Molecular Biology, Pharmacology, and Physiology of GABAC Receptors

  • Graham A. R. Johnston
Part of the The Receptors book series (REC)


The first edition of The GABA Receptors (Enna, 1983) made no reference to the subtype of GABA receptors now known as GABAC receptors, i.e., receptors for the inhibitory neurotransmitter GABA that are insensitive to the GABAA antagonist, bicuculline, and to the GABAB agonist, baclofen. Bowery (1993), in his chapter on the classification of GABA receptors, reported that the possible existence of bicuculline-insensitive GABA receptors had been considered, e.g., Andrews and Johnston (1979) postulated that “GABA might act at a population of bicuculline-insensitive sites in a folded conformation whereas it acts at bicuculline-sensitive receptors in an extended conformation.” Bowery continued, “The idea arose from studies with compounds such as cis-4-aminocrotonic acid that depress neuronal firing but are unaffected by bicuculline. Although this postulate is interesting, a simultaneous activation of these sites by GABA in the presence of bicuculline was never shown. To designate a receptor ‘GABA site,’ it surely must be activated by GABA. Perhaps under the right conditions GABA may be an agonist at the site.”


Partial Agonist Bipolar Cell Gaba Receptor Horizontal Cell Glycine Receptor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Albrecht, B. E. and Darlison, M. G. (1995) Localization of the p 1- and p2-subunit messenger RNAs in chick retina by in situ hybridization predicts the existence of yaminobutyric acid type C receptor subtypes. Neurosci. Lett. 189, 155–158.PubMedCrossRefGoogle Scholar
  2. Allan, R. D., Curtis, D. R., Headley, P. M., Johnston, G. A. R., Lodge, D., and Twitchin, B. (1980) The synthesis and activity of cis-and trans-2-(aminomethyl)-cyclopropane carboxylic acid as conformationally restricted analogues of GABA. J. Neurochem. 34, 651–655.CrossRefGoogle Scholar
  3. Allan, R. D., Dickenson, H. W., Duke, R. K., and Johnston, G. A. R. (1991) ZAPA, a substrate for the neuronal high affinity GABA uptake system in rat brain slices. Neurochem. Int. 18, 63–67.PubMedCrossRefGoogle Scholar
  4. Allan, R. D. and Johnston, G. A. R. (1983) Synthetic analogs for the study of GABA as a neurotransmitter. Med. Res. Rev. 3, 91–118.PubMedCrossRefGoogle Scholar
  5. Allan, R. D., Johnston, G. A. R., and Kazlauskas, R. (1985) Synthesis of analogues of GABA. XIII. An alternative route to (Z)-4-aminocrotonic acid. Aust. J. Chem. 38, 1647–1650.CrossRefGoogle Scholar
  6. Amin, J. and Weiss, D. S. (1994) Homomeric p 1 GABA channels: activation properties and domains. Receptors Channels 2, 227–236.PubMedGoogle Scholar
  7. Andrews, P. R. and Johnston, G. A. R. (1979) GABA agonists and antagonists. Biochem. Pharmacol. 28, 2697–2702.PubMedCrossRefGoogle Scholar
  8. Balcar, V. J., Joó, F., Kâsa, P., Dammasch, I. E., and Wolff, J. R. (1986) GABA receptor binding in rat cerebral cortex and superior cervical ganglion in the absence of GABAergic synapses. Neurosci. Lett. 66, 269–274.PubMedCrossRefGoogle Scholar
  9. Barolet, A. W., Kish, S. J., and Morris, M. E. (1985) Identification of extrasynaptic binding sites for [3H]GABA in peripheral nerve. Brain Res. 358, 104–109.PubMedCrossRefGoogle Scholar
  10. Biedermann, B., Eberhardt, W., and Reichelt, W. (1994) GABA uptake into isolated retinal Müller glial cells of the guinea-pig detected electrophysiologically. NeuroReport 5, 438–440.Google Scholar
  11. Borden, L. A., Smith, K. E., Hartig, P. R., Branchek, T. A., and Weinshank, R. L. (1992) Molecular heterogeneity of the y-aminobutyric acid (GABA) transport system. J. Biol. Chem. 267, 21089–21104.Google Scholar
  12. Bormann, J. and Feigenspan, A. (1995) GABAc receptors. Trends Neurosci. (in press). Bowery, N. G. (1983) Classification of GABA receptors, in The GABA Receptors (Enna, S. J., ed.), Humana, Clifton, NJ, pp. 177–213.Google Scholar
  13. Browning, M. D., Bureau, M., Dudek, E. M., and Olsen, R. W. (1990) Protein kinase C and cAMP-dependent protein kinase phosphorylate the ß subunit of the purified yaminobutyric acid A receptor. Proc. Natl. Acad. Sci. USA 87, 1315–1318.PubMedCrossRefGoogle Scholar
  14. Buckingham, S. D., Hosie, A. M., Roush, R. L., and Satelle, D. B. (1994) Actions of agonists and convulsant antagonists on a Drosophila melanogaster GABA receptor (Rdl) homo-oligomer expressed in Xenopus oocytes. Neurosci. Lett. 181, 137–140.PubMedCrossRefGoogle Scholar
  15. Calvo, D. J. and Miledi, R. (1995) Activation of GABA r, receptors by glycine and (3-alanine. NeuroReport 6, 1118–1120.Google Scholar
  16. Calvo, D. J., Vazquez, A. E., and Miledi, R. (1994) Cationic modulation of pt-type yaminobutyrate receptors expressed in Xenopus oocytes. Proc. Natl. Acad. Sci. USA 91, 1275–1279.CrossRefGoogle Scholar
  17. Chang, Y., Amin, J., and Weiss, D. S. (1995) Zinc is a mixed antagonist of homomeric p, y-aminobutyric acid-activated channels Mol. Pharmacol. 47, 595–602.PubMedGoogle Scholar
  18. Chen, R., Belelli, D., Lambert, J. J., Peters, J. A., Reyes, A., and Lan, N. C. (1994) Cloning and functional expression of a Drosophila y-aminobutryic acid receptor. Proc. Natl. Acad. Sci. USA 91, 6069–6073.PubMedCrossRefGoogle Scholar
  19. Clark, J. A., Deutch, A. Y., Gallipoli, P. Z., and Amara, S. G. (1992) Functional expression and CNS distribution of a fl-alanine-sensitive neuronal GABA transporter. Neuron 9, 337–348.PubMedCrossRefGoogle Scholar
  20. Cummins, C. J., Glover, R. A., and Sellinger, O. Z. (1982) (3-Alanine uptake is not a marker for brain astroglia in culture. Brain Res. 239, 299–302.Google Scholar
  21. Curtis, D. R., Duggan, A. W., Felix, D., and Johnston, G. A. R. (1970) GABA, bicuculline and central inhibition. Nature 226, 1222–1224.PubMedCrossRefGoogle Scholar
  22. Curtis, D. R., Duggan, A. W., Felix, D., and Johnston, G. A. R. (1971) Bicuculline, an antagonist of GABA and synaptic inhibition in the spinal cord. Brain Res. 2, 69–96.CrossRefGoogle Scholar
  23. Curtis, D. R., Duggan, A. W., and Johnston, G. A. R. (1969) Glycine, strychnine, picrotoxin and spinal inhibition. Brain Res. 14, 759–762.PubMedCrossRefGoogle Scholar
  24. Curtis, D. R., Game, C. J. A., Johnston, G. A. R., and McCulloch, R. M. (1974) Central effects of 0-(p-chlorophenyl)-y-aminobutyric acid. Brain Res. 70, 493–599.PubMedCrossRefGoogle Scholar
  25. Curtis, D. R., Hösli, L., Johnston, G. A. R., and Johnston, I. H. (1967) Glycine and spinal inhibition. Brain Res. 5, 112–114.CrossRefGoogle Scholar
  26. Cutting, G. R., Curristin, S., Zoghbi, H., O’Hara, B., Seldin, M. F., and Uhl, G. R. (1992) Identification of a putative y-aminobutyric acid (GABA) receptor subunit p2 cDNA and colocalization of the genes encoding p2 (GABARR2) and p1 (GABARR1) to human chromosome 6q14-q21 and mouse chromosome 4. Genomics 12, 801–806.PubMedCrossRefGoogle Scholar
  27. Cutting, G. R., Lu, L., O’Hara, B. F., Kasch, L. M., Montrose-Rafizadeh, C., Donovan, D. M., Shimada, S., Antonarakis, S. E., Guggino, W. B., Uhl, G. R., and Kazazian, H. H. (1991) Cloning of the y-aminobutyric acid (GABA) pi cDNA: a GABA receptor subunit highly expressed in the retina. Proc. Natl. Acad. Sci. USA 88, 2673–2677.PubMedCrossRefGoogle Scholar
  28. Darlison, M. G. and Albrecht, B. E. (1995) GABA, receptor subtypes: which, where and why? Semin. Neurosci. 7, 115–126.CrossRefGoogle Scholar
  29. Davidoff, R. A. and Aprison, M. H. (1969) Picrotoxin antagonism of the inhibition of interneurones by picrotoxin. Life Sci. 8, 107–112.PubMedCrossRefGoogle Scholar
  30. Djamgoz, M. B. A. (1995) Diversity of GABA receptors in the vertebrate outer retina. Trends Neurol. Sci. 18, 118–120.CrossRefGoogle Scholar
  31. Dong, C. J. and Werblin, F. S. (1994) Dopamine modulation of GABAc receptor function in an isolated retinal neuron. J. Neurophysiol. 71, 1258–1260.PubMedGoogle Scholar
  32. Dong, C J. and Werblin, F. S. (1995) Zinc down modulates the GABAc receptor current in cone horizontal cells acutely isolated from the catfish retina. J. Neurophysiol. 73, 916–919.PubMedGoogle Scholar
  33. Drew, C. A. and Johnston, G. A. R. (1992) Bicuculline-and baclofen-insensitive y-amino- butyric acid binding to rat cerebellar membranes. J. Neurochem. 58, 1087–1092.PubMedCrossRefGoogle Scholar
  34. Drew, C. A., Johnston, G. A. R., and Weatherby, R. R. (1984) Bicuculline-insensitive GABA receptors: studies on the binding of (—)-baclofen to rat cerebellar membranes. Neurosci. Lett. 52, 317–321.PubMedCrossRefGoogle Scholar
  35. Duke, R. K., Allan, R. D., Drew, C. A., Johnston, G. A. R., Mewett, K. N., Long, M. A., and Than, C. (1993) The preparation of tritiated E- and Z-4-aminobut-2-enoic acids, conformationally restricted analogues of the inhibitory neurotransmitter 4-aminobutanoic acid (GABA). J. Labelled Compd. Rad. 33, 527–540.CrossRefGoogle Scholar
  36. Edwards. F. A. and Gage, P. W. (1988) Seasonal changes in inhibitory currents in rat hippocampus. Neurosci. Lett. 84, 266–270.CrossRefGoogle Scholar
  37. Enna, S. J. (1983) The GABA Receptors, Humana Press, Clifton, NJ.Google Scholar
  38. Enz, R., Brandstatter, J. H., Hartveit, E., Wassle, H., and Bormann, J. (1995) Expression of GABA receptor p 1 and p2 subunits in the retina and brain of the rat. Eur. J. Neurosci. 7, 1495–1501.PubMedCrossRefGoogle Scholar
  39. Feigenspan, A. and Bormann, J. (1994a) Modulation of GABAc receptors in rat retinal bipolar cells by protein kinase C. J. Physiol. 481, 325–330.PubMedGoogle Scholar
  40. Feigenspan, A. and Bormann, J. (1994b) Differential pharmacology of GABAA and GABAC receptors on rat retinal bipolar cells. Eur. J. Pharmacol. 288, 97–104.PubMedCrossRefGoogle Scholar
  41. Feigenspan, A. and Bormann, J. (1994c) Facilitation of GABAergic signalling in the retina by receptors stimulating adenylate cyclase. Proc. Natl. Acad. Sci. USA 91, 10893–10897.PubMedCrossRefGoogle Scholar
  42. Feigenspan, A., Wassle, H., and Bormann, J. (1993) Pharmacology of GABA receptor Cl-channels in rat retinal bipolar cells. Nature 361, 159–162.PubMedCrossRefGoogle Scholar
  43. ffrench-Constant, R. H. (1993) Cloning of the Drosophila cyclodiene insecticide resistance gene: a novel GABAA receptor subtype? Comp. Biochem. Physiol.–C: Comp. Pharmacol. Toxicol. 104, 9–12.CrossRefGoogle Scholar
  44. Greferath, U., Grünert, U., and Wässle, H. (1990) Rod bipolar cells in the mammalian retina show protein kinase C-like immunoreactivity. J. Comp. Neurol. 301, 433–442.PubMedCrossRefGoogle Scholar
  45. Gurley, D., Amin, J., Ross, P. C., Weiss, D. S., and White, G. (1995) Point mutations in the M2 region of the a, ß, or y subunit of the GABAA channel that abolish block by picrotoxin. Receptors Channels 3, 13–20.PubMedGoogle Scholar
  46. Hill D. L. and Bowery, N. G. (1981) 3H-Baclofen and 3H-GABA bind to bicucullineinsensitive GABA sites in rat brain. Nature 290, 149–152.Google Scholar
  47. Holden-Dye, L., Willis, R. J., and Walker, R. J. (1994) Azole compounds antagonise the bicuculline-insensitive GABA receptor on the cells of the parasitic nematode Ascaris suum. Br. J. Pharmacol. 111, 188 P.Google Scholar
  48. Im, M. S., Hamilton, B., Carter, D. B., and Im, W. B. (1992) Selective potentiation of GABA-mediated Cl-current by lanthanum ion in subtypes of cloned GABAA receptors. Neurosci. Lett. 144, 165–168.PubMedCrossRefGoogle Scholar
  49. Jackel, C., Krenz, W. D., and Nagy, F. (1994) A receptor with GABAc-like pharmacology in invertebrate neurones in culture. NeuroReport 5, 1097–1101.Google Scholar
  50. Johnston, G. A. R. (1975) Physiologic pharmacology of GABA and its antagonists in the vertebrate nervous system, in GABA in Nervous System Function ( Roberts, E., Chase, T. N., and Tower, D. B., eds.), Raven, New York, pp. 395–411.Google Scholar
  51. Johnston, G. A. R. (1977) Effects of calcium on the potassium-stimulated release of radioactive 0-alanine and y-aminobutyric acid from slices of rat cerebral cortex and spinal cord. Brain Res. 121, 179–181.PubMedCrossRefGoogle Scholar
  52. Johnston, G. A. R. (1994a) GABAC receptors. Prog. Brain Res. 100, 61–65.PubMedCrossRefGoogle Scholar
  53. Johnston, G. A. R. (1994b) GABA receptors–as complex as ABC? Clin. Exp. Pharmacol. Physiol. 21, 521–526.PubMedCrossRefGoogle Scholar
  54. Johnston, G. A. R. (1995) GABA receptor pharmacology, in Pharmacological Sciences: Perspectives for Research and Therapy in the Late 1990s ( Cuello, A. C. and Collier, B., eds.), Birkhäuser, Basel, pp. 11–16.CrossRefGoogle Scholar
  55. Johnston, G. A. R., Allan, R. D., Kennedy, S. M. E., and Twitchin, B. (1979) Systematic study of GABA analogues of restricted conformation. In GABA-Neurotransmitters ( Krogsgaard-Larsen, P., Scheel-Krüger, J., and Kofod, H., eds.), Munksgaard, Copenhagen, pp. 149–164.Google Scholar
  56. Johnston, G. A. R., Curtis, D. R., Beart, P. M., Game, C. J. A., McCulloch, R. M., and Twitchin, B. (1975) Cis and trans-4-aminocrotonic acid as GABA analogues of restricted conformation. J. Neurochem. 24, 157–160.PubMedCrossRefGoogle Scholar
  57. Johnston, G. A. R. and Stephanson, A. L. (1976) Inhibitors of the glial uptake of ß-alanine in rat brain slices. Brain Res., 102, 374–378.PubMedCrossRefGoogle Scholar
  58. Kerr, D. I. B. and Ong, J. (1995) GABAB receptors. Pharmacol. Ther. 67, 187–246.PubMedCrossRefGoogle Scholar
  59. Krogsgaard-Larsen, P., Johnston, G. A. R., Curtis, D. R., Game, C. J. A., and McCulloch, R. M. (1975) Structure and biological activity of a series of conformationally restricted analogues of GABA. J. Neurochem. 25, 803–809.PubMedCrossRefGoogle Scholar
  60. Krogsgaard-Larsen, P., Johnston, G. A. R., Lodge, D., and Curtis (1977) A new class of GABA agonist. J. Neurochem. 268, 53–55.Google Scholar
  61. Kusama, T., Spivak, C. E., Whiting, P., Dawson, V. L., Schaeffer, J. C., and Uhl, G. R. (1993a) Pharmacology of GABA p1 and GABA a/ß receptors expressed in Xenopus oocytes and COS cells. Br. J. Pharmacol. 109, 200–206.PubMedCrossRefGoogle Scholar
  62. Kusama, T., Wang, T. L., Guggino, W. B., Cutting, G. R., and Uhl, G. R. (1993b) GABA p2 receptor pharmacological profile: GABA recognition site similarities to the p l . Eur. J. Pharmac. 245, 83, 84.Google Scholar
  63. Kusama, T., Wang, J. B., Spivak, C. E., and Uhl, G. R. (1994) Mutagenesis of the GABA p 1 receptor alters agonist affinity and channel gating. NeuroReport 5, 1209–1212.Google Scholar
  64. Langosch, D., Becker, C. M., and Betz, H. (1990) The inhibitory glycine receptor: a ligand-gated chloride channel of the central nervous system. Eur. J. Biochem. 194, 1–8.PubMedCrossRefGoogle Scholar
  65. Levi, G., Wilkin, G. P., Ciotti, M. T., and Johnstone, S. (1983) Enrichment of differentiated, stellate astrocytes in cerebellar interneuron cultures as studied by GFAP immunofluorescence and autoradiographic uptake patterns with [3H]-D-aspartate and [3H]GABA. Dey. Brain Res. 10, 227–241.CrossRefGoogle Scholar
  66. Lukasiewicz, P. D., Maple, B. R., and Werblin, F. S. (1994) A novel GABA receptor on bipolar cell terminals in the tiger salamander retina. J. Neurosci. 14, 1202–1212.PubMedGoogle Scholar
  67. Lummis, S. C. R. (1992) Insect GABA receptors: characterization and expression in Xenopus oocytes following injection of cockroach CNS mRNA. Mol. Neuropharmacol. 2, 167–172.Google Scholar
  68. Lynch, J. W., Rajendra, S., Barry, P. H., and Schofield, P.R. (1995) Mutations affecting the glycine receptor agonist transduction mechanism convert the competitive-antagonist, picrotoxin, into an allosteric potentiator. J. Biol. Chem. 270, 13799–13806PubMedCrossRefGoogle Scholar
  69. Martina, M., Strata, F., and Cherubini, E. (1995) Whole cells and single channel properties of a new GABA receptor transiently expressed in the hippocampus. J. Neurophysiol. 73, 902–906.PubMedGoogle Scholar
  70. Matthews, G., Ayoubm, G. S., and Heidelberger, R. (1994) Presynaptic inhibition by GABA is mediated via two distinct GABA receptors with novel pharmacology. J. Neurosci. 14, 1079–1090.PubMedGoogle Scholar
  71. Momose-Sato, Y., Sato, K., Sakai, T., Hirota, A., and Kamino, K. (1995) A novel y-aminobutyric acid response in the embryonic brainstem as revealed by voltage-sensitive dye recording. Neurosci. Lett. 191, 193–196.PubMedCrossRefGoogle Scholar
  72. Moss, S. J., Smart, T. G., Blackstone, C. D., and Huganir, R. L. (1992) Functional modulation of GABAA receptors by cAMP-dependent protein phosphorylation. Science 257, 661–665.PubMedCrossRefGoogle Scholar
  73. Myers, J. M. and Tunnicliff, G. (1988) Bicuculline-insensitive GABA binding to catfish neuronal membranes. Neurochem. Int. 12, 125–129.PubMedCrossRefGoogle Scholar
  74. Nistri, A. and Sivilotti, L. (1985) An unusual effect of y-aminobutyric acid on synaptic transmission of frog tectal neurones in vitro. Br. J. Pharmacol. 85, 917–921.PubMedCrossRefGoogle Scholar
  75. O’Hara, B. F., Andretic, R., Heller, H. C., Carter, D. B., and Kilduff, T. S. (1995) GABAA, GABAc, and NMDA receptor subunit expression in the suprachiasmatic nucleus and other brain regions. Mol. Brain Res. 28, 239–250.PubMedCrossRefGoogle Scholar
  76. Orteils, M. O. and Lunt, G. G. (1995) Evolutionary history of the ligand-gated ion-channel superfamily of receptors. Trends Neurosci. 18, 121–127.CrossRefGoogle Scholar
  77. Pan, Z. H., and Lipton, S. A. (1995) Multiple GABA receptor subtypes mediate inhibition of calcium influx at rat retinal bipolar cells terminals. J. Neurosci. 15, 2668–2679.PubMedGoogle Scholar
  78. Polenzani, L., Woodward, R. M., and Miledi, R. (1991) Expression of mammalian y-aminobutyric acid receptors with distinct pharmacology in Xenopus oocytes. Proc. Natl. Acad. Sci. USA 88, 4318–4322.PubMedCrossRefGoogle Scholar
  79. Pribilla, I., Takagi, T., Langosch, D., Bormann, J., and Betz, H. (1992) The atypical M2 segment of the beta subunit confers picrotoxinin resistance to inhibitory glycine receptor channels. EMBU Journal 11, 4305–4311.Google Scholar
  80. Qian, H. and Dowling, J. E. (1993) Novel GABA responses from rod-driven retinal horizontal cells. Nature 361, 162–164.PubMedCrossRefGoogle Scholar
  81. Qian, H. and Dowling, J. E. (1994) Pharmacology of novel GABA receptors found on rod horizontal cells of the white perch retina. J. Neurosci. 14, 4299–4307.PubMedGoogle Scholar
  82. Revah, E., Bertrand, D., Gaizi, J. I., Deviller, S., Thiery, A., Mulle, C., Hussy, N., Bertrand, S., Ballivet, M., and Changeux, J. P. (1991) Mutations in the channel domain alter desensitization of a neuronal nicotinic receptor. Nature 353, 846–849.PubMedCrossRefGoogle Scholar
  83. Schmieden, V., Grenningloh, G., Schofield, P. R., and Betz, H. (1989) Functional expression in Xenopus oocytes of the strychnine binding 48 kd subunit of the glycine receptor. EMBO Journal 8, 695–700.PubMedGoogle Scholar
  84. Schon, F. and Kelly, J. S. (1975) Selective uptake of [3H]3-alanine by glia: association with the glial uptake systems for GABA. Brain Res. 86, 243–257.PubMedCrossRefGoogle Scholar
  85. Shimada, S., Cutting, C., and Uhl, G. R. (1992) y-Aminobutyric acid A or C receptor? y-Aminobutyric acid pi receptor RNA induces bicuculline-, barbiturate-, and benzodiazepine-insensitive y-aminobutyric acid responses in Xenopus oocytes. Mol. Pharmacol. 41, 683–687.Google Scholar
  86. Simmonds, M. A. (1980) Evidence that bicuculline and picrotoxin act at separate sites to antagonize y-aminobutyric acid in rat cuneate nucleus. Neuropharmacology 19, 39–45.PubMedCrossRefGoogle Scholar
  87. Sivilotti, L. and Nistri, A. (1988) Complex effects of baclofen on synaptic transmission of the frog optic tectum in vitro. Neurosci. Lett. 85, 249–254.PubMedCrossRefGoogle Scholar
  88. Sivilotti, L. and Nistri, A. (1989) Pharmacology of a novel effect of y-aminobutyric acid on the frog optic tectum in vitro. Eur. J. Pharmacol. 164, 205–212.PubMedCrossRefGoogle Scholar
  89. Smart, T. G., Moss, S. J., Xie, X., and Huganir, R. L. (1991) GABAA receptors are differentially sensitive to zinc: dependence on subunit composition. Br. J. Pharmacol. 99, 643–654.CrossRefGoogle Scholar
  90. Wang, T. L., Guggino, W. B., and Cutting, G. R. (1994) A novel y-aminobutyric acid receptor subunit (p2) cloned from human retina forms bicuculline-insensitive homooligomeric receptors in Xenopus oocytes. J. Neurosci. 14, 6524–6531.PubMedGoogle Scholar
  91. Wellis, D. P. and Werblin, F. S. (1995) Dopamine modulates GABAc receptors mediating inhibition of calcium entry into and transmitter release from bipolar cell terminals in tiger salamander retina. J. Neurosci. 15, 4748–4761.PubMedGoogle Scholar
  92. Wermuth, C. G., Bourhuignon, J.-J., Schlewer, G., Gies, J.-P., Schoenfelder, A., Melikian, A., Bouchet, M.-J., Chantreux, D., Molimard, J.-C., Heaulme, M., Chambon, J.-P., and Biziere, K. (1987) Synthesis and structure-activity relationships of a series of aminopyridazine derivatives of y-aminobutyric acid acting as selective GABAA antagonists. J. Med. Chem. 30, 239–249.PubMedCrossRefGoogle Scholar
  93. Woodward, R. M., Polenzani, L., and Miledi, R. (1992) Characterization of bicuculline/ baclofen-insensitive (p-like) y-aminobutyric acid receptors expressed in Xenopus oocytes. 1. Effects of C1 channel inhibitors. Mol. Pharmacol. 42, 165–173.PubMedGoogle Scholar
  94. Woodward, R. M., Polenzani, L., and Miledi, R. (1993) Characterization of bicuculline/ baclofen-insensitive (p-like) y-aminobutyric acid receptors expressed in Xenopus oocytes. 2. Pharmacology of y-aminobutyric acid, and y-aminobutyric acid, receptor agonists and antagonists. Mol. Pharmacol. 43, 609–625.PubMedGoogle Scholar
  95. Yan Ma, J. and Narahashi, T. (1993) Differential modulation of GABA, receptor-channel complex by polyvalent cations in rat dorsal root ganglion neurons. Brain Res. 607, 222–232.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • Graham A. R. Johnston

There are no affiliations available

Personalised recommendations