Nucleic Acid Hybridization and Amplification In Situ

Principles and Applications in Molecular Pathology
  • Matthew S. Cowlen
Part of the Pathology and Laboratory Medicine book series (PLM)

Abstract

The ability of pathologists to diagnose disease has been enhanced significantly by the application of nucleic acid technologies, such as Southern blot hybridization and the polymerase chain reaction (PCR). These techniques are used routinely in clinical molecular diagnostic laboratories to detect and analyze genetic alterations associated with human disease. However, the ability to associate the nucleic acid sequence of interest with histopathologic or cytogenetic abnormalities directly is lost when tissue is destroyed during the extraction of nucleic acids. The analysis of nucleic acids in situ overcomes this limitation. ISH* offers the combined advantages of molecular biology, analytical morphology, and cytogenetics by facilitating the analysis of DNA or RNA in tissues and chromosomes. ISA of nucleic acid sequences using PCR is a developing technology that offers increased sensitivity compared to conventional ISH for detecting low-copy sequences. In situ nucleic acid techniques are discussed in detail in this chapter, with emphasis on the principles and clinical relevance of each technique.

Keywords

Human Immunodeficiency Virus Type Chronic Lymphocytic Leukemia Comparative Genomic Hybridization Minimal Residual Disease Metaphase Chromosome 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kallioniemi, A., Kallioniemi, O.-P., Sudar, D., Rutovitz, D., Gray, J. W., Waldman, F., and Pinkel, D. Comparative genomic hybridization for molecular cytogenetic analysis of solid tumors. Science 258:818–821, 1992.PubMedCrossRefGoogle Scholar
  2. 2.
    Ried, T., Baldini, A., Rand, T. C., and Ward, D. C. Simultaneous visualization of seven different DNA probes by in situ hybridization using combinatorial flourescence and digital imaging microscopy. Proc. Natl. Acad. Sci. USA 89:1388–1392, 1992.PubMedCrossRefGoogle Scholar
  3. 3.
    Dekken, H. V., Arkesteijn, G. J. A., Visser, J. W. M., and Bauman, J. G. J. Flow cytometric quantification of human chromosome-specific repetitive DNA sequences by single and bicolor fluorescent in situ hybridization to lymphocyte nuclei. Cytometry 11:153–164 1990.PubMedCrossRefGoogle Scholar
  4. 4.
    Fox, J. L., Hsu, P.-H., Legator, M. S., Morrison, L. E., and Seelig, S. A. Fluorescence in situ hybridization: powerful molecular tool for cancer research. Clin. Chem. 41:1554– 1559, 1995.PubMedGoogle Scholar
  5. 5.
    Uner, A. H., Hutchison, R. E., and Davey, F. R. Applications of in situ hybridization in the study of hematological malignancies. Hematol. Oncol. Clin. North Am. 8:771–785, 1994.PubMedGoogle Scholar
  6. 6.
    Le Beau, M. M. Fluorescence in situ hybridization in cancer diagnosis, in Important Advances in Oncology, DeVita, V. T., Hellman, S., and Rosenbuerg, S. A., eds., Lippencott, Philadelphia, pp. 29–45, 1993.Google Scholar
  7. 7.
    Zhao, L., Chang, K.-S., Estey, E. H., Hayes, K., Deisseroth, A. B., and Liang, J. C. Detection of residual leukemic cells in patients with acute promyelocytic leukemia by the fluorescence in situ hybridization method: potential for predicting relapse. Blood 85:495– 499, 1995.PubMedGoogle Scholar
  8. 8.
    Kearns, W. G. and Pearson, P. L. Detection of chromosomal aberrations in interphase and metaphase cells in prenatal and postnatal studies, in In Situ Hybridization Protocols. Methods in Molecular Biology, vol. 33, Choo, K. H., ed., Humana, Totowa, NJ, pp. 459–476, 1994.Google Scholar
  9. 9.
    Lebo, R. V. and Su, Y. Positional cloning and multicolor in situ hybridization. Principles and protocols, in In Situ Hybridization Protocols. Methods in Molecular Biology, vol. 33, Choo, K. H., ed., Humana, Totowa, NJ, pp. 409–438, 1994.Google Scholar
  10. 10.
    Sandberg, A. A. and Bridge, J. A. Techniques in cancer cytogenetics. Cancer Invest. 10:163–172, 1992.PubMedCrossRefGoogle Scholar
  11. 11.
    Bentz, M., Schroder, M., Herz, M., Stilgenbaur, S., Lichter, P., and Dohner, H. Detection of trisomy 8 on blood smears using fluorescence in situ hybridization. Leukemia 7:752– 757, 1993.PubMedGoogle Scholar
  12. 12.
    Bentz, M., Cabot, G., Moos, M., Speicher, M. R., Ganser, A., Lichter, P., and Dohner, H. Detection of chimeric BCR-ABL genes on bone marrow samples and blood smears in chronic myeloid and acute lymphocytic leukemia by in situ hybridization. Blood 83:1922– 1928, 1994.PubMedGoogle Scholar
  13. 13.
    Misra, D. N., Dickman, P. S., and Yunis, E. J. Fluorescence in situ hybridization (FISH) detection of MYCN oncogene amplification in neuroblastoma using paraffin-embedded tissues. Diagn. Mol. Pathol. 4:128–135, 1995.PubMedCrossRefGoogle Scholar
  14. 14.
    Nederlof, P. M., Robinson, D., Abuknesha, R., Wiegant, J., Hopman, A. H. N., Tanke, H. J., and Raap, A. K. Three color fluorescence detection of multiple nucleic acid sequences. Cytometry 10:20–27, 1989.PubMedCrossRefGoogle Scholar
  15. 15.
    Morrison, L. E. Chromosome analysis by multicolor fluorescence in situ hybridization using direct-labeled fluorescent probes. Clin. Chem. 39:733–734, 1993.Google Scholar
  16. 16.
    Le Beau, M. M., Espinosa, R., Neuman, W. L., Stock, W., Roulston, D., Larson, R. A., Keinanen, M., and Westbrook, C. A. Cytogenetic and molecular delineation of the smallest commonly deleted region of chromosome 5 in malignant myeloid diseases. Proc. Natl. Acad. Sci. USA 90:5484–5488, 1993.PubMedCrossRefGoogle Scholar
  17. 17.
    Dohner, H., Fischer, K., Bentz, M., Hansen. K., Benner, A., Cabot, G., Diehl, D., Schlenk, R., Coy, J., Stilgenbauer, S., Volkman, M., Galle, P. R., Poustka, A., Hunstein, W., and Lichter, Pgene deletion predicts for poor survival and non-response to therapy with purine analogs in chronic B-cell leukemias. Blood 85:1580–1589 1995.PubMedGoogle Scholar
  18. 18.
    Matsumura, K., Kallioniemi, O., Kallioniemi, A., Chen, H. S., Smith, D., Pinkel, D, Gray, J. W., and Waldman, F. Deletion of chromosome 17p loci in breast cancer cells detected by fluorescence in situ hybridization. Cancer Res. 52:3474–3477, 1992.PubMedGoogle Scholar
  19. 19.
    Anastasi, J., Vardiman, J. W., Rudinsky, R., Patel, M., Nachman, J., Rubin, C. M., and Le Beau, M. M. Direct correlation of cytogenetic findings with cell morphology using in situ hybridization: analysis of suspicious cells in bone marrow specimens of two patients completing therapy for acute lymphoblastic leukemia. Blood 77:2456–2462, 1991.PubMedGoogle Scholar
  20. 20.
    Escudier, S. M., Pereira-Leahy, J., Drach, J. W., Weir, H. U., Goodare, A. M., Cork, A., Trujillo, J. M., Keating, M. J., and Andreeff, M. Fluorescence in situ hybridization and cytogenetic studies of trisomy 12 in chronic lymphocytic leukemia. Blood 81:2702–2707, 1993.PubMedGoogle Scholar
  21. 21.
    Heerema, N. A., Argyropoulos, G., Weetman, R., Tricot, G., and Secker-Walker, L. M. Interphase in situ hybridization reveals minimal residual disease in early remission and return of the diagnostic clone in karyotypically normal relapse of acute lymphoblastic leukemia. Leukemia 7:537–543, 1993.PubMedGoogle Scholar
  22. 22.
    Zhao, L., Kantarjian, H. M., Van, O. J., Cork, A., Trujillo, J. M., and Liang, J. C. Detection of residual proliferating leukemia cells by fluorescence in situ hybridization in CML patients in complete remission after interferon therapy. Leukemia 7:168–171, 1993.PubMedGoogle Scholar
  23. 23.
    Sandberg, A. A. Chromosome changes in early bladder neoplasms. J. Cell. Biochem. 161(Suppl.):76–79, 1992.CrossRefGoogle Scholar
  24. 24.
    Herrann, M. E., and Lalley, P. A. Significance of trisomy 7 in thyroid tumors. Cancer Genet. Cytogenet. 62:144–149, 1992.CrossRefGoogle Scholar
  25. 25.
    Devilee, P. Detection of chromosome aneuploidy in interphase nuclei from human breast tumors using chromosome-specific repetitive DNA probes. Cancer Res. 48:5825–5830, 1988.PubMedGoogle Scholar
  26. 26.
    Alcaraz, A., Takahshi, S., Brown, J. A., Herath, J. F., Bergstralh, E. J., Larson-Keller, J. J., Lieber, M. M., and Jenkins, R. B. Aneuploidy and aneusomy of chromosome 7 detected by fluorescence in situ hybridization are markers for poor prognosis in prostate cancer. Cancer Res. 54:3998–4002, 1994.PubMedGoogle Scholar
  27. 27.
    Kallioniemi, O.-P., Kallioniemi, A., Kurisu, W., Thor, A., Chen, L.-C., Smith, H. S., Waldman, F. M., Pinkel, D., and Gray, J. W. ErbB-2 amplification in breast cancer analyzed by fluorescence in situ hybridization. Proc. Natl. Acad. Sci. USA 89:5321– 5325, 1992.PubMedCrossRefGoogle Scholar
  28. 28.
    Sauter, G., Moch, H., Moore, D., Carroll, P., Kerschman, R., Chew, K., Mihatsch, M. J., Gudat, F., and Waldman, F. Heterogeneity of erbB-2 gene amplification in bladder cancer. Cancer Res. 53:2199–2203, 1993.PubMedGoogle Scholar
  29. 29.
    Desmaze, C., Zuchman, J., Delattre, O., Melot,T., Thomas, G., and Aurias, A. Interphase molecular cytogenetics of Ewing’s sarcoma and peripheral neuroepithelioma t(11;22) with flanking and overlapping cosmid probes. Cancer Genet. Cytogen. 74:13–18, 1994.CrossRefGoogle Scholar
  30. 30.
    du Manoir, S., Speicher, M. R., Joos, S., Schrock, E., Popp, S., Dohner, H., Kovacs, G., Robert-Nicould, M., Lichter, P., and Cremer, T. Detection of complete or partial chromosome gains and losses by comparative genomic in situ hybridization. Hum. Genet. 90:590– 610, 1993.PubMedCrossRefGoogle Scholar
  31. 31.
    Campana, D. and Pui, C.-H. Detection of minimal residual disease in acute leukemia: methodologic advances and clinical significance. Blood 85:1416–1435, 1995.PubMedGoogle Scholar
  32. 32.
    Lion, T. Clinical implications of qualitative and quantitative polymerase chain reaction analysis in the monitoring of patients with chronic myelogenous leukemia. Bone Marrow Transplant. 14:505–509, 1994.PubMedGoogle Scholar
  33. 33.
    Szakacs, J. G. and Livingston, S. K. mRNA in situ hybridization using biotinylated oligonucleotide probes: implications for the diagnostic laboratory. Ann. Clin. Lab. Sci. 24:324– 338, 1994.PubMedGoogle Scholar
  34. 34.
    Lloyd, R. V., Jin, L., and Bonnerup, M. K. In situ hybridization in diagnostic pathology. Mayo Clin. Proc. 69:597–598, 1994.PubMedCrossRefGoogle Scholar
  35. 35.
    Negro, F., Pacchioni, D., Mondardini, A., Bussolati, G., and Bonino, F. In situ hybridization in viral hepatitis. Liver 12:217–226, 1992.PubMedGoogle Scholar
  36. 36.
    Morey, A. L. and Fleming, K. A. The use of in situ hybridization in studies of viral disease, in In Situ Hybridization: Medical Applications. Coulton, G. R. and de Belleroche, J., eds., Kluwer, Boston, pp. 66–96, 1992.CrossRefGoogle Scholar
  37. 37.
    Ambinder, F. and Mann, R. B. Epstein-Barr-encoded RNA in situ hybridization: diagnostic applications. Hum. Pathol. 25:602–605, 1994.PubMedCrossRefGoogle Scholar
  38. 38.
    Gowans, E. J., Arthur, J., Blight, K., and Higgins, G. D. Application of in situ hybridization for the detection of virus nucleic acids, in In Situ Hybridization Protocols. Methods in Molecular Biology, vol. 33, Choo, K. H., ed., Humana, Totowa, NJ, pp. 395– 408, 1994.Google Scholar
  39. 39.
    DeLellis, R. A. In situ hybridization techniques for the analysis of gene expression: applications in tumor pathology. Hum. Pathol. 25:580–585, 1994.PubMedCrossRefGoogle Scholar
  40. 40.
    Biffo, S. In situ hybridization: optimization of the techniques for collecting and fixing the specimens. Liver 12:227–229, 1992.PubMedCrossRefGoogle Scholar
  41. 41.
    Nuovo, G. J. Buffered formalin is the superior fixative for the detection of human papillomavirus DNA by in situ hybridization analysis. Am. J. Pathol. 134:837–842, 1989.PubMedGoogle Scholar
  42. 42.
    Wilcox, J. N. Fundamental principles of in situ hybridization. J. Histochem. Cytochem. 41:1725–1733, 1993.PubMedCrossRefGoogle Scholar
  43. 43.
    Komminoth, P. Digoxigenin as an alternative probe labeling for in situ hybridization. Diagn. Mol. Pathol. 1:142–150, 1992.PubMedGoogle Scholar
  44. 44.
    Hacker, G. W., Zehbe, I., Hauser-Kronberger, C., Gu, J., Graf, A., Grimelius, L., and Dietz, O. Sensitive detection of DNA and mRNA sequences by in situ hybridization and immunogold-silver staining, in In Situ Polymerase Chain Reaction and Related Technology, Gu, J., ed., Eaton, Natick, MA, pp. 113–130, 1995.CrossRefGoogle Scholar
  45. 45.
    Choo, K. H. (ed.) In Situ Hybridization Protocols. Methods in Molecular Biology, vol. 33, Humana, Totowa, NJ, 1994.Google Scholar
  46. 46.
    Guiot, Y. and Rahier, J. The effects of varying key steps in the non-radioactive in situ hybridization protocol: a quantitative study. Histochem. J. 27:60–68, 1995.PubMedCrossRefGoogle Scholar
  47. 47.
    Yoshii, A., Koji, T., Ohsawa, N., and Nakane, P. K. In situ localization of ribosomal RNAs is a reliable reference for hybridizable RNA in tissue sections. J. Histochem. Cytochem. 43:321–327, 1995.PubMedCrossRefGoogle Scholar
  48. 48.
    Nuovo, G. J. PCR In Situ Hybridization. Protocols and Applications, 2nd ed. Raven, New York, 1994.Google Scholar
  49. 49.
    Dictor, M., Siven, M., Tennvall, J., and Rambech, E. Determination of nonendemic nasopharyngeal carcinoma by in situ hybridization for Epstein-Barr virus EBER1 RNA: sensitivity and specificity in cervical node metastases. Laryngoscope 105:407–412, 1995.PubMedCrossRefGoogle Scholar
  50. 50.
    Greil, R., Fasching, B., Loidl, P., and Huber, H. Expression of c-myc proto-oncogene in multiple myeloma and chronic lymphocytic leukemia: an in situ analysis. Blood 78:180–191, 1991.PubMedGoogle Scholar
  51. 51.
    Hamatani, K., Yoshida, K., Kondo, H., Toki, H., Okabe, K., Motoi, M., Ikeda, S., Mori, S., Shimaoka, K., Akiyama, M., Nakayama, E., and Shiku, H. Histologic typing of nonHodgkin’s lymphomas by in situ hybridization with DNA probes of oncogenes. Blood 74:423–429, 1989.PubMedGoogle Scholar
  52. 52.
    Fiorentino, M., Grigioni, W. F., Baccarini, P., Errico, A. D., De Mitri, M. S., Pisi, E. and Mancini, A. M. Different in situ expression of insulin-like growth factor type II in hepatocellular carcinoma. An in situ hybridization and immunohistochemical study. Diagn. Mol. Pathol. 3:59–65, 1994.PubMedCrossRefGoogle Scholar
  53. 53.
    Maxwell, M., Naber, S. P., Wolfe, S. P., Galanopoulos, T., Hedley-Whyte, E. T., Black, P. M., and Antoniades, H. N. Platelet-derived growth factor (PDGF) and PDGF receptor genes in primary human astrocytomas may contribute to their development and maintenance. J. Clin. Invest. 86:131–140, 1990.PubMedCrossRefGoogle Scholar
  54. 54.
    Radinski, R., Bucana, C. D., Ellis, L. M., Sanchez, R., Cleary, K. R., Brigati, D. J., and Fidler, I. J. A rapid colorimetric in situ messenger RNA hybridization for analysis of epidermal growth factor receptor in paraffin-embedded surgical specimens of human colon carcinoma. Cancer Res. 53:937–943, 1993.Google Scholar
  55. 55.
    Xu, X.-C., Clifford, J. L., Hong, W. K., and Lotan, R. Detection of nuclear retinoic acid receptor mRNA in histological tissue sections using nonradioactive in situ hybridization histochemistry. Diagn. Mol. Pathol. 3:122–131, 1994.PubMedCrossRefGoogle Scholar
  56. 56.
    Matsuno, A., Terarnoto, A., Takekoshi, S., Sanno, N., Osamura, R. Y., and Kirino, T. Expression of plurihormonal mRNAs in somatotrophic adenomas detected using a nonisotopic in situ hybridization method: comparison with lactotrophic adenomas. Human Pathol. 26:272–279, 1995.CrossRefGoogle Scholar
  57. 57.
    Dank, J. A., McHale, J. C., Clark, S. P., Chou, S. T., Scurry, J. P., Ingleton, P. M., and Martin, T. J. In situ hybridization of parathyroid hormone-related protein in normal skin, skin tumors, and gynecological cancers using digoxigenin-labeled probes and antibody enhancement. J. Histochem. Cytochem. 43:5–10, 1995.CrossRefGoogle Scholar
  58. 58.
    Lloyd, R. V. and Long, J. In situ hybridization analysis of chromogranin A and B mRNAs in neuroendocrine tumors with digoxigenin-labeled oligonucleotide probe cocktails. Diagn. Mol. Pathol. 4:143–151, 1995.PubMedCrossRefGoogle Scholar
  59. 59.
    Anderson, J. K., Frim, D. M., Isacson, O., and Breakefield, X. O. Herpesvirus-mediated gene delivery into the rat brain: specificity and efficiency of the neuron-specific promotor. Cell. Mol. Neurobiol. 13:503–515, 1993.CrossRefGoogle Scholar
  60. 60.
    Gazit, G., Kane, S. E., Nichols, P., and Lee, A. S. Use of the stress-inducible grp78/BiP promoter in targeting high level gene expression in fibrosarcoma in vivo. Cancer Res. 55:1660–1663, 1995.PubMedGoogle Scholar
  61. 61.
    Hyde, S. C., Gill, D. R., Higgins, C. F., Trezise, A. E. O., MacVanish, L. J., Cuthbert, A. W., Ratcliff, R., Evans, M. J., and Colledge, W. H. Correction of the ion transport defect in cystic fibrosis transgenic mice by gene therapy. Nature 362:250–255, 1993.PubMedCrossRefGoogle Scholar
  62. 62.
    Lisziewicz, J., Sun, D., Smythe, J., Lusso, P., Louie, A., Markham, P., Rossi, J., Reitz, M., and Gallo, R. C. Inhibition of human immunodeficiency virus type I replication by regulated expression of a polymeric Tat activation response RNA decoy as a strategy for gene therapy in AIDS. Proc. Natl. Acad. Sci. USA 90:8000–8004, 1993.PubMedCrossRefGoogle Scholar
  63. 63.
    Zehbe, I., Sallstrom, J. F., Hacker, G. W., Hauser-Kronberger, C., Rylander, E., and Wilander, E. Indirect and direct in situ PCR for the detection of human papillomavirus. An evaluation of two methods and a double staining technique. Cell Vision 1:163–167, 1994.Google Scholar
  64. 64.
    Mehta, A., Maggioncalda, J., Bagasra, O., Thikkavarapu, S., Saikumari, P., Valyi-Nagy, T., Fraser, N. W., and Block, T. M. In situ DNA PCR and RNA hybridization detection of herpes simplex virus sequences in trigeminal ganglia of latently infected mice. Virology 206:633–640, 1995.PubMedCrossRefGoogle Scholar
  65. 65.
    Bagasra, O., Hauptman, S. P., Lischner, H. W., Sachs, M., and Pomerantz, R. J. Detection of human immunodeficiency virus type 1 provirus in mononuclear cells by in situ polymerase chain reaction. New Engl. J. Med. 326:1385–1391, 1992.PubMedCrossRefGoogle Scholar
  66. 66.
    Embretson, J., Zupancic, M., Ribas, J. L., Burke, A., Racz, P., Tenner-Racz, K., and Haase, A. T. Massive covert infection of helper T lymphocytes and macrophages by HIV during the incubation period of AIDS. Nature 362:359–362, 1993.PubMedCrossRefGoogle Scholar
  67. 67.
    Haase, A. T., Retzel, E. F., and Staskus, K. A. Amplification and detection of lentiviral DNA inside cells. Proc. Natl. Acad. Sci. USA 87:4971–4975, 1990.PubMedCrossRefGoogle Scholar
  68. 68.
    Gu, J. (ed.) In situ Polymerase Chain Reaction and Related Technology. Eaton. Natick, MA 1995.Google Scholar
  69. 69.
    Zehbe, I., Hacker, G. W., Sallstrom, J. F., Rylander, E., and Wilander, E. Self-sustained sequence replication-based amplification (3SR) for the in situ detection of mRNA in cultured cells. Cell Vision 1:20–24, 1994.Google Scholar
  70. 70.
    Zehbe, I. E., Hacker, G. W., Sallstrom, J., Rylander, E., and Wilander, E. Detection of single HPV copies in SiHa cells by in situ polymerase chain reaction combined with immunoperoxidase and immunogold-silver staining techniques. Anticancer Res. 12:2165–2168, 1992.PubMedGoogle Scholar
  71. 71.
    Patterson, B. K., Till, M., Otto, P., Gollsby, C., Furtado, M. R., McBride, L. J., and Wolinsky, S. M. Detection of HIV-1 DNA and mRNA in individual cells by PCR-driven in situ hybridization and flow cytometry. Science 260:976–979, 1993.PubMedCrossRefGoogle Scholar
  72. 72.
    Embretson, J., Zupancic, M., Beneke, J., Till, M., Wolinsky, S., Riba, J. L., Burke, A., and Hasse, A. T. Analysis of human immunodeficiency virus-infected tissues by amplification and in situ hybridization reveals latent and permissive infections at single-cell resolution. Proc. Natl. Acad. Sci. USA 90:357–361, 1993.PubMedCrossRefGoogle Scholar
  73. 73.
    Bibbo, M., Pestaner, J. P., Scavo, L. M., Bobroski, L., Seshamma, T., and Bagasra, O. Surfactant protein A mRNA expression utilizing the reverse transcription in situ PCR for metastatic adenocarcinoma. Cell Vision 1:290–293, 1994.Google Scholar
  74. 74.
    Nuovo, G. J., MacConnell, P. B., Simsir, A., Valea, F., and French, D. Correlation of the in situ detection of polymerase chain reaction-amplified metalloproteinase complementary DNAs and their inhibitors with prognosis in cervical carcinoma. Cancer Res. 55:267–275, 1995.PubMedGoogle Scholar
  75. 75.
    Yin, J., Kaplitt, M. G., and Pfaff, D. W. In situ PCR and in vivo detection of foreign gene expression in rat brain. Cell Vision 1:58–59, 1994.Google Scholar
  76. 76.
    O’Leary, J. J., Browne, G., Landers, R. J., Crowley, M., Healy, I. B., Street, J. T., Pollock, A. M., Murphy, J., Johnson, M. I., Lewis, F. A., Mohamdee, O., Cullinane, C., and Doyle, C. T. The importance of fixation procedures on DNA template and its suitability for solution-phase polymerase chain reaction and PCR in situ hybridization. Histochem. J. 26:337–346, 1994.PubMedCrossRefGoogle Scholar
  77. 77.
    Tsongalis, G. J., McPhail, A. H., Lodge-Rigal, R. D., Chapman, J. F., and Silverman, L. M. Localized in situ amplification (LISA): A novel approach to in situ PCR. Clin. Chem. 40:381–384, 1994.PubMedGoogle Scholar
  78. 78.
    Nuovo, G. J., MacConnell, P., and Gallery, F. Analysis of nonspecific DNA synthesis during in situ PCR and solution-phase PCR. PCR Methods Appl. 4:89–96, 1994.PubMedCrossRefGoogle Scholar
  79. 79.
    Bagasra, O., Seshamma, T., Oakes, J. W., and Pomerantz, R. J. High percentages of CD4positive lymphocytes harbor the HIV-1 provirus in the blood of certain infected individuals. AIDS 7:1419–1425, 1993.PubMedCrossRefGoogle Scholar
  80. 80.
    Zevallos, E., Bard, E., Anderson, V., Carson, N, and Gu, J. Detection of HIV sequences in placentas of HIV-infected mothers by in situ PCR. Cell Vision 1:116–121, 1994.Google Scholar
  81. 81.
    Re, M. C., Furlini, G., Gibellini, D., Vignoli, M., Rammazotti, E., Lolli, S., Ranieri, D., and La Placa, M. Quantification of human immunodeficiency virus type 1-infected mononuclear cells in peripheral blood of seropositive subjects by newly developed flow cytometry analysis of the product of an in situ PCR assay. J. Clin. Microbiol. 32:2152–2157, 1994.PubMedGoogle Scholar
  82. 82.
    Ueki, K., Richardson, E. P., Henson, J. W., and Louis, D. N. In situ polymerase chain reaction demonstration of JC virus in progressive multifocal leukoencephalopathy, including an index case. Ann. Neurol. 36:670–673, 1994.PubMedCrossRefGoogle Scholar
  83. 83.
    Lidonnici, K., Lane, B., and Nuovo, G. J. Comparison of serologic analysis and in situ localization of PCR-amplified cDNA for the diagnosis of hepatitis C infection. Diagn. Mol. Pathol. 4:98–107, 1995.PubMedCrossRefGoogle Scholar
  84. 84.
    Isaacson, S. H., Asher, D. M., Gajdusek, D. C., and Gibbs, C. J. Detection of viruses in archival brain tissue by in situ RT-PCR amplification and labeled-probe hybridization. Cell Vision 1:25–28, 1994.Google Scholar
  85. 85.
    Pereira, R. F., Halford, K. W., O’Hara, M. D., Leeper, D. B., Sokolov, B. P., Pollard, M. D., Bagasra, O., and Prockop, D. J. Cultured adherent cells from marrow can serve as long-lasting precursor cells for bone, cartilage, and lung in irradiated mice. Proc. Natl. Acad. Sci. USA 92:4857–4861, 1995.PubMedCrossRefGoogle Scholar
  86. 86.
    Deisseroth, A. B., Kavanagh, J., and Champlin, R. Use of safety-modified retroviruses to introduce chemotherapy resistant sequences into normal hematopoietic cells for chemoprotection during the therapy of ovarian cancer: a pilot trial. Hum. Gene Ther. 5:1507–1522, 1994.PubMedCrossRefGoogle Scholar
  87. 87.
    Teo, I. A. and Shaunak, S. Polymerase chain reaction in situ: an appraisal of an emerging technique. Histochem. J. 27:647–659, 1995.PubMedGoogle Scholar
  88. 88.
    Teo, I. A. and Shaunak, S. PCR in situ: aspects which reduce amplification and generate false-positive results. Histochem. J. 27:660–669, 1995.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • Matthew S. Cowlen

There are no affiliations available

Personalised recommendations