Chemistry of GABAB Modulators

  • Wolfgang Froestl
  • Stuart J. Mickel
Part of the The Receptors book series (REC)


An important step toward understanding the diverse roles of the ubiquitous inhibitory neurotransmitter g-aminobutyric acid (GABA) was Bowery’s discovery that baclofen 1 (Fig. 1) stereospecifically decreases neurotransmitter release in the mammalian central nervous system (CNS) by action at a novel GABA receptor, an effect that was not blocked by bicuculline or other GABA antagonists (Bowery et al., 1980; Hill and Bowery, 1981).


Receptor Antagonist Raney Nickel Phosphinic Acid Receptor Partial Agonist Active Gaba 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abbenante, G. and Prager, R. H. (1990) Synthesis of 3-amino-2-(4-chlorophenyl)propanesulfonic acid (Saclofen) and 3-amino-2-(4-chlorophenyl)-2-hydroxypropanesulfonic acid (Hydroxysaclofen). Aust. J Chem. 43, 213, 214.Google Scholar
  2. Abbenante, G. and Prager, R. H. (1992a) Potential GABAB receptor antagonists. VI. The synthesis of saclofen and other sulfonic acid derivatives. Aust. J Chem. 45, 1801 1810.Google Scholar
  3. Abbenante, G. and Prager, R. H. (1992b) Potential GABAB receptor antagonists. V. The application of radical additions to styrenes to produce 2-hydroxysaclofen. Aust. J. Chem. 45, 1791–1800.Google Scholar
  4. Allan, R. D., Bates, M. C., Drew, C. A., Duke, R. K., Hambley, T. W., Johnston, G. A. R., Mewitt, K. N., and Spence, I. (1990) A new synthesis, resolution and in vitro activities of (R)- and (S)-ß-phenyl-GABA. Tetrahedron 46, 2511–2524.CrossRefGoogle Scholar
  5. Baylis, E. K., Campbell, C. D., and Dingwall, J. G. (1984) 1-Aminoalkylphosphonous acids. Part 1. Isosteres of the protein amino acids. J Chem. Soc. Perkin Trans. I, 2845–2853.Google Scholar
  6. Beattie, D. T., Curtis, D. R., Debaert, M., Vaccher, C., and Berthelot, P. (1989) Baclofen antagonism by 4-amino-3-(5-methoxybenzo[b]furan-2-yl)-butanoic acid in the cat spinal cord. Neurosci. Lett. 100, 292–294.PubMedCrossRefGoogle Scholar
  7. Belakhov, V. V., Yudelevich, V. I., Komarov, E. V., Ionin, B. I., Komarov, V. Y., Zakharov, V. I., Lebedev, V. B., and Petrov, A. A. (1983) Reactivity of hypophosphites. VI. Reactions of hypophosphorous acid with acetylenic alcohols. Zh. Obshch. Khim. 53, 1493–1503. J. Gen. Chem. USSR (Engi. Transi.) 53, 1345–1353. Chem. Abstr. 99, 21 2598v.Google Scholar
  8. Bernasconi, R., Mathivet, P., Marescaux, C., Leonhardt, T., Martin, P., Mickel, S., and Froestl, W. (1994) NMDA receptors and NO synthase (NOS) are involved in the increase of cerebral cGMP induced by GABAB antagonists. Br. J. Pharmacoi. 112 (Suppl.), 7 P.Google Scholar
  9. Berthelot, P., Vaccher, C., Flouquet, N., Debaert, M., Luyckx, M., and Brunet, C. (1991) 3-Thienyl-and 3-Furylaminobutyric acids. Synthesis and binding GABAB receptor studies. J. Med. Chem. 34, 2557–2560Google Scholar
  10. Berthelot, P., Vaccher, C., Musadad, A., Flouquet, N., Debaert, M., and Luyckx, M. (1987) Synthesis and pharmacological evaluation of y-aminobutyric acid analogues. New ligand for GABAB sites. J. Med. Chem. 30, 743–746.PubMedCrossRefGoogle Scholar
  11. Bittiger, H., Bernasconi, R., Froestl, W., Hall, R., Jaekel, J., Klebs, K., Krueger, L., Mickel, S. J., Mondaori, C., Olpe, H.-R., Pfannkuch, F., Pozza, M., Probst, A., van Riezen, H., Schmutz, M., Schuetz, H., Steinmann, M. W., Vassout, A., Waldmeier, P., Bieck, P., Farger, G., Gleiter, C., Schmidt, E. K., and Marescaux, C. (1992a) GABAB antagonists: potential new drugs. Pharmacol. Commun. 2, 70–74.Google Scholar
  12. Bittiger, H., Froestl, W., Hall, R., Karlsson, G., Klebs, K., Olpe, H.-R., Pozza, M. F., Steinmann, M. W., and Van Riezen, H. (1990) Biochemistry, electrophysiology and pharmacology of a new GABAB antagonist: CGP35348, in GABA B Receptors in Mammalian Function (Bowery, N. G., Bittiger, H., and Olpe, H.-R., Eds.), John Wiley, Chichester, UK, pp. 47–60.Google Scholar
  13. Bittiger, H., Froestl, W., Mickel, S. J., and Olpe, H.-R. (1993) GABAB receptor antagonists: from synthesis to therapeutic applications. Trends Pharmacol. Sci. 14, 391–394.PubMedCrossRefGoogle Scholar
  14. Bittiger, H., Reymann, N., Froestl, W., and Mickel, S. J. (1992b) [3H]CGP54626: a potent antagonist radioligand for GABAB receptors. Pharmacol. Commun. 2, 23.Google Scholar
  15. Bittiger, H., Reymann, N., Hall, R., and Kane, P. (1988) CGP27492, a new potent and selective radioligand for GABAB receptors. Eur. J. Neurosci. Suppl., Abstr. 16. 10.Google Scholar
  16. Blake, J. F., Cao, C. Q., Headley, P. M., Collingridge, G. L., Brugger, F., and Evans, R. H. (1993) Antagonism of baclofen-induced depression of whole-cell synaptic currents in spinal dorsal horn neurones by the potent GABAB antagonist CGP55845. Neuropharmacology 32, 1437–1440.Google Scholar
  17. Bolser, D. C., Blythin, D. J., Chapman, R. W., Egan, R. W., Hey, J. A., Rizzo, C., Kuo, S.-C., and Kreutner, W. (1995) The pharmacology of SCH 50911: a novel, orally-active GABA-B receptor antagonist. J. Pharm. Exp. Ther. 274, 1393–1398.Google Scholar
  18. Bonanno, G. and Raiteri, M. (1993) Multiple GABAB receptors. Trends Pharmacol. Sci. 14, 259–261.PubMedCrossRefGoogle Scholar
  19. Bowery, N. G., Hill, D. R., Hudson, A. L., Doble, A., Middlemiss, D. N., Shaw, J., and Turnbull, M. (1980) (—) Baclofen decreases neurotransmitter release in the mammalian CNS by an action at a novel GABA receptor. Nature (London) 283, 92–94.Google Scholar
  20. Brugger, F., Wicki, U., Olpe, H.-R., Froestl, W., and Mickel, S. (1993) The action of new potent GABAB receptor antagonists in the hemisected spinal cord preparation of the rat. Eur. J. Pharmacol. 235, 153–155.PubMedCrossRefGoogle Scholar
  21. Caddick, S. J., Stanford, I. M., and Chad, J. E. (1995) 2-Hydroxy-saclofen causes a phaclofen-reversible reduction in population spike amplitude in the rat hippocampal slice. Eur. J. Pharmacol. 274, 41–46.Google Scholar
  22. Carletti, R., Libri, V., and Bowery, N. G. (1993) The GABAB antagonist CGP36742 enhances spatial learning performance and antagonises baclofen-induced amnesia in mice. Br. J. Pharmacol. 109 (Suppl.), 74 P.Google Scholar
  23. Carruthers, N. I., Spitler, J. M., Wong, S.-C., Blythin, D. J., Chen, X., Shue, H.-J., and Mittelman, S. (1995) Synthesis and resolution of ß-(aminomethyl)-4-chlorobenzeneethanesulfinic acid. A potent GABAB receptor ligand. Bioorg. Med. Chem. Lett. 5, 237–240.Google Scholar
  24. Chiefari, J., Galanopoulos, S., Janowski, W. K., Kerr, D. I. B., and Prager, R. H. (1987) The synthesis of phosphonobaclofen, an antagonist of baclofen. Austr. J. Chem. 40, 1511–1518.CrossRefGoogle Scholar
  25. Curtis, D. R., Gynther, B. D., Beattie, D. T., Kerr, D. I. B., and Prager, R. H. (1988) Baclofen antagonism by 2-hydroxy-saclofen in the cat spinal cord. Neurosci. Lett. 92, 97–101.Google Scholar
  26. Davies, C. H., Pozza, M. F., and Collingridge, G. L. (1993) CGP55845A: a potent antagonist of GABAB receptors in the CAI region of rat hippocampus. Neuropharmacology 32, 1071–1073.Google Scholar
  27. Debaert, M., Berthelot, P., and Vaccher, C. (1992) Nouveau composés de l’acide 4-amino butyrique leur procédé de préparation et les préparations pharmaceutiques qui les contiennent. Eur. Pat. Appl. 463 969 Al; prior: 27 June 1990.Google Scholar
  28. Dickenson, H. W., Allan, R. D., Ong, J., and Johnston, G. A. R. (1988) GABAB receptor antagonist and GABAA receptor agonist properties of a S-aminovalerianic acid derivative, Z-5-aminopent-2-enoic acid. Neurosci. Lett. 86, 351–355.PubMedCrossRefGoogle Scholar
  29. Dingwall, J. G., Ehrenfreund, J., and Hall, R. G. (1989) Diethoxymethylphosphonites and phosphinates. Intermediates for the synthesis of a, ß-and y-aminoalkyl-phosphonous acids. Tetrahedron 45, 3787–3808.CrossRefGoogle Scholar
  30. Dingwall, J. G., Ehrenfreund, J., Hall, R. G., and Jack, J. (1987) Synthesis of y-aminopropylphosphonous acids using hypophosphorous acid synthons. Phosphorus Sulfur 30, 571–574.Google Scholar
  31. Drew, C. A., Johnston, G. A. R., Kerr, D. I. B., and Ong, J. (1990) Inhibition of baclofen binding to rat cerebellar membranes by phaclofen, saclofen, 3-aminopropylphosphonic acid and related GABAB receptor antagonists. Neurosci. Lett. 113, 107–110.PubMedCrossRefGoogle Scholar
  32. Falch, E., Hedegaard, A., Nielsen, L., Jensen, B. R., Hjeds, H., and Krogsgaard-Larsen, P. (1986) Comparative stereostructure-activity studies on GABAA and GABAB receptor sites and GABA uptake using rat brain membrane preparations. J. Neurochem. 47, 898–903.PubMedCrossRefGoogle Scholar
  33. Froestl, W., Furet, P., Hall, R. G., Mickel, S. J., Strub, D., von Sprecher, G., Baumann, P. A., Bemasconi, R., Brugger, F., Felner, A., Gentsch, C., Hauser, K., Jaekel, J., Karlsson, G., Klebs, K., Maître, L., Marescaux, C., Moser, P., Pozza, M. F., Rihs, G., Schmutz, M., Steinmann, M. W., van Riezen, H.,Vassout, A., Mondadori, C., Olpe, H.-R., Waldmeier, P. C., and Bittiger, H. (1993a) GABAB antagonists: novel CNS-active compounds, in Perspectives in Medicinal Chemistry ( Testa, B., Kyburz, E., Fuhrer, W., and Giger, R., eds.), Verlag Helvetica Chimica Acta, Basel, pp. 259–272.Google Scholar
  34. Froestl, W., Mickel, S. J., and Bittiger, H. (1993b) Potent GABAB agonists and antagonists. Curr Opin. Ther. Pat. 3, 561–567.CrossRefGoogle Scholar
  35. Froestl, W., Mickel, S. J., Hall, R. G., von Sprecher, G., Strub, D., Baumann, R A., Brugger, F., Gentsch, C., Jaekel, J., Olpe, H.-R., Rihs, G., Vassout, A., Waldmeier, P. C., and Bittiger, H. (1995a) Phosphinic acid analogues of GABA. 1. New potent and selective GABAB agonists. J. Med. Chem. 38, 3297–3312.PubMedCrossRefGoogle Scholar
  36. Froestl, W., Mickel, S. J., von Sprecher, G., Bittiger, H., and Olpe, H.-R. (1992) Chemistry of new GABAB antagonists. Pharmacol. Commun. 2, 52–56.Google Scholar
  37. Froestl, W., Mickel, S. J., von Sprecher, G., Diel, R J., Hall, R. G., Maier, L., Strub, D., Melillo, V, Baumann, P. A., Bemasconi, R., Gentsch, C., Hauser, K., Jaekel, J., Karlsson, G., Klebs, K., Maltre, L., Marescaux, C., Pozza, M. F., Schmutz, M., Steinmann, M. W., van Riezen, H., Vassout, A., Mondadori, C., Olpe, H.-R., Waldmeier P. C., and Bittiger, H. (1995b) Phosphinic acid analogues of GABA. 2. Selective, orally active GABAB antagonists. J. Med. Chem. 38, 3313–3331.Google Scholar
  38. Fromm, G. H. (1991) Medical treatment of patients with trigeminal neuralgia, in Trigeminal Neuralgia. Current Concepts Regarding Pathogenesis and Treatment ( Fromm, G. H. and Sessle, B. J., eds.), Butterworth-Heinemann, Boston, pp. 131–144.Google Scholar
  39. Frydenvang, K., Hansen, J. J., Krogsgaard-Larsen, P., Mitrovic, A., Tran, H., Drew, C. A., and Johnston, G. A. R. (1994) GABAB antagonists: resolution, absolute stereochemistry, and pharmacology of (R)- and (S)-phaclofen. Chirality 6, 583–589.PubMedCrossRefGoogle Scholar
  40. Gallagher, M. J. and Honegger, H. (1980) Organophosphorus intermediates. VI. The acid catalysed reaction of trialkyl orthoforrnates with phosphinic acid. Aust. J. Chem. 33, 287–294.CrossRefGoogle Scholar
  41. Gemignani, A., Paudice, P., Bonanno, G., and Raiteri, M. (1994) Pharmacological discrimination between y-aminobutyric acid type B receptors regulating cholecystokinin and somatostatin release from rat neocortex synaptosomes. Mol. Pharmacol. 46, 558–562.PubMedGoogle Scholar
  42. Hall, R. G. (1989) An efficient synthesis of (±)-3-amino-2-(4-chlorophenyl)-propylphosphonic acid (PHACLOFEN). Synthesis 1989, 442, 443.Google Scholar
  43. Hall, R. G., Kane, P. D., Bittiger, H., and Froestl, W. (1995) Phosphinic acid analogues of y-aminobutyric acid (GABA). Synthesis of a new radioligand. J. Labelled Compd. Radiopharm. 36, 129–135.CrossRefGoogle Scholar
  44. Herdeis, C. and Hubmann, H. P. (1992) Synthesis of homochiral R-baclofen from S-glutamic acid. Tetrahedron Asymm. 3, 1213–1221.CrossRefGoogle Scholar
  45. Herranz, E., Biller, S. A., and Sharpless, K. B. (1978) Osmium-catalyzed vicinal oxyamin-ation of olefins by N-chloro-N-argentocarbamates. J. Amer. Chem. Soc. 100, 3596–3598.CrossRefGoogle Scholar
  46. Hill, D. R. and Bowery, N. G. (1981) 3H-Baclofen and 3H-GABA bind to bicuculline-insensitive GABAB sites in rat brain. Nature (London) 290, 149–152.Google Scholar
  47. Hosford, D. A., Clark, S., Cao, Z., Wilson, W. A., Lin, F., Morrisett, R. A., and Huin, A. (1992) The role of GABAB receptor activation in absence seizures of lethargic (lh/lh) mice. Science 257, 398–401.PubMedCrossRefGoogle Scholar
  48. Hosford, D. A., Wang, Y., Liu, C. C., and Snead, C. O. (1995) Characterization of the antiabsence effects of SCH 50911, a GABAB receptor antagonist, in the lethargic mouse, y-hydroxybutyrate, and pentylenetetrazole models. J. Pharm. Exp. Ther. 274, 1399–1403.Google Scholar
  49. Howson, W., Mistry, J., Broekman, M., and Hills, J. M. (1993) Biological activity of 3-aminopropyl (methyl) phosphinic acid, a potent and selective GABAB agonist with CNS activity. Bioorg. Med. Chem. Lett. 3, 515–518.CrossRefGoogle Scholar
  50. Jarolimek, W., Demmelhuber, J., Bijak, M., and Misgeld, U. (1993) CGP55845A blocks baclofen, y-aminobutyric acid and inhibitory postsynaptic potassium currents in guinea pig CA3 neurons. Neurosci. Lett. 154, 31–34.PubMedCrossRefGoogle Scholar
  51. Johnston, G. A. R. (1994) GABA receptors: as complex as ABC? Clin. Exp. Pharmacol. Physiol. 21, 521–526.PubMedCrossRefGoogle Scholar
  52. Johnston, G. A. R., Curtis, D. R., Beart, P. M., Game, C. J. A., McCulloch, R. M., and Twitchin, B. (1975) Cis-and Trans-4-aminocrotonic acid as GABA analogues of restricted conformation. J. Neurochem. 24, 157–160.Google Scholar
  53. Keberle, H., Faigle, J. W., and Wilhelm, M. (1968) Procedure for the preparation of new aminoacids. Swiss Patent 449 046, 1968; prior: 9 July 1963. Chem. Abstr. 69, 106273f.Google Scholar
  54. Kerr, D. I. B. and Ong, J. (1992) GABA agonists and antagonists. Med. Res. Rev. 12, 593–636.Google Scholar
  55. Kerr, D. I. B., Ong, J., Doolette, D. J., Schafer, K., and Prager, R. H. (1995) (S)-enantiomer of 2-hydroxysaclofen is the active GABAB receptor antagonist in central and peripheral preparations. Eur. J. Pharmacol. 287, 185–189.Google Scholar
  56. Kerr, D. I. B., Ong, J., Johnston, G. A. R., Abbenante, J., and Prager, R. H. (1988) 2-Hydroxysaclofen: an improved antagonist at central and peripheral GABAB receptors. Neurosci. Lett. 92, 92–96.Google Scholar
  57. Kerr, D. I. B., Ong, J., Johnston, G. A. R., Abbenante, J., and Prager, R. H. (1989a) Antagonism at GABAB receptors by saclofen and related sulphonic analogues of baclofen and GABA. Neurosci. Lett. 107, 239–244.PubMedCrossRefGoogle Scholar
  58. Kerr, D. I. B., Ong, J., Johnston, G. A. R., Berthelot, P., Debaert, M., and Vaccher, C. (1989b) Benzofuran analogues of baclofen: a new class of central and peripheral GABAB-receptor antagonists. Eur. J. Pharmacol. 164, 361–364.PubMedCrossRefGoogle Scholar
  59. Kerr, D. I. B., Ong, J., Prager, R. H., Gynther, B. D., and Curtis, D. R. (1987) Phaclofen: a peripheral and central baclofen antagonist. Brain Res. 405, 150–154.PubMedCrossRefGoogle Scholar
  60. Klebs, K., Bittiger, H., Froestl, W., Glatt, A., Hafner, T., Mickel, S., Olpe, H.-R., and Schmutz, M. (1992) GABAB antagonists and anti-absence drugs suppress gammabutyrolactone induced delta waves: a model for testing anti-absence drugs. Pharmacol. Commun. 2, 171–172.Google Scholar
  61. Kristiansen, U., Hedegaard, A., Herdeis, C., Lund, T. M., Nielsen, B., Hansen, J. J., Falch, E., Hjeds, H., and Krogsgaard-Larsen, P. (1992) Hydroxylated analogues of 5aminovaleric acid as 4-aminobutyric acidB receptor antagonists: stereostructureactivity relationships. J. Neurochem. 58, 1150–1159.PubMedCrossRefGoogle Scholar
  62. Kuo, S.-C., Blythin, D. J., and Kreutner, W. (1994) 2-Substituted morpholine and thiomorpholine derivatives as GABAB antagonists. WO 22843; prior: 26 March 1993.Google Scholar
  63. Lacey, G. and Curtis, D. R. (1994) Phosphinic acid derivatives as baclofen agonists and antagonists in the mammalian spinal cord: an in vivo study. Exp. Brain Res. 101, 59–72.PubMedCrossRefGoogle Scholar
  64. Lambert, N. A. and Wilson, W. A. (1993) Heterogeneity in presynaptic regulation of GABA release from hippocampal inhibitory neurons. Neuron 11, 1057–1067.PubMedCrossRefGoogle Scholar
  65. Lanza, M., Fassio, A., Gemignani, A., Bonanno, G., and Raiteri, M. (1993) CGP52432: a novel potent and selective GABAB autoreceptor antagonist in rat cerebral cortex. Eur. J. Pharmacol. 237, 191–195.PubMedCrossRefGoogle Scholar
  66. Li, C.-S., Howson, W., and Dolle, R. E. (1991) Synthesis of (±)-3-amino-2-(4chlorophenyl)propanesulfonic acid ( Saclofen ). Synthesis 1991, 244.Google Scholar
  67. Lingenhoehl, K. and Olpe, H.-R. (1993) Blockade of the late inhibitory postsynaptic potential in vivo by the GABAB blocker CGP46381. Pharmacol. Commun. 3, 49–54.Google Scholar
  68. Mann, A., Boulanger, T., Brandau, B., Durant, F., Evrard, G., Heaulme, M., Desaulles, E., and Wermuth, C.-G. (1991) Synthesis and biochemical evaluation of baclofen analogues locked in the baclofen solid-state conformation. J. Med. Chem. 34, 1307 1313.Google Scholar
  69. Marescaux, C., Liu, Z., Bernasconi, R., and Vergnes, M. (1992) GABAB receptors are involved in the occurrence of absence seizures in rats. Pharmacol. Commun. 2, 57–62.Google Scholar
  70. Marsden, D. (1989) Treating Spasticity: Pharmacological Advances. Hans Huber, Toronto. Meyers, A. I. and Snyder, L. (1993) The synthesis of aracemic 4-substituted pyrroli-dinones and 3-substituted pyrrolidines. An asymmetric synthesis of (—)-Rolipram. J. Org. Chem. 58, 36–42.Google Scholar
  71. Mondadori, C., Preiswerk, G., and Jaekel, J. (1992) Treatment with a GABAB receptor blocker improves the cognitive performance of mice, rats and rhesus monkeys. Pharmacol. Commun. 2, 93–97.Google Scholar
  72. Mondadori, C., Jaekel, J., and Preiswerk, G. (1993) CGP36742: the first orally active GABAB blocker improves the cognitive performance of mice, rats, and rhesus monkeys. Behay. Neural Biol. 60, 62–68.CrossRefGoogle Scholar
  73. Muhyaddin, M., Roberts, P. J., and Woodruff, G. N. (1982) Presynaptic y-amino-butyric acid receptors in the rat anococcygeus muscle and their antagonism by 5-aminovaleric acid. Br. J. Pharmacol. 77, 163–168.PubMedCrossRefGoogle Scholar
  74. Mulzer, J. (1994) Asymmetric synthesis of the novel antidepressant Rolipram. J. Prakt. Chem. 336, 287–291.CrossRefGoogle Scholar
  75. Ochs, G. (1993) Inthrathecal baclofen. Baillière’s Clin. Neurol. 2, 73–86.PubMedGoogle Scholar
  76. Olpe, H.-R. Karlsson, G., Pozza, M. F., Brugger, F., Steinmann, M., Van Riezen, H.Google Scholar
  77. Fagg, G., Hall, R. G., Froestl, W., and Bittiger, H. (1990) CGP35348: a centrally active blocker of GABAB receptors. Eur. J. Pharmacol. 187, 27–38.PubMedCrossRefGoogle Scholar
  78. Olpe, H.-R., Steinmann, M. W., Ferrat, T., Pozza, M. F., Greiner, K., Brugger, F., Froestl, W., Mickel, S. J., and Bittiger, H. (1993) The actions of orally active GABAB receptor antagonists on GABAergic transmission in vivo and in vitro. Eur. J. Pharmacol. 233, 179–186.CrossRefGoogle Scholar
  79. Olpe, H.-R., Steinmann, M. W., Greiner, K., and Pozza, M. F. (1994) Contribution of presynaptic GABAB receptors to paired-pulse depression of GABA-responses in the hippocampus. Naunyn-Schmiedberg’s Arch. Pharmacol. 349, 473–477.CrossRefGoogle Scholar
  80. Ong, J., Kerr, D. I. B., Abbenante, J., and Prager, R. H. (1991) Short-chain baclofen analogues are GABAB receptor antagonists in the guinea-pig isolated ileum. Eur. J. Pharmacol. 205, 319–322.PubMedCrossRefGoogle Scholar
  81. Ong, J., Kerr, D. I. B., Johnston, G. A. R., and Hall, R. G. (1990) Differing actions of baclofen and 3-aminopropylphosphinic acid in rat neocortical slices. Neurosci. Lett. 109, 169–173.PubMedCrossRefGoogle Scholar
  82. Penn, R. D. (1992) Inthrathecal baclofen for spasticity of spinal origin: seven years of experience. J. Neurosurg. 77, 236–240.PubMedCrossRefGoogle Scholar
  83. Penn, R. D., Savoy, S. M., Corcos, D., Latash, M., Gottlieb, G., Parke, B., and Kroin, J. S. (1989) Intrathecal baclofen for severe spasticity. N. Engl. J. Med. 320, 1517–1521.PubMedCrossRefGoogle Scholar
  84. Prager, R. H., Schafer, K., Hamon, D. P. G., and Massy-Westropp, R. A. (1995) The synthesis of (R)-(—) and (S)-(+)-hydroxysaclofen. Tetrahedron 51, 11, 465–11, 472.Google Scholar
  85. Pratt, G. D., Knott, C., Davey, R., and Bowery, N. G. (1989) Characterisation of 3-aminopropyl phosphinic acid (3-APPA) as a GABAB agonist in rat brain tissue. Br. J. Pharmacol. 96 (Suppl.), 141 P.Google Scholar
  86. Robinson, T. N., Cross, A. J., Green, A. R., Toczek, J. M., and Boar, B. R. (1989) Effects of the putative antagonists phaclofen and 6-aminovaleric acid on GABAB receptor biochemistry. Br. J. Pharmacol. 98, 833–840.PubMedCrossRefGoogle Scholar
  87. Schoenfelder, A., Mann, A., and Le Coz, S. (1993) Enantioselective synthesis of (R)-(—)baclofen. Synlett 63–64.Google Scholar
  88. Schwartz, T. W. (1994) Locating ligand-binding sites in 7TM receptors by protein engineering. Curr. Opin. Biotechnol. 5, 434–444.PubMedCrossRefGoogle Scholar
  89. Snead, O. C. (1992) Evidence for GABAB-mediated mechanisms in experimental generalized absence seizures. Eur. J. Pharmacol. 213, 343–349.PubMedCrossRefGoogle Scholar
  90. Topliss, J. G. (1972) Utilization of operational schemes for analog synthesis in drug design. J. Med. Chem. 15, 1006–1011.PubMedCrossRefGoogle Scholar
  91. Turgeon, S. M. and Albin, R. L. (1994) Postnatal ontogeny of GABAB binding in rat brain. Neuroscience 62, 601–613.PubMedCrossRefGoogle Scholar
  92. Vaccher, C., Berthelot, P., and Debaert, M. (1993a) Direct separation of 4-amino-3-(4chlorophenyl)butyric acid and analogues, GABAB ligands, using a chiral crown ether stationary phase../. Chromatogr. 645, 95–99.CrossRefGoogle Scholar
  93. Vaccher, C., Berthelot, P., Flouquet, N., Vaccher, M.-P., and Debaert, M. (1993b) Bromination of a-methylstyrenes with N-bromosuccinimide in chlorobenzene one-pot and selective preparation of 1,3-dibromo-2-phenylprop-1-enes. Synth. Commun. 23, 671–679.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • Wolfgang Froestl
  • Stuart J. Mickel

There are no affiliations available

Personalised recommendations