieghart, W. (1988) Various proteins from rat brain, specifically and irreversibly labeled by [3H]flunitrazepam, are distinct a-subunits of the GABA benzodiazepine receptor complex. Neurosci. Lett. 90, 314–319.PubMedGoogle Scholar
  49. Gallager, D. W., Lakoski, J. M., Gonsales, S. F., and Rauch, S. L. (1984) Chronic benzo- diazepine treatment decreases postsynaptic GABA sensitivity. Nature 308, 74–77.PubMedGoogle Scholar
  50. Gardner, C. R. (1989) Interpretation of the behavioural effects of benzodiazepine receptor ligands. Drugs of the Future 14, 51–67.Google Scholar
  51. Gee, K.W. (1988) Steroid modulation ofthe GABA/benzodiazepine receptor linked chloride ionophore. Mol. Neurobiol. 2, 291–317.PubMedGoogle Scholar
  52. Gee, K. W., Lawrence, L. J., and Yamamura, H. J. (1986) Modulation of the chloride ionophore by benzodiazepine receptor ligands: influence of y-aminobutyric acid and ligand efficacy. Mol. Pharmacol. 30, 218–225.PubMedGoogle Scholar
  53. Gee, K. W., McCauley, L. D., and Lan, N. C. (1995) A putative receptor for neurosteroids on the GABAA receptor complex: the pharmacological properties and therapeutic potential of epalons. Crit. Rev. Neurobiol. 9, 207–227.Google Scholar
  54. Gillard, N. R, Quirk K., Ragan, C. I., and McKernan, R. M. (1991) [125I]Iodoclonazepam, a specific high affinity radioligand for the identification of BZ1 and BZ2 sites in rat brain. Eur. J. Pharmacol. 195, 407–409.Google Scholar
  55. Giusti, P. and Arban, R. (1993) Physiological and pharmacological bases for the diverse properties of benzodiazepines and their congeners. Pharmacol. Res. 27, 201–215.PubMedGoogle Scholar
  56. Giusti, P., Ducic, I., Puia, G., Arban, R., Walser, A., Guidotti, A., and Costa, E. (1993) Imidazenil: a new partial positive allosteric modulator ofy-aminobutyric acid (GABA) action at GABAA receptors. J. Pharmacol. Exp. Ther. 266, 1018–1028.PubMedGoogle Scholar
  57. Givens, B. S. and Breese, G. R. (1990) Site-specific enhancement of y-aminobutyric acid mediated inhibition of neural activity by ethanol in the rat medial septal area. J. Pharmacol. Exp. Ther. 254, 528–538.PubMedGoogle Scholar
  58. Günther, U., Benson, J., Benke, D., Fritschy, J.-M., Reyes, G., Knoflach, F., Crestani, F.,Aguzzi, A., Arigoni, M., Lang, Y., Bluethmann, H., Möhler, H., and Lüscher, B. (1995) Benzodiazepine-insensitive mice generated by targeted disruption of the y2 subunit gene ofy-aminobutyric acid type A receptors. Proc. Natl. Acad. Sci. 92, 7745–7753.Google Scholar
  59. Haefely, W. (1989) Pharmacology of the allosteric modulation of GABAA receptors by benzodiazepine receptor ligands, in Allosteric Modulation of Amino Acid Receptors: Therapeutic Implications ( Barnard, E. A., and Costa, E., eds.), Raven, New York, pp. 47–69.Google Scholar
  60. Haefely, W., Bonetti, E. P., Burkard, W. P., Cumin, R., Laurent, J.-P., Möhler, H., Pieri, L., Polc, P., Richards, J. G., Schaffner, R., and Scherschlicht, R. (1983) Benzodiazepine antagonists, in The Benzodiazepines: From Molecular Biology to Clinical Practice (Costa, E., ed.), Raven, New York, pp. 137–146.Google Scholar
  61. Haefely, W., Kuskar, A., Möhler, H., Pieri, L., Polc, P., and Schaffner, R. (1975) Possible involvement of GABA in the central actions of benzodiazepines. Adv. Biochem. Psychopharmacol. 14, 131–152.PubMedGoogle Scholar
  62. Haefely, W., Kyburz, E., Gerecke, M., and Möhler, H. (1985) Recent advances in the molecular pharmacology of benzodiazepine receptors and in the structure-activity relationships of their agonists and antagonists, in Advances in Drug Research, vol. 14 ( Testa, B., ed.) Academic, London, pp. 165–322.Google Scholar
  63. Haefely, W., Martin, J. R., and Schoch, P. (1990) Novel anxiolytics that act as partial agonists at benzodiazepine receptors. Trends Pharmacol. Sci. 11, 452–456.Google Scholar
  64. Haigh, J. R. M. and Freely, M. (1988) RO 16–6028, a benzodiazepine receptor partial agonist, does not exhibit anticonvulsant tolerance in mice. Eur. J. Pharmacol. 147, 283–285.PubMedGoogle Scholar
  65. Harrison, N. L. and Simmonds, M. A. (1984) Modulation of the GABA receptor complex by a steroid anaesthetic. Brain Res. 323, 287–292.PubMedGoogle Scholar
  66. Henry, T. R., Frey, K. A., Sakellares, J. C., Gilman, S., Koeppe, R. A., Brunberg, J. A., Ross, D. A., Berent, S., Young, A. B., and Kuhl, D. E. (1993) In vivo cerebral metabolism and central benzodiazepine-binding in temporal lobe epilepsy. Neurology 43 1998–2006.Google Scholar
  67. Hobbs, R. W., Rall, T. W., and Verdon, T. A. (1996) Hypnotics and sedatives; ethanol, in Goodman and Gilman ‘s The Pharmacological Basis of Therapeutics, 9th ed. ( Hardman, J. G. and Limbard, L. E., eds.), McGraw-Hill, New York, pp. 361–396.Google Scholar
  68. Hollister, L. E., Muller-Oerlinghausen, B., Rickels, K., and Shader, R. I. (1993) Clinical use of benzodiazepines. J. Clin. Psychopharmacol. 13 (Suppl. 1) 1–169.Google Scholar
  69. Hunkeler, W., Möhler, H., Piere, L., Polc, P., Bonetti, E. P., Cumin, R., Schaffner, R., and Haefely, W. (1981) Selective antagonists of benzodiazeopines. Nature (Lond.) 290, 514–516.Google Scholar
  70. Im, W. B. and Blakeman, D. P. (1991) Correlation between y-aminobutyric acidA receptor ligand-induced changes in t-butylbicyclophosphoro-[35S]thionate binding and 36C1-uptake in rat cerebrocortical membranes. Mol. Pharmacol. 39, 394–398.Google Scholar
  71. Inomata, N., Tokutomi, N., Oyama, Y., and Akaike, N. (1988) Intracellular picrotoxin blocks pentobarbital-gated Cl-conductance. Neurosci. Res. 6, 72–75.PubMedGoogle Scholar
  72. Jensen, L. H., Stephens, D. N., Satter, M., and Petersen, E. N. (1987) Bidirectional effects of ß-carbolines and benzodiazepines on cognitive processes. Brain Res. Bull. 19, 359–364.PubMedGoogle Scholar
  73. Jones, G. H., Schneider, C., Schneider, H. H., Seidler, J., Cole, B. J., and Stephens, D. N. (1994) Comparison of several benzodiazepine receptor ligands in two models of anxiolytic activity in the mouse: an analysis based on fractional receptor occupancies. Psychopharmacology 114, 191–199.PubMedGoogle Scholar
  74. Julou, L., Blanchard, J. C., and Dreyfus, J. F. (1985) Pharmacological and clinical studies of cyclopyrrolones: zopiclone and suriclone. Pharmacol. Biochem. Behay. 23, 653–659.Google Scholar
  75. Kardos, J. and Cash, D. J. (1990) 36C1- flux measurements and desensitization of the y-aminobutyric acid, receptor. J. Neurochem. 55, 1095–1099.Google Scholar
  76. Karobath, M., Placheta, P., Lippitsch, M., and Krogsgaard-Larsen, P. (1979) Is stimulation of benzodiazepine receptor binding mediated by a novel GABA receptor? Nature (Lond.) 278, 748, 749.Google Scholar
  77. Kerr, J. S., Dawe, R. A., Parkin, C., and Hindmarch, I. (1995) Zopiclone in elderly patients: efficacy and safety. Human Psychopharmacol. 10, 221–229.Google Scholar
  78. Klepner, C. A., Lippa, A. S., Benson, D. I., Sabo, M. C., and Beer, B. (1979) Resolution of two biochemically and pharmacologically distinct benzodiazepine receptors. Pharmacol. Biochem. Behay. 11, 457–462.Google Scholar
  79. Knoflach, F., Drescher, U., Scheurer, L., Malherbe, P., and Möhler, H. (1993) Full and partial agonism displayed by benzodiazepine receptor ligands at recombinant y-aminobutyric acid, receptor subtypes. J. Pharmacol. Exp. Ther. 266, 385–391.PubMedGoogle Scholar
  80. Korpi, E.R. (1994) Role of GABA, receptors in the actions of alcohol and alcoholism: recent advances. Alcohol and Alcoholism 29, 115–129.PubMedGoogle Scholar
  81. Lader, M. H. (1993) Withdrawal symptoms and rebound with anxiolytic drugs, in Imidazopyridines in Anxiety Disorders: A Novel Experimental and Therapeutic Appraoch ( Bartholini, G., Garreau, M., Morselli, P. L., and Zivkovic, B., eds.), Raven, New York, pp. 227–233.Google Scholar
  82. Lader, M. H. (1994) Benzodiazepines: a risk-benefit profile. CNS Drugs 1, 377–387.Google Scholar
  83. Lader, M. H. and File, S. H. (1987) The biological basis of benzodiazepine dependence. Psychological Med. 17, 593–547.Google Scholar
  84. Lambert, J. J., Belelli, D., Hill-Venning, C., and Peters, J. A. (1995) Neurosteroids and GABA, receptor function. Trends Pharmacol. Sci. 16, 295–303.PubMedGoogle Scholar
  85. Lan, N. C. and Gee, K. W. (1991) GABA, receptor complex in rat frontal cortex and spinal cord show differential responses to steroid modulation. Am. Soc. Pharm. Exp. Ther. Mol. Pharmacol. 40, 995–999.Google Scholar
  86. Langer, S. Z. and Arbilla, S. (1988a) Limitations of the benzodiazepine receptor nomenclature: a proposal for a pharmacological classification as omega receptor subtypes. Fund. Clin. Pharmacol. 2, 159–170.Google Scholar
  87. Langer, S. Z. and Arbilla, S. (1988b) Imidazopyridines as a tool for the charactersiation of benzodiazepine receptors: a proposal for a pharmacological classification as omega receptors. Pharmacol. Biochem. Behay. 29, 763–766.Google Scholar
  88. Langtry, H. D. and Benfield, P. (1990) Zolpidem. A review of its pharmacodynamic and pharmacokinetic properties and therapeutic potential. Drugs 40, 291–313.PubMedGoogle Scholar
  89. Legris, P., George, Y., and Boval, P. (1993) A comparative study of alpidem versus buspirone, in Imidazopyridines in Anxiety Disorders: A Novel Experimental and Therapeutic Appraoch ( Bartholini, G., Garreau, M., Morselli, P.L., and Zivkovic, B., eds.) Raven, New York, pp. 183–192.Google Scholar
  90. Leonard, B. E. (1993) Commentary on the mode of action of benzodiazepines. J. Psychiatr. Res. 27 (Suppl. 1) 193–207.Google Scholar
  91. Lippa, A. S., Coupet, J., Greenblatt, E. N., Klepner, C. A., and Beer, B. (1979) A synthetic nonbenzodiazepine ligand for benzodiazepine receptors: a probe for investigating neuronal substrates of anxiety. Pharmacol. Biochem. Behay. 11, 99–106.Google Scholar
  92. Little, H. J., Nutt, D. J., and Taylor, S. C. (1984) Acute and chronic effects of benzodiazepine receptor ligand FG 7142: proconvulsant properties and kindling. Br. J. Pharmacol. 83, 951–958.PubMedGoogle Scholar
  93. Löscher, W. (1993) Abecarnil shows reduced tolerance development and dependence potential in comparison to diazepam: animal studies. Psychopharmacol. Ser. 11, 96–112.PubMedGoogle Scholar
  94. Löscher, W., Hönack, D., Scherkl, R., Hashem, A., and Frey, H. H. (1990) Pharmacokinetics, anticonvulsant efficacy and adverse effects of the ß-carboline abecarnil, a novel ligand for benzodiazepine receptors, after acute and chronic administration in dogs. J. Pharmacol. Exp. Ther. 225, 541–548.Google Scholar
  95. Löscher, W. and Schmidt, D. (1988) Which animal models should be used in the search for new antiepileptic drugs? A proposal based on experimental and clinical considerations. Epilepsy Res. 2, 145–181.PubMedGoogle Scholar
  96. Lüddens, H. and Korpi, E. R. (1995) Biological function of GABAA/benzodiazepine receptor heterogeneity. J. Psychiat. Res. 29, 77–94.PubMedGoogle Scholar
  97. Lüddens, H., Korpi, E. R., and Seeburg, P. H. (1995) GABAA/benzodiazepine receptor heterogeneity: neurophysiological implications. Neuropharmacology 34, 245–254.PubMedGoogle Scholar
  98. Lüddens, H., Pritchett, D. B., Köhler, M., Killisch, I., Keinänen, K., Monyer, H., Sprengel, R., and Seeburg, P. H. (1990) Cerebellar GABAA receptor selective for a behavioural alcohol antagonist. Nature (Lond.) 346, 648–651.Google Scholar
  99. Lüddens, H., Seeburg, P. H., and Korpi, E. R. (1994) Impact of ß and y variants on ligand binding properties of y-aminobutyric acid type A receptors. Mol. Pharmacol. 45, 810–814.PubMedGoogle Scholar
  100. Macdonald, R. L. and Olsen, R. W. (1994) GABAA receptor channels. Ann. Rev. Neurosci. 17, 569–602.PubMedGoogle Scholar
  101. Macdonald, R. L. and Twyman, R. E. (1992) Kinetic properties and regulation of GABAA receptor channels, in Ion Channels, vol. 3 ( Narahashi, T., ed.), Plenum, New York, pp. 315–343.Google Scholar
  102. Majewska, M. D. (1992) Neurosteroids: endogenous bimodal modulators of the GABAA receptor. Mechanism of action and physiological significance. Prog. Neurobiol. 38, 379–395.PubMedGoogle Scholar
  103. Malgouris, C., Perrot, F., Dupuis, M., Kiosseff, T., Daniel, M., Blanchard, J. C., and Doble, A. (1995) Autoradiographic distribution of [3H]-suriclone binding sites in rat brain. Drug Dey. Res. 34, 336–343.Google Scholar
  104. Malizia, A. L. and Nutt, D. J. (1995) The effects of flumazenil in neuropsychiatrie disorders. Clin. Neuropharmacol. 3, 215–232.Google Scholar
  105. Marks, J. (1983) The benzodiazepines—for good or evil. Neuropsychobiology 10, 115–126.PubMedGoogle Scholar
  106. McKernan, R. M. and Whiting, P. J. (1996) Which GABAA-receptor subtypes really occur in the brain. Trends Neurosci. 19, 139–143.PubMedGoogle Scholar
  107. Miller, L. G., Greenblatt, D. J., Barnhill, J. G., and Shader, R. I. (1988) Tolerance is associated with benzodiazepine receptor down-regulation and decreased y-aminobutyric acidA receptor function. J. Pharmacol. Exp. Ther. 246, 170–176.PubMedGoogle Scholar
  108. Miller, L. G., Woolverton, S., Greenblatt, D. J., Lopez, F., Roy, R. B., and Shader, R. I. (1989) Chronic benzodiazepine administration. IV. Rapid tolerance and receptor down regulation associated with alprazolam administration. Biochem. Pharmacol. 38, 3773–3777.Google Scholar
  109. Mindus, P., Ehrin, E., Eriksson, L., Fardre, L., and Hedstrom, C. G. (1986) Central benzodiazepine receptor binding studies with 1 IC labelled Ro 15–1788 and positron emission tomography. Pharmacopsychiatry 19, 2, 3.Google Scholar
  110. Möhler, H., Knoflach., F., Paysan, J., Motejlek, K., Benke, D., Lüscher, B., and Fritschy, J. M. (1995) Heterogeneity of GABAÂ receptors: cell-specific expression, pharmacology and regulation. Neurochem. Res. 20, 631–636.Google Scholar
  111. Möhler, H. and Okada, T. (1977) Benzodiazepine receptor: demonstration in the central nervous system. Science 198, 849–851.PubMedGoogle Scholar
  112. Möhler, H. and Richards, J. G. (1981) Agonist and antagonist benzodiazepine receptor interaction in vitro. Nature (Lond.) 294, 763–765.Google Scholar
  113. Mukhin, A. G., Papadopoulos, V., Costa, E., and Krueger, K. E. (1989) Mitochondrial benzodiazepine receptors regulate steroid biosynthesis. Proc. Natl. Acad. Sci. USA 86, 9813–9816.PubMedGoogle Scholar
  114. Mumford, G. K., Rush, C. R., and Griffiths, R. R. (1995) Abecarnil and alprazolam in humans: behavioural, subjective and reinforcing effects. J. Pharmacol. Exp. Ther. 272, 570–580.Google Scholar
  115. Musch, B. and Maillard, F. (1990) Zopiclone, the third generation hypnotic: a clinical overview. Int. Clin. Psychopharmacol. 5, 147–158.PubMedGoogle Scholar
  116. Nutt, D. J., Smith, C. F., Bennett, R., and Jackson, H. C. (1992) Investigations on the “set-point” theory of benzodiazepine receptor function, in GABAergic Synaptic Transmission (Biggio, G., Concas, A., and Costa, E., eds.), Raven, New York, pp. 419–429.Google Scholar
  117. Obata, T., Morelli, M., Concas, A., Serra, M., andYamamura, H. I. (1988) Modulation of GABA-stimulated chloride flux into membrane vesicles from rat cerebral cortex by benzodiazepines and nonbenzodiazepines, in Chloride Channels and Their Modulation by Neurotransmitters and Drugs ( Biggio, G. and Costa, E., eds.), Raven, New York, pp. 175–187.Google Scholar
  118. O’Brien, C.P. (1996) Drug addiction and drug abuse, in Goodman and Gilman’s The Pharmacological Basis of Therapeutics, 9th ed. ( Hardman, J. G., and Limbard, L. E., eds.), McGraw-Hill, New York, pp. 557–577.Google Scholar
  119. Olsen, R.W. (1982) Drug interactions at the GABA receptor-ionophore complex. Ann. Rev. Pharmacol. Toxicol. 22, 245–277.Google Scholar
  120. Olsen, R. W., Bergmann, M. O., Van Ness, P. C., Lummis, S. C., Watkins, A. E., Napias, C., and Greenlee, D. V. (1981) 7-Aminobutyric acid receptor binding in mammalian brain. Heterogeneity of binding sites. Mol. Pharmacol. 19, 217–227.Google Scholar
  121. Olsen, R. W. and Snowman, A. M. (1983) [3H]Bicuculline methochloride binding to low-affinity y-aminobutyric acid receptor sites. J. Neurochem. 41, 1653–1663.Google Scholar
  122. Olsen, R. W. and Tobin, A. J. (1990) Molecular biology of GABA, receptors. FASEB J. 4, 1469–1480.PubMedGoogle Scholar
  123. Owen, R. T. and Tyrer, P. (1983) Benzodiazepine dependence. Drugs 25, 385–398.PubMedGoogle Scholar
  124. Ozawa, M., Nakada, Y., Sugimachi, K., Yabuuchi, F., Akai, T., Mizuta, E., Kuno, S., and Yamaguchi, M. (1994a) Pharmacological characterisation of the novel nxiolytic ß-carboline in rodents and primates. Jpn. J. Pharmacol. 64, 179–187.PubMedGoogle Scholar
  125. Ozawa, M., Sugimachi, K., Nakada-Kometani, Y., Akai, T., and Yamaguchi, M. (1994b) Chronic pharmacological activities of the novel anxiolytic ß-carboline abecarnil in rats. J. Pharmacol. Exp. Ther. 269, 457–462.PubMedGoogle Scholar
  126. Panchera, P., Bressa, G. M., and Borghi, C. (1993) Double-blind randomised studies on the therapeutic action of alpidem in generalised anxiety disorders, in Imidazopyridines in Anxiety Disorders: A Novel Experimental and Therapeutic Approach (Bartholini, G., Garreau, M., Morselli, P. L., and Zivkovic, B., eds.), Raven, New York, pp. 155–164.Google Scholar
  127. Parola, A. L., Yarnamura, H. I., and Laird, H. E., II (1993) Minireview: peripheral-type benzodiazepine receptors. Life. Sci. 52, 1329–1342.Google Scholar
  128. Paul, S. M. and Purdy, R. H. (1992) Neuroactive steroids. FASEB J. 6, 2311–2322.PubMedGoogle Scholar
  129. Paysan, J., Bolz, J., Mohler, H., and Fritschy, J. M. (1994) GABAA receptor a, subunit, an early marker for area specification in developing rat cerebral cortex. J. Comp. Neurol. 350, 133–149.PubMedGoogle Scholar
  130. Perrault, G., Morel, E., Sanger, D. J., and Zivkovic, B. (1990) Differences in pharmacological profiles of a new generation of benzodiazepine and non-benzodiazepine hypnotics. Eur. J. Pharmacol. 187, 487–494.PubMedGoogle Scholar
  131. Perrault, G., Morel, E., Sanger, D. J., and Zivkovic, B. (1992) Lack of tolerance and physical dependence upon repeated treatment with the novel hypnotic zolpidem. J. Pharmacol. Exp. Ther. 263, 290–303.Google Scholar
  132. Perrault, G., Morel, E., Sanger, D. J., and Zivkovic, B. (1993) Repeated treatment with alpidem, a new anxiolytic, does not induce tolerance or physical dependence. Neuropharmacology 32, 855–863.PubMedGoogle Scholar
  133. Persson, A., Ehrin, E., Eriksson, L., Fardre, L., Hedstrom, C. G., Litton, J. A., Mindus, P., and Sedvall, G. (1985) Imaging of [’’ C]-labelled Ro 15–1788 binding to benzodiazepine receptors in the human brain by positron emission tomography. J. Psychiatr. Res. 19, 609–622.Google Scholar
  134. Peters, J. A., Kirkness, E. F., Callachan, H., Lambert, J. J., and Turner, A. J. (1988) Modulation of the GABAA receptor by depressant barbiturates and pregnane steroids. Br. J. Pharmacol. 94, 1257–1269.PubMedGoogle Scholar
  135. Petursson, H. and Lader, M. H. (1981) Benzodiazepine dependence. Br. J. Addict. 76, 133–145.PubMedGoogle Scholar
  136. Piot, O., Betschart, J., Stutzmann, J. M., and Blanchard, J. C. (1990) Cyclopyrrolones, unlike some benzodiazepines, do not induce physical dependence in mice. Neurosci. Lett. 117, 140–143.PubMedGoogle Scholar
  137. Polc, P. (1988) Electrophysiology of benzodiazepine receptor ligands: multiple mechanisms and sites of action. Prog. Neurobiol. 31, 349–424.PubMedGoogle Scholar
  138. Potokar, J. and Nutt, D. J. (1994) Anxiolytic potential of benzodiazepine partial agonists. CNS Drugs 1, 305–315.Google Scholar
  139. Pribilla, I., Neuhaus, R., Huba, R., Hillmann, M., Turner, J. D., Stephens, D. N., and Schneider, H. H. (1993) Abecarnil is a full agonist at some, and a partial agonist at other recombinant GABAA receptor subtypes. Psychopharmacology Ser. 11, 50–61.Google Scholar
  140. Pritchett, D. B., Lüddens, H., and Seeburg, P. H. (1989a) Type I and type II GABAAbenzodiazepine receptors produced in transfected cells. Science (Wash. DC) 245, 1389–1392.Google Scholar
  141. Pritchett, D. B. and Seeburg, P. H. (1990) y-Aminobutyric acidA receptor a5-subunit creates novel type II benzodiazepine receptor pharmacology. J. Neurochem. 54, 1802–1804.Google Scholar
  142. Pritchett, D. G., Sontheimer, H., Shivers, B. D., Ymer, S., Kettenmann, H., Schofield, P. R., and Seeburg, P. H. (1989b) Importance of a novel GABAA receptor subunit for benzodiazepine pharmacology. Nature 338, 582–585.Google Scholar
  143. Puia, G., Ducic, I., Vicini, S., and Costa, E. (1992) Molecular mechanisms ofthe partial allosteric modulatory effects of bretazenil at y-aminobutyric acid type A receptor. Proc. Natl. Acad. Sci. 89, 3620–3624.PubMedGoogle Scholar
  144. Puia, G., Vicini, S., Seeburg, P. H., and Costa, E. (1991) Influence of recombinant yaminobutyric acidA receptor subunit composition on the action of allosteric modulators of y-aminobutyric acid-gated Cl currents. Mol. Pharments. Mol. Pharmacol. 39, 691–696.Google Scholar
  145. Richards, J. G., Schoch, P., and Haefely, W. (1991) Benzodiazepine receptors: new vistas. Semin. Neurosci. 3, 191–203.Google Scholar
  146. Rickels, K. and Schweizer, E. E. (1987) Current pharmacotherapy of anxiety and panic, in Psychopharmacology, The Third Generation of Progress ( Meltzer, H.Y., ed.), Raven, New York, pp. 1193–1203.Google Scholar
  147. Ruano, D., Benavides, J., Machado, A., and Vitorica, J. (1993) Regional differences in the enhancement by GABA of [3H]zolpidem binding to w, sites in rat brain membranes and sections. Brain Res. 600, 134–140.PubMedGoogle Scholar
  148. Samson, Y., Hantraye, P., Baron, J. C., Soussaline, F., and Maziere, M. (1985) Kinetics and displacement of [“C] Ro 15–1788, a benzodiazepine antagonist studied in human brain in vivo by positron tomography. Eur. J. Pharmacol. 110, 247–251.PubMedGoogle Scholar
  149. Sanger, D. J., Perrault, G., Morel, E., Joly, D., and Zivkovic, B. (1993) The psychopharmacological profile of alpidem, in Imidazopyridines in Anxiety Disorders: A Novel Experimental and Therapeutic Approach ( Bartholini, G., Garreau, M., Morselli, P. L., and Zivkovic, B., eds.), Raven, New York, pp. 73–84.Google Scholar
  150. Sannerud, C. A., Ator, N. A., and Griffiths, R. R. (1992) Behavioural pharmacology of abecarnil in baboons: self-injection, drug discrimination and physical dependence. Behan Pharmacol. 3, 507–516.Google Scholar
  151. Sannerud, C. A., Ator, N. A., and Griffiths, R. R. (1993) Behavioural pharmacology of abecarnil in baboons: reduced dependence and abuse potential. Psychopharmacol. Ser. 11, 113–119.PubMedGoogle Scholar
  152. Sapp, D. W., Witte, U., Turner, D. M., Longoni, B., Kokka, N., and Olsen, R. W. (1992) Regional variation in steroid anaesthetic modulation of [35S]TBPS binding to y-aminobutyricp, receptors in rat brain. Am. Soc. Pharm. Exp. Ther. Mol. Pharmacol. 262, 801–808.Google Scholar
  153. Savic, I. Persson, A., Roland, P., Pauli, S. Sedvall, G., and Widen, L. (1988) In vivo demonstration of reduced benzodiazepine receptor binding in human epileptic foci. Lancet 2, 863–866.Google Scholar
  154. Schneider, H. H. and Stephens, D. N. (1988) Co-existence of kindling induced by 13-carboline, FG 7142 and tolerance to diazepam following chronic treatment in mice. Eur. J. Pharmacol. 154, 35–45.PubMedGoogle Scholar
  155. Schoh, P., Moreau, J. L., Martin, J. R., and Haefely, W. E. (1993) Aspects of benzodiazepine receptor structure and function with relevance to drug tolerance and dependence. Biochem. Soc. Symp. 59, 121–134.Google Scholar
  156. Schousboe, A. and Redburn, D. A. (1995) Modulatory actions of y-aminobutyric acid (GABA) on GABA type A receptor subunit expression and function. J. Neurosci. Res. 41, 1–7.PubMedGoogle Scholar
  157. Segal, M. and Barker, J. L. (1984) Rat hippocampal neurones in culture: properties of GABA activated Cl-ion conductance. J. Neurophysiol. 55, 500–515.Google Scholar
  158. Serra, M., Ghiani, C. A., Motzo, C., and Biggio, G. (1993) Pharmacological evidence for full agonist activity of abecarnil at certain GABAA receptors. Pharmacol. Ser. 11, 62–78.Google Scholar
  159. Serra, M., Ghiani, C. A., Motzo, C., Cuccheddu, T., Floris, S., Giusti, P., and Biggio, G. (1994) Imidazenil, a new partial agonist of benzodiazepine receptors, reverses the inhibitory action of isoniazid and stress on y-aminobutyric acidA receptor function. J. Pharmacol. Exp. Ther. 269, 32–38.PubMedGoogle Scholar
  160. Sieghart, W. (1989) Multiplicity of GABAA-benzodiazepine receptors. Trends Pharmacol. Sci. 10, 407–411.PubMedGoogle Scholar
  161. Sieghart, W. (1995) Structure and pharmacology of y-aminobutyric acidA receptor subtypes. Pharmacol. Rev. 47, 181–234.PubMedGoogle Scholar
  162. Sieghart, W. and Schlerka, W. (1991) Potency of several type I-benzodiazepine receptor ligands for inhibition of [3H]flunitrazepam binding in different rat brain tissues. Eur. J. Pharmacol. 197, 103–107.PubMedGoogle Scholar
  163. Skolnick, P., Crawley, J. N., Glowa, J. R., and Paul, S. M. (1984) 0-Carboline-induced anxiety states. Psychopathology 17, 52–60.Google Scholar
  164. Smith, G. B. and Olsen, R. W. (1995) Functional domains of GABAA receptors. Trends Pharmacol. Sci. 16, 162–167PubMedGoogle Scholar
  165. Spencer, C. M. and Benfield, P. (1995) Abecarnil in generalised anxiety disorder: an initial appraisal of its clinical potential. CNS Drugs 3, 69–82.Google Scholar
  166. Squires, R. F., Benson, D. I., Braestrup, C., Coupet, J., Klepner, C. A., Myers, V., and Beer, B. (1979) Some properties of brain specific benzodiazepine receptors: new evidence for multiple receptors. Pharmacol. Biochem. Behan 10, 825–830.Google Scholar
  167. Squires, R. F. and Braestrup, C. (1977) Benzodiazepine receptors in rat brain. Nature (Lond.) 266, 732–734.Google Scholar
  168. Squires, R. F., Casida, J. E., Richardson, M., and Saederup, E. (1983) [35S]-tbutylbicyclophosphorothionate binds with high affinity to brain specific sites coupled to y-aminobutyric acidA and ion recognition sites. Mol. Pharmacol. 23, 326–336.Google Scholar
  169. Stephens, D. N., Schneider, H. H., Kehr, W., Andrews, J. S., Rettig, K. J., Turski, L., Schmiechen, R., Turner, J. D., Jensen, L. H., Petersen, E. N., Honore, T., and Hansen, J. B. (1990) Abecarnil, a metabolically stable, anxioselective 3-carboline acting at benzodiazepine receptors. J. Pharmacol. Exp. Ther. 253, 334–343.Google Scholar
  170. Stephens, D.N., Turski, L., Hillman, M., Turner, J. D., Schneider, H. H., and Yamaguchi, M. (1992) What are the differences between abecarnil and conventional benzodiazepine anxiolytics? in GABAergic Synaptic Transmission (Biggio, G., Concas, A., and Costa, E., eds.), Raven, New York, pp. 395–405.Google Scholar
  171. Stephens, D. N., Turski, L., Jones, G. H., Steppuhn, K. G., and Schneider, H. H. (1993) Abecarnil: a novel anxiolytic with mixed full agonist/partial agonist properties in animal models of anxiety and sedation. Psychopharmacol. Ser. 11, 79–95.PubMedGoogle Scholar
  172. Stephenson, F. A., Duggan, M. J. and Pollard, S. (1990) The y2-subunit is an integral component of the y-aminobutyric acidA receptor, but the a, polypeptide is the principal site of the agonist benzodiazepine photoaffinity labeling reaction. J. Biol. Chem. 265 21,160–21,165.Google Scholar
  173. Steppuhn, K. G., Schneider, H. H., Turski, L., and Stephens, D. N. (1992) Long-term treatment with abecarnil does not induce diazepam-like dependence in mice. J. Pharmacol. Exp. Ther. 264, 1395–1400.Google Scholar
  174. Study, R. E. and Barker, J. L. (1981) Diazepam and (—)pentobarbital: fluctuation analysis reveals different mechanisms for potentiation of y-aminobutyric acid responses in cultured central neurones. Proc. Natl. Acad. Sci. USA 78, 7180–7184.Google Scholar
  175. Supavilai, P. and Karobath, M. (1984) [35S]t-butylbicyclophosphorothionate binding sites are constituents of the y-aminobutyric acid benzodiazepine receptor complex. J. Neurosci. 4, 1193–1200.Google Scholar
  176. Suzdak, P. D., Glowa, J. R., Crawley, J. N., Schwartz, R. D., Skolnick, P., and Paul, S. M. (1986) A selective imidazobenzodiazepine antagonist of ethanol in the rat. Science (Wash. DC) 234, 1243–1247.Google Scholar
  177. Thiebot, M.-H. and Soubrie, P. (1983) Behavioural pharmacology ofthe benzodiazepines, in The Benzodiazepines: From Molecular Biology to Clinical Practice ( Costa, E., ed.), Raven, New York, pp. 67–92.Google Scholar
  178. Trifiletti, R. R. and Snyder, S. H. (1984)Anxiolytic cyclopyrrolones zopiclone and suriclone bind to a novel site linked allosterically to benzodiazepine receptors. Mol. Pharmacol. 26, 458–469.Google Scholar
  179. Turski, L., Stephens, D.N., Jensen, L.H., Petersen, E. N., Meldrum, B. S., Patel, S., Bondo Hansen, J., Löscher, W., Schneider, H. H., and Schmiechen, R. (1990) Anticonvulsant action of the ß-carboline abecarnil: studies in rodents and baboon, Papio papio. J. Pharmacol. Exp. Ther. 253, 344–352.Google Scholar
  180. Uusi-Oukari, M., and Korpi, E. R. (1990) Diazepam sensitivity of the binding of an imidazobenzodiazepine, [3H]Ro 15–4513, in cerebellar membranes from two rat lines developed for high and low alcohol sensitivity. J. Neurochem. 54, 1980–1987.PubMedGoogle Scholar
  181. Wafford, K. A., Bain, C. J., Quirk, K., McKernan, R. M., Wingrove, P. B., Whiting, P. J., and Kemp, J. A. (1994) A novel allosteric modulatory site on the GABAA receptor ß subunit. Neuron 12, 775–782.Google Scholar
  182. Wafford, K. A., Burnett, D. M., Leidenheimer, N. J., Burt, D. R., Wang, J. B., Kofuji, P., Dunwiddie, T. V., Harris, R. A., and Sikola, J. M. (1991) Ethanol sensitivity of the GABAA receptor expressed in Xenopus oocytes requires 8 amino acids contained in the y2L-subunit. Neuron 7, 27–33.Google Scholar
  183. Wafford, K. A., Whiting, P. J., and Kemp, J. A. (1993) Differences in affinity of benzodiazepine receptor ligands at recombinant y-aminobutyric acidA receptor subtypes. Mol. Pharmacol. 43, 240–244.PubMedGoogle Scholar
  184. Whiting, P., McKernan, R. M., and Iversen, L. L. (1990) Another mechanism for creating diversity in y-aminobutyrate type A receptors: RNA splicing directs expression of two forms of y2 subunit one of which contains a protein kinase C phosphorylation site. Proc. Natl. Acad. Sci. USA 87, 9966–9970.PubMedGoogle Scholar
  185. Wisden, W., Laurie, D. J., Monyer, H., and Seeburg, P. H. (1992) The distribution of 13 GABAA receptor subunit mRNAs in the rat brain. I. Telencephalon, diencephalon, mesencephalon. J. Neurosci. 12, 1040–1062.PubMedGoogle Scholar
  186. Woods, J. H., Katz, J. L., and Winger, G. (1987) Abuse liability of benzodiazepines. Pharmacol. Rev. 39, 251–392.Google Scholar
  187. Woods, J. H., Katz, J. L., and Winger, G. (1992) Benzodiazepines: use, abuse and consequences. Pharmacol. Rev. 44, 151–347.Google Scholar
  188. Wu, Y., Rosenberg, H. C., and Chiu, T. H. (1995) Rapid down-regulation of [3H]zolpidem binding to rat brain benzodiazepine receptors during flurazepam treatment. Eur. J. Pharmacol. 278, 125–132.Google Scholar
  189. Yanganita, T. (1993) Dependence potential of zopiclone studied in monkeys. Pharmacology 27 (Suppl. 2), 216–227.Google Scholar
  190. Zhang, P., Lin., U., McKernan, R., Wafford, K., and Cook, J. M. (1995) Studies of novel imidazobenzodiazepine ligands at GABAA/BzR subtypes: effect of C(3) substituents on receptor subtype selectivity. Med. Chem. Res. 5, 487–495.Google Scholar
  191. Zivkovic, B., Morel, E., Joly, D., Perrault, G., Sanger, D. J., and Lloyd, K. G. (1990) Pharmacological and behavioural profile of alpidem as an anxiolytic. Pharmacopsychiatry 23, 108–113.PubMedGoogle Scholar
  192. Zundel, J. L., Blanchard, J. C., and Julou, L. (1985) Partial chemical characterisation of cyclopyrrolones ([3H]-suriclone) and benzodiazepines ([3H]-flunitrazepam) binding sites differences. Life Sci. 36, 2247–2255.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • Neil Upton
  • Thomas Blackburn

There are no affiliations available

Personalised recommendations