Structure and Function of GABA Reuptake Systems

  • Baruch I. Kanner
Part of the The Receptors book series (REC)

Abstract

High affinity sodium-coupled transport systems are responsible for the reuptake of neurotransmitters from the synaptic cleft. They appear to play an important role in the overall process of synaptic transmission, namely in its termination (Iversen, 1971, 1973). The process is catalyzed by sodium-coupled neurotransmitter transport systems located in plasma membranes of nerve endings and glial cells (Kanner, 1983, 1989; Kanner and Schuldiner, 1987). These transport systems have been investigated in detail by using plasma membranes obtained upon osmotic shock of synaptosomes. It appears that these transporters are coupled not only to sodium, but also to additional ions like potassium or chloride.

Keywords

Dopamine Transporter Plasma Membrane Vesicle Gaba Transporter Neurotransmitter Transporter Glycine Transporter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bendahan, A. and Kanner, B. I. (1993) Identification of domains of a cloned rat brain GABA transporter which are not required for its functional expression. FEBS Lett. 318, 41–44.PubMedCrossRefGoogle Scholar
  2. Blakely, R. D., Benson, H. E., Fremeau, R. T., Jr., Caron, M. G., Peek, M. M., Prince, H. K., and Bradley, C. C. (1991) Cloning and expression of a functional serotonin transporter from rat brain. Nature 353, 66–70.CrossRefGoogle Scholar
  3. Borden, L. A., Smith, K. E., Hartig, R. R., Branchek, T. A., and Weinshank, R. L. (1992) Molecular heterogeneity of the GABA transport system. J. Biol. Chem. 267, 21098–21104.PubMedGoogle Scholar
  4. Clark, J. A., Deutch, A. Y., Gallipoli, R. Z., and Amara, S. G. (1992) Functional expression and CNS distribution of (3-alanine sensitive neuronal GABA transporter. Neuron 9, 337–348.PubMedCrossRefGoogle Scholar
  5. Fremeau, R. T., Jr., Caron, M. G., and Blakely, R. D. (1992) Molecular cloning and expression of a high affinity 1-proline transporter expressed in putative glutamatergic pathways of rat brain. Neuron 8, 915–926.PubMedCrossRefGoogle Scholar
  6. Guastella, J., Brecha, N., Weigmann, C., and Lester, H. A. (1992) Cloning, expression and localization of a rat brain high affinity glycine transporter. Proc. Natl. Acad. Sci. USA 89, 7189–7193.PubMedCrossRefGoogle Scholar
  7. Guastella, J., Nelson, N., Nelson, H., Czyzyk, L., Keynan, S., Miedel, M. C., Davidson, N. C., Lester, H. A., and Kanner, B. I. (1990) Cloning and expression of a rat brain GABA transporter. Science 249, 1303–1306.PubMedCrossRefGoogle Scholar
  8. Guimbal, C. and Kilimann, M. W. (1993) A Na. dependent creatine transporter in rabbit brain, muscle, heart and kidney. cDNA cloning and functional expression. J. Biol. Chem. 268, 8418–8421.PubMedGoogle Scholar
  9. Hoffman, B. J., Mezey, E., and Brownstein, M. J. (1991) Cloning of a serotonin transporter affected by antidepressants. Science 254, 579–580.Google Scholar
  10. Iversen, L. L. (1971) Role of transmitter uptake mechanism in synaptic neurotransmission. Br. J. Pharmacol. 41, 571–591.Google Scholar
  11. Kanner, B. I. (1983) Bioenergetics of neurotransmitter transport. Biochim. Biophys. Acta 726, 293–316.PubMedCrossRefGoogle Scholar
  12. Kanner, B. I. (1989) Ion-coupled neurotransmitter transporter. Curr. Opin. Cell Biol. 1, 735–738.PubMedCrossRefGoogle Scholar
  13. Kanner, B. I. (1993) Glutamate transporters from brain: a novel neurotransmitter transporter family. FEBS Lett. 325, 95–99.PubMedCrossRefGoogle Scholar
  14. Kanner, B. I. and Bendahan, A. (1990) Two pharmacologically distinct sodium-and chloride-coupled high-affinity y-aminobutyric acid transporters are present in plasma membrane vesicles and reconstituted preparations from rat brain. Proc. Natl. Acad. Sci. USA 87, 2550–2554.PubMedCrossRefGoogle Scholar
  15. Kanner, B. I., Bendahan, A., Pantanowitz, S., and Su, H. (1994) The number of amino acid residues in hydrophilic loops connecting transmembrane domains of the GABA transporter GAT-1 is critical for its function. FEBS Lett. 356, 191–194.PubMedCrossRefGoogle Scholar
  16. Kanner, B. I., Keynan, S., and Radian, R. (1989) Structural and functional studies on the sodium and chloride-coupled y-aminobutyric acid transporter. Deglycosylation and limited proteolysis. Biochemistry 28, 3722–3727.PubMedCrossRefGoogle Scholar
  17. Kanner, B. I. and Schuldiner, S. (1987) Mechanism of transport and storage of neurotransmitters. CRC Crit. Rev. Biochem. 22, 1–39.PubMedCrossRefGoogle Scholar
  18. Kavanaugh, M. P., Arriza, J. L., North, R. A., and Amara, S. G. (1992) Electrogenic uptake of y-aminobutyric acid by a cloned transporter expressed in oocytes. J. Biol. Chem. 267, 22007–22009.PubMedGoogle Scholar
  19. Keynan, S. and Kanner, B. I. (1988) y-Aminobutyric acid transport in reconstituted preparations from rat brain: coupled sodium and chloride fluxes. Biochemistry 27, 12–17.Google Scholar
  20. Kilty, J. E., Lorang, D., and Amara, S. G. (1991) Cloning and expression of a cocainesensitive rat dopamine transporter. Science 254, 578–579.PubMedCrossRefGoogle Scholar
  21. Kitayama, S., Shimada, S., Xu, H., Markham, L., Donovan, D. M., and Uhl, G. R. (1992) Dopamine transporter site-directed mutations differentially alter substrate transport and cocaine binding. Proc. Natl. Acad. Sci. USA 89, 7782–7785.PubMedCrossRefGoogle Scholar
  22. Kleinberger-Doron, N., and Kanner, B. I. (1994) Identification of tryptophan residues critical for the function and targeting of the y-aminobutyric acid transporter (subtype A). J. Biol. Chem. 269, 3063–3067.PubMedGoogle Scholar
  23. Kuhar, M. J. (1973) Neurotransmitter uptake: a tool in identifying neurotransmitter-specific pathways. Life Sci. 13, 1623–1634.PubMedCrossRefGoogle Scholar
  24. Kuhar, M. J. and Zarbin, M. A. (1978) Synaptosomal transport: a chloride dependence for choline, GABA, glycine and several other compounds. J. Neurochem. 31, 251–256.PubMedCrossRefGoogle Scholar
  25. Liu, Q. R., Lopez-Corcuera, B., Nelson, H., Mandiyan, S., and Nelson, N. (1992a) Cloning and expression of a cDNA encoding the transporter of taurine and 0-alanine in mouse brain. Proc. Natl. Acad. Sci. USA 89, 12,145–12, 149.Google Scholar
  26. Liu, Q. R., Nelson, H., Mandiyan, S., Lopez-Corcuera, B., and Nelson, N. (1992b) Cloning and expression of a glycine transporter from mouse brain. FEBS Lett. 305, 110–114.PubMedCrossRefGoogle Scholar
  27. Liu, Q. R., Lopez-Corcuera, B., Mandiyan, S., Nelson, H., and Nelson, N. (1993a) Molecular characterization of four pharmacologically distinct y-aminobutyric acid transporters in mouse brain. J. Biol. Chem. 268, 2104–2112.Google Scholar
  28. Liu, Q. R., Mandiyan, S., Lopez-Corcuera, B., Nelson, H., and Nelson, N. (1993b) A rat brain cDNA encoding the neurotransmitter transporter with an unusual structure. FEBS Lett. 315, 114–118.PubMedCrossRefGoogle Scholar
  29. Lopez-Corcuera, B., Liu, Q. R., Mandiyan, S., Nelson, H., and Nelson, N. (1992) Expression of a mouse brain cDNA encoding novel y-aminobutyric acid transporter. J. Biol. Chem. 267, 17491–17493.PubMedGoogle Scholar
  30. Lopez-Corcuera, B., Vazquez, J., and Aragon, C. (1991) Purification of the sodium-and chloride-coupled glycine transporter from central nervous system. J. Biol. Chem. 266, 24809–24814.PubMedGoogle Scholar
  31. Mabjeesh, N. J. and Kanner, B. I. (1989) Low affinity y-aminobutyric acid transport in rat brain. Biochemistry 28, 7694–7699.PubMedCrossRefGoogle Scholar
  32. Mabjeesh, N. J. and Kanner, B. I. (1992) Neither amino nor carboxyl termini are required for function of the sodium-and chloride-coupled y-aminobutyric acid transporter from rat brain. J. Biol. Chem. 267, 2563–2568.PubMedGoogle Scholar
  33. Mabjeesh, N. J. and Kanner, B. I. (1993) The substrates of a sodium-and chloride-coupled y-aminobutyric acid transporter protect multiple sites throughout the protein against proteolytic cleavage. Biochemistry 32, 8540–8546.PubMedCrossRefGoogle Scholar
  34. Mager, S., Naeve, J., Quick, M., Labarca, C., Davidson, N., and. Lester, H. A. (1993) Steady states, charge movements and rates for a cloned GABA transporter expressed in Xenopus oocytes. Neuron 10, 177–188.Google Scholar
  35. Mayser, W., Schloss, P., and Betz, H. (1992) Primary structure and functional expression of a choline transporter expressed in the rat nervous system. FEBS Lett. 305, 31–36.PubMedCrossRefGoogle Scholar
  36. Pacholczyk, T., Blakely, R. D., and Amara, S. G. ( 1991 ) Expression cloning of a cocaine and antidepressant-sensitive human noradrenaline transporter. Nature 350, 350–354.PubMedCrossRefGoogle Scholar
  37. Pantanowitz, S., Bendahan, A., and Kanner, E. I. (1993) Only one of the charged amino acids located in the transmembrane a helices of the y-aminobutyric acid transporter (subtype A) is essential for its activity. J. Biol. Chem. 268, 3222–3225.PubMedGoogle Scholar
  38. Radian, R., Bendahan, A., and Kanner, B. I. (1986) Purification and identification of the functional sodium-and chloride-coupled y-aminobutyric acid transport glycoprotein from rat brain. J. Biol. Chem. 261, 15437–15441.PubMedGoogle Scholar
  39. Radian, R. and Kanner, B. I. (1983) Stoichiometry of sodium-and chloride-coupled yaminobutyric acid transport by synaptic plasma membrane vesicles isolated from rat brain. Biochemistry 22, 1236–1241.PubMedCrossRefGoogle Scholar
  40. Radian, R. and Kanner, B. I. (1985) Reconstitution and purification of the sodium-and chloride-coupled y-aminobutyric acid transporter from rat brain. J. Biol. Chem. 260, 11859–11865.PubMedGoogle Scholar
  41. Shimada, S., Kitayama, S., Lin, C. L., Patel, A., Nanthakumar, E., Gregor, P., Kuhar, M., Uhl, G. (1991) Cloning and expression of a cocaine-sensitive dopamine transporter complementary DNA. Science 254, 576–578.PubMedCrossRefGoogle Scholar
  42. Smith, K. E., Borden, L. A., Hartig, P. A., Branchek, T., and Weinshank, R. L. (1992) Cloning and expression of a glycine transporter reveal colocalization with NMDA receptors. Neuron 8, 927–935.PubMedCrossRefGoogle Scholar
  43. Sussman, J. L. and Silman, I. (1992) Acetylcholinesterase: structure and use as a model for specific cation-protein interactions. Curt: Opin. Struc. Biol. 2, 721–729.CrossRefGoogle Scholar
  44. Uchida, S., Kwon, H. M., Yamauchi, A., Preston, A. S., Marumo, F., and Handler, J. S. (1992) Molecular cloning of the cDNA for an MDCK cell Na+- and Cl--dependent taurine transporter that is regulated by hypertonicity. Proc. Natl. Acad. Sci. USA 89, 8230–8234.PubMedCrossRefGoogle Scholar
  45. Uhl, G. R., Kitayama, S., Gregor, P., Nanthakumer, E., Persico, A., and Shimada, S. (1992) Neurotransmitter transporter family cDNAs in a rat midbrain library: ‘orphan transporters’ suggest sizable structural variations. Mol. Brain Res. 16, 353–359.PubMedCrossRefGoogle Scholar
  46. Usdin, T. B., Mezey, E., Chen, C., Brownstein, M. J., and Hoffman, B. J. (1991) Cloning of the cocaine sensitive bovine dopamine transporter. Proc. Natl. Acad. Sci. USA 88, 11168–11171.PubMedCrossRefGoogle Scholar
  47. Yamauchi, A., Uchida, S., Kwon, H. M., Preston, A. S., Robey, R. B., Garcia-Perez, A., Burg, M. B., and Handler, J. S. (1992) Cloning of a Na+ and Cl-dependent betaine transporter that is regulated by hypertonicity. J. Biol. Chem. 267, 649–652.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • Baruch I. Kanner

There are no affiliations available

Personalised recommendations